Lord Howe Island Rodent Eradication Project EPBC Public Environment Report October 2016

Total Page:16

File Type:pdf, Size:1020Kb

Lord Howe Island Rodent Eradication Project EPBC Public Environment Report October 2016 Lord Howe Island Rodent Eradication Project EPBC Public Environment Report October 2016 Appendix H - Biodiversity Benefits Monitoring Package H.1 Biodiversity Benefits Project Report H.2 LHI Land Birds Report 2014 H.3 LHI Land Birds Report 2013 1 Assessing impacts of introduced rats on Lord Howe Island plants including the Little Mountain Palms and its habitat on Mt Gower June 2015 Tony D Auld1, Andrew Denham1, Mark Tozer1 and Ian Hutton2 1, NSW Office of Environment and Heritage, PO Box 1967 Hurstville NSW 2220 2, PO Box 157, Lord Howe Island, NSW 2898 Email: [email protected] Summary We used selective caging and cafeteria trials to determine removal and loss of fruits and seeds to Black Rats (Rattus rattus) on Lord Howe Island. Of the 16 species examined, losses to Black Rats were very high for six species (Howea forsteriana, Olea paniculata, Baloghia inophylla, Jasminium simplicifolium, Smilax australis and Geitonoplesium cymosum); potentially very high but variable for one species (Ochrosia elliptica); moderate for three species (Syzygium fullagarii, Chionanthus quadristamineus, Dietes robinsoniana) (the actual losses may be higher as the trials only ran for a short period) and low-moderate in the remaining 6 species. No species tested was entirely free of seed or fruit losses to Black Rats. This suggests Black Rats are likely to impact on many species across LHI and further testing of species is warranted to examine the number of species likely to be at risk due to impacts on seed production, seed survival and plant recruitment. In addition, further work on what impact the loss of seeds or fruits may have on the affected plant populations is also necessary. The high impact of Black Rats on the Little Mountain Palm (Lepidorrhachis mooreana) on Mt Gower that had been identified by Auld et al. (2010) was confirmed by repeat sampling 8 years after the original sampling was done. While there is some successful recruitment in this species where rodent baiting occurs on Mt Gower, recruitment failure is evident at locations over 100 m or so from bait stations. This suggests that to successfully maintain this critically endangered palm on Mt Gower rat control or eradication will be required across the Mt Gower summit. The habitat of the Little Mountain Palm, the Gnarled Mossy Cloud Forest, was assessed as critically endangered using the IUCN Red List for Ecosystems criteria. Control of Black Rats on the summit of Mt Gower is the most practical means to reduce the threat to this ecological community in the short term. 2 Introduction The flora of Lord Howe Island is recognised as globally significant due to the high level of endemism and unique vegetation communities. Auld and Hutton (2004) detail this as: “The flora of Lord Howe Island has a high level of endemism and many of the floristic assemblages are also unique to the island group (Pickard 1983, Green 1994). There are five plant genera endemic to Lord Howe Island — Negria, Lordhowea and three palms, Howea, Hedyscepe and Lepidorrachis. For the vascular plants, Green (1994) lists 459 species, 241 indigenous (53%), of which 105 are endemic (44%) and 218 naturalised (48%). Of the indigenous vascular plants, 58 species are ferns and 183 are flowering plants. Several more species of both indigenous and naturalised plants have been found since Green’s (1994) work. The high level of endemism is typical of islands and comparable with megadiverse regional areas of continents (Lowry 1998).” It is widely recognised that invasive species may have significant negative impacts on oceanic islands, particularly for many narrow range endemics and ecological communities. While Lord Howe Island was originally free of mammals (except for small insectivorous bats) when first encountered by humans in 1788 and first settled in 1834 (Hutton 1986), Black rats (Rattus rattus) were accidentally introduced when a steamship ran aground in 1918 (Billing and Harden 2000). A number of plant species and vegetation communities have been identified as being at risk from the impacts of Black Rats and house mice on LHI. These impacts include: • Loss of fruits and seeds to rats, e.g. Baloghia inophylla, Chionanthus quadristamineus, Drypetes deplanchei, Elaeodendron curtipendulum, Hedyscape canterburyana, Howea forsteriana, Howea belmoreana, Lepidorrhachis mooreana, Pandanus forsteri, Ochrosia elliptica (Auld & Hutton 2004, Auld et al. 2010); • loss of seedlings and stem damage (the four palm species, Hedyscape canterburyana, Howea forsteriana, Howea belmoreana, Lepidorrhachis mooreana, Dietes robinsoniana (Wedding Lily) and at least two fern species, Asplenium milnei and Adiantum hispidulum) (Auld & Hutton 2004); • impacts on the critically endangered Gnarled Mossy Cloud Forest Ecological Community confined to the summits of the southern mountains (NSW Scientific Committee 2011); As well, the extinctions of two Lord Howe Island plant species, Sicyos australis and Solanum bauerianum, were most likely influenced by consumption of seeds and fruits by introduced animals (Auld & Hutton 2004; NSW Scientific Committee 2010). Solanum bauerianum is now considered to be globally extinct. In this work, we undertook to quantify the impact of introduced rats on 2 aspects of the vegetation of LHI. Firstly, we wanted to understand the breadth of plants species that may be impacted by rats. To do this, in the field we tested the magnitude of fruit and seed loss to rats across a range of species, with the species tested being dictated by fruit and seed availability. For some species we were able to replicate the trials in different locations or at different times of the year. Secondly, we re- examined the size distribution of plants of the little mountain palm (Lepidorrhachis mooreana) on Mt Gower. Previously, Auld et al. (2010) had shown that rats were preventing the establishment of new plants into the parts of the population that were 3 not baited. We re-measured these sites to determine if the impact of rats was ongoing and to try and see if rat baiting was leading to sufficient protection for these palms. Finally, through funding support from an Australian Research Council Grant to TA and others we assessed the extinction risk for the Gnarled Mossy Cloud Forest Ecological Community using the recently developed IUCN Red List for Ecosystems criteria (Keith et al. 2013). Methods Impact of Black Rats on fruits and seeds At one or more sites (See Table 1) we established 5 plots beneath mature plants of several species (Howea forsteriana (Kentia Palm), Ochrosia elliptica (Berrywood), Olea paniculata (Maulwood), Coprosma putida) (Table 1). Each plot contained three treatments: uncaged; caged to exclude only birds (rodents could enter in gaps at each end (see Fig. 1); and caged to exclude both rodents and birds. At each plot, in each treatment we placed 5 mature fruits. The density of fruits so placed was not dissimilar to that found naturally below plants with mature fruits. We recorded the fate of seeds over 3-7 days. We also established an infared camera at one plot for each species to record what animal was responsible for seed removal or loss (these cameras were set up to activate and take 10 photos when a warm blooded animals comes into view of the camera (i.e. a rat , a mouse, a bird, a human). We also established plots for multiple species in a ‘cafeteria’ trial within the habitat where they generally occur. We did this for 12 species at 5 sites (See Table 1). In this trial 5 fruits or seeds of 4-6 species were placed together in small clumps (see Fig. 2). At each plot all seeds were uncaged. Again, like above, the fate of the fruits/seeds was followed over 3-7 days if possible. Impact of Black Rats on the Little Mountain Palm (Lepidorrhachis mooreana) on Mt Gower We repeated the sampling of Auld et al. (2010) (see Appendix 1) and sampled the size structure of stands of Little Mountain Palms in cloud forest on the Mount Gower plateau. We stratified the sampling between areas that have been baited by the Lord Howe Island Board to control rat numbers and those that have never been baited. In each of the baited and unbaited areas we sampled three separate plots for the Little Mountain Palm (Lepidorrhachis mooreana) (6 plots). We also sampled an additional 4 plots in the gradient between baited and unbaited areas. We estimated the distance for each of our 10 sampled plots from an existing bait station to determine if there was any additional benefit of baiting into surrounding unbaited areas. At each plot, we established a 5 m wide transect across the site and sampled all individual palms within the transect. The transects were sampled until we had encountered a minimum of 30-50 Lepidorrhachis individuals with an emergent trunk. We measured the trunk height to the base of the leaves, the number of leaf scars for individuals with a trunk and the height of individuals for individuals without a trunk. Extinction risk for the Gnarled Mossy Cloud Forest Ecological Community To assess the Gnarled Mossy Cloud Forest against the IUCN Red List for Ecosystems criteria (Keith et al. 2013), we searched the available literature for 4 evidence of any threats to the ecosystem that may result in ecosystem decline. We assessed the Gnarled Mossy Cloud Forest against four of the IUCN criteria (see Appendix 2, Auld and Leishman 2015 for more details): • Decline was assessed using historical vegetation reports (Maiden 1898, 1914; Oliver 1916; Pickard 1983; Green 1994; Mueller-Dombois & Fosberg 1998; Harris et al. 2005). For more recent changes, we inspected satellite imagery (Google Earth and 2011 air photo imagery). • For Restricted geographic distribution we used available Geographical Information System data layers for the distribution of Gnarled Mossy Cloud Forest (mapped from Pickard 1983) to estimate both the extent of occurrence and area of occupancy of the ecosystem.
Recommended publications
  • Newsletter No.67
    ISSN 0818 - 335X November, 2003 ASSOCIATION OF SOCIETIES FOR GROWING AUSTRALIAN PLANTS ABN 56 654 053 676 THE AUSTRALIAN DAISY STUDY GROUP NEWSLETTER NO. 67 Esma Salkin Studentship and proposed projects for the studentship Leader's letter and coming events Species or forms new to members Jeanette Closs, Ozotharnnus reflexifolius Judy Barker and Joy Greig Daisies of Croajingolong N. P. (contd.) Joy Greig More about Xerochrysum bracteaturn Barrie Hadlow from Sandy Beach (NSW) A postscript to 'Daisies in the Vineyard' Ros Cornish Leptorhynchos sprfrom-Dimmocks -Judy Barker Lookout Daisies on Lord Howe Island Pat and John Webb Ozothamnus rodwayi Beryl Birch Daisies for the SA Plant Sale on ~7~~128'~Syd and Syl Oats September Report from Pomonal Linda Handscombe ADSG Display at the APS SA Plant Sale Syd and Syl Oats Propagation pages - Ray Purches, Bev Courtney, Margaret Guenzel, Syd Oats, Judy Barker An innovative use for a rabbit's cage Syd and Syd Oats Members' reports - Corinne Hampel, Jeff Irons, Ray Purches, Jan Hall, Ros Cornish, Jeanette Closs, Syd Oats, Gloria Thomlinson June Rogers Podolepis robusta Financial Report, editor's letter, new (illustrated by Gloria Thomlinson) members, seed donors, seed additions and deletions, index for 2003 newsletters OFFICE BEARERS: Leader and ADSG Herbarium Curator -Joy Greig, PO Box 258, Mallacoota, 3892. TellFax: (03) 51 58 0669 (or Unit 1, 1a Buchanan St, Boronia, 31 55. Tel: (03) 9762 7799) Email [email protected] Treasurer - Bev Courtney, 9 Nirvana Close, Langwarrin, 3910. Provenance Seed Co-ordinator - Maureen Schaumann, 88 Albany Drive, Mulgrave, 3170. Tel: (03) 9547 3670 Garden and Commercial Seed Co-ordinator and Interim Newsletter Editor: - Judy Barker, 9 Widford St, East Hawthorn, 3123.
    [Show full text]
  • Thysanoptera, Phlaeothripinae)
    Zootaxa 4759 (3): 421–426 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4759.3.8 http://zoobank.org/urn:lsid:zoobank.org:pub:F725F128-FCF3-4182-8E88-ECC01F881515 Two new monobasic thrips genera for a gall-inducing species and its kleptoparasite (Thysanoptera, Phlaeothripinae) LAURENCE A. MOUND & ALICE WELLS Australian National Insect Collection CSIRO, PO Box 1700, Canberra, ACT 2601 [email protected] Abstract Drypetothrips korykis gen. et sp.n. is described as inducing leaf-margin galls on a small tree in Australia, Drypetes deplanchei [Putranjivaceae]. This thrips is similar in appearance to the smaller species of the genus Kladothrips that induce galls on Acacia species. The galls are invaded by a phytophagous kleptoparasitic thrips, Pharothrips hynnis gen. et sp.n., females of which have a forked plough-like structure protruding ventrally on the frons that is unique amongst Thysanoptera. Key words: autapomorphy, systematic relationships, leaf-margin galls, Australia Introduction The small tree, Drypetes deplanchei [Putranjivaceae], is widespread across northern Australia as far south as New- castle on the east coast. This tree is sometimes referred to as native holly, because the leaf margins can be sharply dentate, but these margins may also be almost smooth, and a species of thrips has been found inducing rolled margin galls on both leaf forms (Fig. 1). These galls and their thrips have been found at sites near Taree in coastal New South Wales, and also at Mt. Nebo near Brisbane in south-eastern Queensland.
    [Show full text]
  • TML Propagation Protocols
    PROPAGATION PROTOCOLS This document is intended as a guide for Tamborine Mountain Landcare members who wish to assist our regeneration projects by growing some of the plants needed. It is a work in progress so if you have anything to add to the protocols – for example a different but successful way of propagating and growing a particular plant – then please give it to Julie Lake so she can add it to the document. The idea is that our shared knowledge and experience can become a valuable part of TML's intellectual property as well as a useful source of knowledge for members. As there are many hundreds of plants native to Tamborine Mountain, the protocols list will take a long time to complete, with growing information for each plant added alphabetically as time permits. While the list is being compiled by those members with competence in this field, any TML member with a query about propagating a particular plant can post it on the website for other me mb e r s to answer. To date, only protocols for trees and shrubs have been compiled. Vines and ferns will be added later. Fruiting times given are usual for the species but many rainforest plants flower and fruit opportunistically, according to weather and other conditions unknown to us, thus fruit can be produced at any time of year. Finally, if anyone would like a copy of the protocols, contact Julie on [email protected] and she’ll send you one. ………………….. Growing from seed This is the best method for most plants destined for regeneration projects for it is usually fast, easy and ensures genetic diversity in the regenerated landscape.
    [Show full text]
  • Are Introduced Rats (Rattus Rattus) Both Seed Predators and Dispersers In
    CHAPTER FOUR: ARE INTRODUCED RATS (RATTUS RATTUS) BOTH SEED PREDATORS AND DISPERSERS IN HAWAII? Aaron B. Shiels Department of Botany University of Hawaii at Manoa 3190 Maile Way Honolulu, HI. 96822 122 Abstract Invasive rodents are among the most ubiquitous and problematic species introduced to islands; more than 80% of the world‘s island groups have been invaded. Introduced rats (black rat, Rattus rattus; Norway rat, R. norvegicus; Pacific rat, R. exulans) are well known as seed predators but are often overlooked as potential seed dispersers despite their common habit of transporting fruits and seeds prior to consumption. The relative likelihood of seed predation and dispersal by the black rat, which is the most common rat in Hawaiian forest, was tested with field and laboratory experiments. In the field, fruits of eight native and four non-native common woody plant species were arranged individually on the forest floor in four treatments that excluded vertebrates of different sizes. Eleven species had a portion (3% to 100%) of their fruits removed from vertebrate-accessible treatments, and automated cameras photographed only black rats removing fruit. In the laboratory, black rats were offered fruits of all 12 species to assess consumption and seed fate. Seeds of two species (non-native Clidemia hirta and native Kadua affinis) passed intact through the digestive tracts of rats. Most of the remaining larger-seeded species had their seeds chewed and destroyed, but for several of these, some partly damaged or undamaged seeds survived rat exposure. The combined field and laboratory findings indicate that many interactions between black rats and seeds of native and non-native plants may result in dispersal.
    [Show full text]
  • Will Climate Change, Genetic and Demographic Variation Or Rat Predation Pose the Greatest Risk for Persistence of an Altitudinally Distributed Island Endemic?
    Biology 2012, 1, 736-765; doi:10.3390/biology1030736 OPEN ACCESS biology ISSN 2079-7737 www.mdpi.com/journal/biology Article Will Climate Change, Genetic and Demographic Variation or Rat Predation Pose the Greatest Risk for Persistence of an Altitudinally Distributed Island Endemic? Catherine Laura Simmons 1, Tony D. Auld 2, Ian Hutton 3, William J. Baker 4 and Alison Shapcott 1,* 1 Faculty of Science Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; E-Mail: [email protected] 2 Office of Environment and Heritage (NSW), P.O. Box 1967 Hurstville, NSW 2220, Australia; E-Mail: [email protected] 3 P.O. Box 157, Lord Howe Island, NSW 2898, Australia; E-Mail: [email protected] 4 Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-7-5430-1211; Fax: +61-7-5430-2881. Received: 3 September 2012; in revised form: 29 October 2012 / Accepted: 16 November 2012 / Published: 23 November 2012 Abstract: Species endemic to mountains on oceanic islands are subject to a number of existing threats (in particular, invasive species) along with the impacts of a rapidly changing climate. The Lord Howe Island endemic palm Hedyscepe canterburyana is restricted to two mountains above 300 m altitude. Predation by the introduced Black Rat (Rattus rattus) is known to significantly reduce seedling recruitment. We examined the variation in Hedyscepe in terms of genetic variation, morphology, reproductive output and demographic structure, across an altitudinal gradient.
    [Show full text]
  • Bio 308-Course Guide
    COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit.
    [Show full text]
  • WRA Species Report
    Family: Apocynaceae Taxon: Ochrosia elliptica Synonym: NA Common Name: Lady of the House Pokosola Scarlet wedge apple Bloodhorn Elliptic Yellowwood Berrywood Tree Questionaire : current 20090513 Assessor: Chuck Chimera Designation: EVALUATE Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 2 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 405 Toxic
    [Show full text]
  • Insect Conservation and Islands Insect Conservation and Islands
    INSECT CONSERVATION AND ISLANDS INSECT CONSERVATION AND ISLANDS Editor T. R. New La Trobe University, Melbourne, Australia Reprinted from Journal of Insect Conservation Volume 12, Numbers 3–4 (2008) 123 A C.I.P. Catalogue record for this book is available from the library of Congress. ISBN-13 978-1-4020-8781-3 (HB) ISBN-13 978-1-4020-8782-0 (e-book) Published by Springer P.O. Box 17, 3300 AA Dordrecht, The Netherlands www.springer.com Cover illustration: The cover illustration shows several examples of spectacular weta (Orthoptera) from New Zealand, where their conservation has depended largely on offshore islands as refuges and introduction sites, as discussed in papers in this publication. The insects can be fitted with harmonic radar transponders or micro- transmitters for individual tracking. Shown are a Cook Strait Giant Weta, and two Mercury Island Tusked Weta (photograph courtesy of Danny Thornburrow, Corinne Watts and Ian Stringer). Printed on acid-free paper All Rights Reserved Ó 2008 Springer No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Table of Contents EDITORIAL A special issue on insect conservation and islands T.R. New 1 PAPERS Insect conservation on islands: setting the scene and defining the needs T.R. New 3–10 Butterflies of European islands: the implications of the geography and ecology of rarity and endemicity for conservation R.L.H. Dennis · L.
    [Show full text]
  • BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
    BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands.
    [Show full text]
  • Lepidorrhachis Mooreana (H
    Palm Conservation – Palm Specialist Group Lepidorrhachis mooreana (H. Wendl. & Drude) O. F. Cook Status: Not Evaluated in IUCN Red List. Vulnerable according to Dowe in Johnson (1996). Preliminary evaluation based on IUCN 2001 criteria: Endangered (EN B1a,bv) Common name Little Mountain Palm. Natural range Lepidorrhachis mooreana is restricted to the summits of Mt. Gower (875 m) and Mt. Lidgbird (777 m) on the remote Lord Howe Island. It occurs only above 750 m in dwarf mossy forest that dominates the summit plateau of Mt. Gower and the narrow summit ridge of Mt. Lidgbird. This forest is home to numerous remarkable endemic species including the pumpkin tree (Negria rhabdothamnoides), an arborescent member of the Gesneriaceae, and Dracophyllum fitzgeraldii (Ericaceae). It is also the primary nesting locality of the providence petrel (Pterodroma solandri) and is a stronghold for the woodhen (Tricholimnas sylvestris), an endemic member of the rail family that was recently rescued from the brink of extinction. However, less that 0.5 km2 of Lord Howe’s total surface area of 12 km2 is found above 750 m. The total area of suitable habitat available to Lepidorrhachis is thus extremely limited. Recognition characteristics Lepidorrhachis is very easily distinguished from the two other endemic palm genera on Lord Howe Island, Howea and Hedyscepe. It is a short solitary palm with a stem that rarely exceeds 2 m in height. It has stiff, arching leaves with short, deeply split leaf sheaths that do not form a distinct crownshaft. The sheaths are also covered with buff indumentum. Its bushy inflorescences are born below the leaves and are unisexual, both male and female inflorescences occurring on the same plant.
    [Show full text]
  • Synopsis of the Hymenopteran Fauna of Lord Howe Island with a Preliminary Checklist of Species
    Zootaxa 3931 (3): 423–432 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3931.3.6 http://zoobank.org/urn:lsid:zoobank.org:pub:4FA7FEAD-1622-413C-8251-B7470405D7B7 Synopsis of the hymenopteran fauna of Lord Howe Island with a preliminary checklist of species JOHN T. JENNINGS & ANDREW D. AUSTIN Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, SA 5005, Australia. E-mail: [email protected] or [email protected] Abstract Lord Howe Island is an eroded remnant of a shield volcano approximately 600 km northeast of Sydney, New South Wales, Australia. It has fascinated biologists for more than a century because of its unique and iconic fauna and flora, and was declared a World Heritage Site in 1982. Although the terrestrial invertebrate fauna is reasonably well known for many groups, most Hymenoptera, apart from ants, have received scant attention. Here we use material collected from a recent intensive invertebrate survey, in conjunction with the published literature, to provide an overview of the Hymenoptera known from the island that can act as a basis for future taxonomic and biodiversity research. In doing so, we record 318 species from 31 hymenopteran families from the Island, and assess the proportion that are flightless and likely to be en- demic to the island. Key words: oceanic island, endemic species, apterous, brachypterous Introduction Lord Howe Island, a World Heritage Site of global significance since 1982, is located approximately 600 km northeast of Sydney, New South Wales (Fig.
    [Show full text]
  • Invasion and Management of a Woody Plant, Lantana Camara L., Alters Vegetation Diversity Within Wet Sclerophyll Forest in Southeastern Australia
    University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2009 Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in southeastern Australia Ben Gooden University of Wollongong, [email protected] Kris French University of Wollongong, [email protected] Peter J. Turner Department of Environment and Climate Change, NSW Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Gooden, Ben; French, Kris; and Turner, Peter J.: Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in southeastern Australia 2009. https://ro.uow.edu.au/scipapers/4953 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in southeastern Australia Abstract Plant invasions of natural communities are commonly associated with reduced species diversity and altered ecosystem structure and function. This study investigated the effects of invasion and management of the woody shrub Lantana camara (lantana) in wet sclerophyll forest on the south-east coast of Australia. The effects of L. camara invasion and management on resident vegetation diversity and recruitment were determined as well as if invader management initiated community recovery. Vascular plant species richness, abundance and composition were surveyed and compared across L.
    [Show full text]