The MUNCASTER

Total Page:16

File Type:pdf, Size:1020Kb

The MUNCASTER The MUNCASTER . ;& ” ’ j steam-engine models Westbury 7-Entablature or table engines Continued from 2 May 1957. pages 634 to 636 N THE EARLY STAGES of its have the common feature of a flat acting type, having a sliding crosshead evolution, the steam-engine as- elevated table supported by four with bar slides. Both the baseplate I sumed various forms, some of (sometimes more) columns-compar- and the entablature are made from which, though now obsolete, are able in fact to the humble kitchen table. flat plate, the former being 1/4 in. thick Many of the classic examples of these with chamfered top edges, and the of great interest to the model engines had fluted Corinthian columns latter 1/8 in. The columns may be constructor. Design was influenced with decorated capitals and moulded built up, as indicated in the part by several factors, including ex- edges to the entablature. section, the ends being shouldered pediency or convenience in the down to form studs, with separate materials and methods of con- SIMPLE “ BASIC ” DESIGN capitals and pedestals fitted to them. struction available at the time; The engine illustrated in Fig. 34 This is economical with material, and also by traditional structural represents one of the simplest possible but I have a predilection for making . styles. designs in this class, being reduced things in one piece where this is I have already explained that the almost to the point of austerity, yet possible by straight-forward machining preferred position for the cylinder- fully in character. It is of the direct- and I think I should prefer to turn which was then usually the heaviest Fig. 34: A simple type of single-cylinder entablature engine single component-was on, the floor or bedplate; the difficulty of producing accurate straight slides, capable of resisting side thrust without undue friction, favoured the use of parallel motion for guiding the piston rod, or indirect action with long con- necting rods, such as in beam, return- crank and steeple engines. The class of engine known as the “ entablature ” or “ table ” engine made its appearance very early in the 1800s, but became most popular in the middle years of the century. Some very fine examples of these engines by Maudslay and other prominent makers , were shown at the 1851 Crystal Palace Exhibition; they varied a good deal in design, some being of the indirect- acting type, with the crankshaft below the cylinder and the piston rod ex- tended upwards to a rather spidery crosshead from which motion was transmitted by side connecting rods to the crank. Architectural term Others, such as the types illustrated here, had the cylinders mounted on the bedplate and the crankshaft rtl mounted on an elevated platform- probably the first attempt at what came to be known as “ direct-acting ” engines. In common with many other terms in engineering, the word “entablature” is borrowed from architecture, being in fact a legacy from the classic Graeco-Roman era. Its definition (to quote a standard architectural text- book), is“ the horizontal member or members supported’ by the columns, and including the cornice, frieze and architrave.” All engines in this class, therefore, MODEL ENGINEER 16 MAY 1957 * Fig. 35: Side view and motion-workplan of the double Fig. 36: End view and the entablature engine with parallel motion crosshead. cylinder plan of double engine them from 1/2in. square bar, leaving to the underside of the entablature, on both the connecting rod an the flanges about 1/16 in. wide unmachined but the sliding surfaces must be eccentric rod; the crosshead is of H- at each end, with simple mouldings exactly vertical and parallel to the section with grooved faces to embrace adjacent to them and the rest of the cylinder axis both ways. It is probable the slide bars. Despite its simple shank tapered from 5/16 in. to 1/4 in. that these were intended to be forged construction, this design can be made dia. Needless to say, the length to shape, and machined or filed only into quite a handsome and dignified between flanges must be the same in on the working surfaces; but most model and an efficient worker. all cases, and not only must the flanges constructors will probably find it be square with the sides of the en- best to cut them from the solid. TWIN-CYLINDER OR “DOUBLE” tablature but the latter must also have The crankshaft, of the overhung ENGINES square corners, not rounded; as type, has a 1/4in. dia. main journal The two further examples of engines Muncaster says,“it is a sound rule and runs in plummer block bearings in this class, illustrated in Figs 35, 36 in architecture that no cylindrical mounted on the flat surface of the and 37, are both the “ double ” type; part appears about the square cap of entablature; the web or crank disc having overhung cranks at either end a column.” has a pin 5/32in. dia. fitted at 3/8in. of the shaft and a central flywheel; Brass is often used for the structural radius, either by screwing or pressing but the design could quite easily be parts of these steam-engine models in. A spoked flywheel, 3 in. dia., is adapted as a single-cylinder engine if on the grounds of appearance, or fitted and it may be observed that if desired. They are also much more avoidance of rust, but in the proto- character is to be as faithful as possible elaborate in design than the foregoing types nearly all parts were made of both the rim and spokes should be example and best suited to con- cast or wrought iron. The cylinder thinner than is usual in modern struction from castings, though many, is 3/4 in. bore x 3/4 in. stroke, the design, practice. if not all, of the components could be including slide-valve, etc., following The eccentric is attached to the shaft produced by machining from solid or conventional practice. Piston and as close as possible to the main fabrication by brazing and soldering. valve rod glands have oval flanges bearing, thus serving as an end locat- The latter methods are often preferred and the sides of the stuffing-box on ing collar, and this should enable the by constructors who wish to obtain the cylinder cover have flat surfaces rod to be lined up with the valve rod the utmost accuracy in details such as for the attachment of the slide bars. without bending, which is always un- fluting and other forms of decoration, The latter are splayed outwards at sightly and frequently quite un- which was such an attractive feature the top, with horizontal lugs to fasten necessary. Forked ends are employed of these old engines. 16 MAY 1957 701 MODEL ENGINEER I ’ .!. ,. / Very little descriptive matter was sides of the cylinders were used. crosshead bearings, the latter being furnished by Muncaster on these The use of a deep bedplate or forked. A belt-driven governor is engines; the drawings were considered plinth with the cylinder partly or fitted, operating a butterfly throttle to be self-explanatory, at least to those completely sunk into it, in conjunction on the steam supply line which readers who were sufficiently exper- with an equally deep entablature, not connects to the two cylinders by a ienced to be likely to take an interest only enhances the dignified appear- horizontal branch pipe. in their construction. Taken in con- ance of the engine, but by enabling When the drawings of these engines junction with previous examples of shorter columns to be used, increases were published one or two of the design and functional details, I the rigidity of the structure. details were mildly criticised by think that most of the essential in- In the two engines shown in Figs 35 meticulous students of period steam- formation will be found in the draw- to 37 it appears that two separate plinths engine design; for instance, it was ings. are employed,and also separate suggested that the flywheels had too The major difference between the entablatures in the form of box girders; great a radial depth of rim, and that engine shown in Figs 35 and 36, and but I should prefer to employ a four spokes should be used instead that in Fig. 37, is that the former was single plinth and a rectangular frame of six, also that the crankshaft should fitted with parallel motion to the entablature; even in an engine having be of square section, turned only on piston crossheads and the latter with only one cylinder this form of con- the journals, with the flywheel and slide bars; this would probably, but struction would give maximum eccentric sheaves staked on. not necessarily, be a guide to period, strength and simplify lining up. I have no doubt that the critics as the earlier engines were less likely Note that the columns are not were well informed, but apparently to be fitted with sliding crossheads. turned to a straight taper but are Muncaster made some concessions to In the particular type of parallel slightly convex or “ fish-bellied “; simplicity in castings and machining motion illustrated, the geometry is this is correct to architectural tradi- procedure-just as I do myself-and simple and obvious; it was used on tions and improves the appearance so if every example of a model purporting many types of engines, both hori- long as it is not overdone. In the to be a true period piece were as zontal and vertical, though in the details of column pedestals and correct as his drawings I for one should latter case the ends of the radius rods capitals on the right of Fig.
Recommended publications
  • P1359 Robust F HD-HDP.Pdf
    (2007 =>) Users manual for frontloader ROBUST F HD / HDP 3311981 b Englisch P 1359 STOLL ROBUST F HD / HDP Table of contents page 1 Before operating 3 2 General safety information and prevention of accidents 5 2.1 Safety decal (=> 2007) 12 2.2 Safety decal (2007 =>) 13 3 Technical data 14 4 Description 16 5 Practical Application 18 5.1 Operation 18 5.1.1 Operation 19 5.1.2 Operation 20 5.2 Hydraulic system 21 5.3 Attaching of drive-in loader unit 22 5.4 Removal of the drive-in front loader 23 5.5 Mechanical single lever control unit SLV (option available) 26 5.5.1 Type 26 5.5.2 Definition of working directions 27 5.5.3 Definition of actuating directions 27 5.5.4 Additional functions joystick buttons 28 5.5.5 Operation fast stroke device 29 5.6 Quick installation and removal of attachments 30 5.7 Hydraulic implement control with switchable fast-stroke valve 31 5.8 Hydraulic diagram HE + HD 33 5.8.1 HD (standard – basic version) 33 5.8.2 HD (full equipped version) 34 5.9 Electrical Equipment HD 35 5.9.1 HD (standard – basic version) 35 5.9.2 HD Fully equipped electric version with 2-pole socket 36 5.9.3 HD Fully equipped electric version with 7-pole socket 37 5.10 Toogle switch 3rd Control circuit 38 5.11 Hydraulic parallel guidance of the implements 39 5.11.1 Advantages of hydraulic parallel motion ( HS = Hydraulical Selfleveling ) 39 5.11.2 Operation 40 5.11.3 Function 42 5.12 Control unit for "parallel motion" 43 5.13 Hydraulic diagram HDP 44 5.13.1 HDP (standard – basic version) 44 5.13.2 HDP (full equipped version) 45 5.14 Electrical
    [Show full text]
  • The MUNCASTER Steam-Engine Models EDGAR T
    The MUNCASTER steam-engine models EDGAR T. WESTBURY glances back with a modern eye toosome classic models of the past N THE COURSE of the long history caster is well remembered as a special- fore, need despise the crude and Of MODEL ENGINEER-now, in- ist in the design of all types of steam primitive types of models produced I cidentally, approaching 60 engines, whose excellent drawings of by beginners, so long as they lead on to years-many notable designs and many types of stationary and marine the more realistic types which were engines in early volumes of the M.E., Muncaster’s speciality. descriptive articles have been pub- and also in the handbook Model The simplest form of engine de- lished which have established tradi- Stationary Engines, published nearly scribed by Muncaster is one having a tions or marked milestones of half a century ago, provided scope single-acting oscillating cylinder (Fig. progress in model engineering. for the talents of innumerable con- 1) and this will commend itself to Not only are these remembered by structors. many readers, not only on account old readers but they are often the H. Muncaster was a practical of its simple construction, but also subject of considerable discussion. draughtsman who not only had a because it can be built without castings. and requests for further information wide experience of steam-engine design It is of the type which would now be about them are constantly encountered. but also obviously had a love and classed as “ inverted ” vertical, having A few of the authors of these features devotion to his craft, and to all the cylinder below the crankshaft, are still with us, and in one or two things mechanical.
    [Show full text]
  • 141210 the Rise of Steam Power
    The rise of steam power The following notes have been written at the request of the Institution of Mechanical Engineers, Transport Division, Glasgow by Philip M Hosken for the use of its members. The content is copyright and no part should be copied in any media or incorporated into any publication without the written permission of the author. The contents are based on research contained in The Oblivion of Trevithick by the author. Section A is a very brief summary of the rise of steam power, something that would be a mighty tome if the full story of the ideas, disappointments, successes and myths were to be recounted. Section B is a brief summary of Trevithick’s contribution to the development of steam power, how he demonstrated it and how a replica of his 1801 road locomotive was built. Those who study early steam should bear in mind that much of the ‘history’ that has come down to us is based upon the dreams of people seen as sorcerers in their time and bears little reality to what was actually achieved. Very few of the engines depicted in drawings actually existed and only one or two made any significant contribution to the harnessing of steam power. It should also be appreciated that many drawings are retro-respective and close examination shows that they would not work. Many of those who sought to utilise the elusive power liberated when water became steam had little idea of the laws of thermodynamics or what they were doing. It was known that steam could be very dangerous but as it was invisible, only existed above the boiling point of water and was not described in the Holy Bible its existence and the activities of those who sought to contain and use it were seen as the work of the Devil.
    [Show full text]
  • Bulletin 173 Plate 1 Smithsonian Institution United States National Museum
    U. S. NATIONAL MUSEUM BULLETIN 173 PLATE 1 SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM Bulletin 173 CATALOG OF THE MECHANICAL COLLECTIONS OF THE DIVISION OF ENGINEERING UNITED STATES NATIONAL MUSEUM BY FRANK A. TAYLOR UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1939 For lale by the Superintendent of Documents, Washington, D. C. Price 50 cents ADVERTISEMENT Tlie scientific publications of the National Museum include two series, known, respectively, as Proceedings and Bulletin. The Proceedings series, begun in 1878, is intended primarily as a medium for the publication of original papers, based on the collec- tions of the National Museum, that set forth newly acquired facts in biology, anthropology, and geology, with descriptions of new forms and revisions of limited groups. Copies of each paper, in pamphlet form, are distributed as published to libraries and scientific organi- zations and to specialists and others interested in the different sub- jects. The dates at which these separate papers are published are recorded in the table of contents of each of the volumes. Tlie series of Bulletins, the first of which was issued in 1875, contains separate publications comprising monographs of large zoological groups and other general systematic treatises (occasionally in several volumes), faunal works, reports of expeditions, catalogs of type specimens and special collections, and other material of simi- lar nature. The majority of the volumes are octavo in size, but a quarto size has been adopted in a few instances in which large plates were regarded as indispensable. In the Bulletin series appear vol- umes under the heading Contrihutions from the United States Na- tional Eerharium, in octavo form, published by the National Museum since 1902, which contain papers relating to the botanical collections of the Museum.
    [Show full text]
  • Steam Engines of Which We Have Any Knowledge Were
    A T H OROUGH AND PR ACT I CAL PR ESENT AT I ON OF MODER N ST EAM ENGI NE PR ACT I CE LLEWELLY DY N . I U M . E . V i P O F S S O O F X P M L G G P U DU U V S Y R E R E ERI ENTA EN INEERIN , R E NI ER IT AM ERICAN S O CIETY O F M ECH ANI C A L EN G INEERS I LL US T RA T ED AM ER ICA N T ECH N ICA L SOCIET Y C H ICAGO 19 17 CO PY GH 19 12 19 17 B Y RI T , , , AM ER ICA N T ECH N ICAL SOCIET Y CO PY RIG H TE D IN G REAT B RITAI N A L L RIGH TS RE S ERV E D 4 8 1 8 9 6 "GI. A INT RO DUCT IO N n m n ne w e e b e the ma es o ss H E moder stea e gi , h th r it j tic C rli , which so silently o pe rates the m assive e le ctric generators in f r mun a owe an s o r the an o o mo e w one o ou icip l p r pl t , gi t l c tiv hich t m es an o u omman s our uns n e pulls the Limited a sixty il h r , c d ti t d n And t e e m o emen is so f ee and e fe in admiratio .
    [Show full text]
  • Modern Steam- Engine
    CHAPTER III. THE ·DEVELOPJIENT OF THE .AfODERN STEAM-ENGINE. JAAIES WA1'T A1VD HIS OONTEJIPORARIES. THE wol'ld is now entering upon the Mechanical Epoch. There is noth­ ing in the future n1ore sure than the great tl'iu1nphs which thn.t epoch is to achieve. It has ah·eady u<Jvanced to some glorious conquests. '\Vhat111ira­ cle� of invention now crowd upon us I Look ab1·oad, and contemplate the infinite achieve1nents of the steam-power. And· yet we have only begun-we are but on tho threshold of this epoch.... What is it but ·the setting of the great distinctive seal upon the nineteenth century ?-an advertisement of the fact that society .hns risen to occupy a higher platfor1n than ever before ?-a proclamation f1·01n the high places, announcing honor, honor imn1ortal, to the �vorlunen who fill this world with beauty, comfort, and power-honor to he forever embahned in history, to be pet·petuated in monuments, to be written in the hearts of this and succeeding generations !-KENNEDY. I.-J w SECTION A?rlES .A.TT AND HIS INVENTIONS. \ • . THE success of the N ewcomen engine naturally attracted the attention of mechanics, and of scientific men as well, to the p9ssibility of making other applications of steam-power. The best men of the time gave much attention to tl1e subject, but, until ·James Watt began the work that has made him famous, nothing more ,vas done than to improve the proportions and slightly alter the details of the Ne,vco­ men and Calley engine, even by such skillful engineers as Brindley and Smeaton.
    [Show full text]
  • Design, Fabrication and Analysis of Four Bar Walking Machine Based on Chebyshev’S Parallel Motion Mechanism
    European International Journal of Science and Technology Vol. 3 No. 8 October, 2014 Design, Fabrication and Analysis of Four Bar Walking Machine Based on Chebyshev’s Parallel Motion Mechanism K. Manickavelan, Balkeshwar Singh*, N. Sellappan Mechanical & Industrial Engineering Section Salalah College of Technology, Salalah, Sultanate of Oman *Corresponding Email: [email protected] Abstract A mechanism is the heart of a machine. Machines are mechanical devices used to accomplish work. Since ancient time, mechanisms and machines have been used to reduce human effort. They have entered and impacted almost all aspects of human society since the industrial revolution. It is the mechanical portion of machine that has the function of transferring motion and forces from a power source to an output. This research paper involves the design, synthesis and fabrication of a four bar link kinematic walking machine. These kinematic walking machines have four-legged that can walk on any surface. It is an arrangement of six linkages that are powered together by a single motor. The rotation is transferred by chain drive to the links. This device is analogous to a four-legged such as an animal. The motor can either be powered by mains or a battery. The kinematic walking machine comprises four legs that move simultaneously to provide motion. Each of these four linkages are made of a four bar mechanism. This mechanism is based on the Chebyshev’s parallel motion. The Chebyshev linkage is a mechanical linkage that converts rotational motion to approximate motion. His equation defines the dimensions and relations of the links. Four driving links have 90° angular difference.
    [Show full text]
  • Kinematic Analysis of Crank Shaft for Diesel Engine
    International Journal of Science and Engineering Applications Volume 7–Issue 09,298-302, 2018, ISSN:-2319–7560 Kinematic Analysis of Crank Shaft for Diesel Engine Maung Maung Yi Su Yin Win Thwe Thwe Htay Department of Mechanical Department of Mechanical Department of Mechanical Engineering, Engineering, Engineering, Technological University Technological University Technological University Thanlyin, Myanmar Thanlyin, Myanmar Thanlyin, Myanmar Abstract: As the crankshaft is subjected to complex bending shear and twisting loads, it needs to be well designed and manufactured in good quality material to withstand the stress. As these stresses may change in direction and magnitude as the crankshaft rotates. In the balancing of the crankshaft, it needs to consider both the static balancing and dynamic balancing. In design calculation of crankshaft kinematics of crank gear, indicator diagram, force acting on the crankshaft and torque acting to the major journal and crank pin are important. The influence of the forces due to inertia both the reciprocating and rotating masses must be taken into account as accurately as possible, especially for high speed. The engine is four cylinders, four-stroke engine, and compression ratio is 20. The maximum power output of the shaft is 70.4 kW at 3200 rpm. The crankpin diameter and length are 56 mm and 31 mm, the main journal diameter and length are 65 mm and 32 mm. The operating conditions of cranks gear elements characterized by the forces which appear in them at various engine duties. Keywords: velocity, gas pressure, inertia force and net force 1. INTRODUCTION a = displacement of the plane of travel of the piston pin axis The crankshaft serves as the main rotating members, or shaft from crankshaft axis of the engines.
    [Show full text]
  • WATT Mechanism Suite 2004 Manual
    Watt 1.6.4 Manual WATT Mechanism Suite 2004 Manual Heron Technologies bv P.O.Box 2 7550 AA Hengelo The Netherlands 1 Watt 1.6.4 Manual Proprietary notice Heron Technologies bv, owns both this software program and its documentation. Both the program and the documentation are copyrighted with all rights reserved by Heron Technologies bv. See the license Agreement and limited Warranty for complete information. Graphic design and packaging design: Artline, Enschede, the Netherlands Copyright Notice Copyright © 1995-2004 by Heron Technologies bv Hengelo, the Netherlands All rights reserved. First Printing Februari 2001 Second Printing April 2002 Third Printing September 2002 Fourth Printing November 2003 Fifth Printing May 2005 Trademarks Microsoft Windows, Excel and the Windows logo are registered trademarks of Microsoft Corp. Literature Erdman, A.G. and Sandor, G.N., ‘Mechanism Design: Analysis and Synthesis, Volume 1’, (Prentice Hall, 1991, second edition), ISBN 0-13-569872 2 Watt 1.6.4 Manual License Agreement The terms and conditions that follow set forth a legal agreement between you (either an individual or an entity), the end user, and Heron-Technologies. You should read these terms and conditions carefully BEFORE breaking the seal on the CD package and installing the Software. Installing this Software will signify your agreement to be bound by these terms and conditions. If you do not agree to these terms and conditions, promptly return the product in its original unopened case, together with all accompanying documentation, to Heron Technologies for a refund. Copying of this Software or its documentation except as permitted by this license is a copyright infringement under the laws of your country.
    [Show full text]
  • Revisiting James Watt's Linkage with Implicit Functions and Modern Techniques
    Edinburgh Research Explorer Revisiting James Watt's linkage with implicit functions and modern techniques Citation for published version: Sangwin, CJ 2008, 'Revisiting James Watt's linkage with implicit functions and modern techniques', Mathematics Magazine, vol. 81, no. 2, pp. 116-126. Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Mathematics Magazine General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 Revisiting James Watt’s linkage with implicit functions and modern techniques Christopher J Sangwin Maths, Stats and OR Network, School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom [email protected] The engineer James Watt (1736–1819) was a pioneer of steam power in the United Kingdom. His practical work revolutionised the rather inefficient atmospheric engines of his predecessors such as Newcomen. He vastly im- proved these engines in a variety of ways so that steam power became the “prime mover” of his age. In doing so he accelerated the Industrial Revolu- tion and helped to usher in the modern industrial era.
    [Show full text]
  • General Arrangement and Bill of Materials
    CRANK PIN THE OFF SET ANGLE OF THE CRANK ECCENTRIC IN RELATION TO THE DISC CRANK AXIS TO BE EXPERIMENTALLY DETERMINED FOR THE SMOOTH RUNNING OF THE ENGINE AND SATISFACTION ECCENTRIC OF THE BUILDER APPROX 20° QTY. PART NUMBER 1 MUNCASTER7.2-1-01-BRICK BASE 2 MUNCASTER7.2-1-02-CYLINDER MOUNTING CONSOLE 2 MUNCASTER7.2-1-03-CYLINDER 2 MUNCASTER7.2-1-04-VALVE CHEST+COVER 2 MUNCASTER7.2-1-05-VALVE CHEST INLET COVER PLATE 2 MUNCASTER7.2-1-06-CYLINDER OUTLET COVER PLATE 2 MUNCASTER7.2-1-07-CYLINDER TOP COVER 2 MUNCASTER7.2-1-08-CYLINDER BOTTOM COVER 2 MUNCASTER7.2-1-09A-SUPPORT COLUMN TYPE-A 2 MUNCASTER7.2-1-09B-SUPPORT COLUMN TYPE-B 2 MUNCASTER7.2-1-10-CROSS BRACE 2 MUNCASTER7.2-1-11-LOWER LINK BEARING BRACKET TYPE-A 2 MUNCASTER7.2-1-12-LOWER LINK BEARING BRACKET TYPE-B 2 MUNCASTER7.2-1-13-MAIN BEARING CROSS BEAM 2 MUNCASTER7.2-1-14-MAIN BEARING PEDESTAL 2 MUNCASTER7.2-1-15-MAIN BEARING 2 MUNCASTER7.2-1-16-COLUMN LINK BEARING BRACKET 1 MUNCASTER7.2-1-17-INPUT STEAM CONTROL HOUSING 1 MUNCASTER7.2-1-18-CONTROL VALVE END BEARING 1 MUNCASTER7.2-1-19-GOVERNOR MOUNTING BRACKET 1 MUNCASTER7.2-1-20-NAME PLATE 1 MUNCASTER7.2-1-21-STEAM INLET PIPE 1 MUNCASTER7.2-1-22-STEAM EXHAUST PIPE 1 MUNCASTER7.2-2-01-CRANK SHAFT 1 MUNCASTER7.2-2-02-FLYWHEEL 2 MUNCASTER7.2-2-03-PISTON+ROD 15.93 2 MUNCASTER7.2-2-04-CON-ROD 4 MUNCASTER7.2-2-05-PARALLEL MOTION LINK-1 404.5 4 MUNCASTER7.2-2-06-PARALLEL MOTION LINK-2 4 MUNCASTER7.2-2-07-PARALLEL MOTION LINK-3 2 MUNCASTER7.2-2-08-CON-ROD BIG END PIN 2 MUNCASTER7.2-2-09-LOWER MOTION LINK-2 SPINDLE 2 MUNCASTER7.2-2-10-UPPER
    [Show full text]
  • Four Bar Mechanisms
    Four Bar Mechanism Howie Choset (thanks to Wikipedia and many others) http://www.library.cmu.edu/ctms/ctms/examples/motor/motor.htm Steam Engine • Who invented the steam engine? Aelopile • Ball of Aeolus • Hero Engine • Described by Vitruvius, 1AD • Probably Ctesibius, 200BC Early Engines • DaVinci, Architonnerre, 15th Century – Gives credit to Archimedes – Steam powered cannon • Jerónimo de Ayanz y Beaumont – Patented first steam engine / pump 1606 Thomas Savery • First engine applied to industry, 1698, 14-21 year vague patent, drain mines • Operation – Condensed steam produced a partial vacuum in the pumping reservoir and using that to pull the water upward. – Rapidly cool the steam to produce the vacuum by running cold water over the reservoir. • Problems – A lot of wasted heat – High pressure stressed engine – Needed lots of pumps for longer distances – Atmospheric pressure only worked so well (30 ft) Newcomen: Atmospheric Engine, 1712 Newcomen: Atmospheric Engine, 1712 Drain mines, 150 ft Used steam and cold water to create a vacuum Vacuum pulled piston (not the water) Pivoted beam connected to pump and piston with chains John Smeaton made improvements Watt thought 80% Inefficient (heat loss) Watt Engine • Used steam pressure just above atmospheric pressure (Separate condenser) • Rotary motion (piston-beam connection) – Get value on both sides of stroke – Useful for machines • Mathew Boulton – business partner Watt Engine • Used steam pressure just above atmospheric pressure (Separate condenser) • Rotary motion – Useful for machines
    [Show full text]