Objectives for Hypothalamus I & Ii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of the Hypothalamic Dorsomedial Nucleus in the Central Regulation of Food Intake
The role of the hypothalamic dorsomedial nucleus in the central regulation of food intake Ph.D. thesis Éva Dobolyiné Renner Semmelweis University Szentágothai János Neuroscience Doctoral School Ph.D. Supervisor: Prof. Miklós Palkovits, member of the HAS Opponents: Prof. Dr. Halasy Katalin, Ph.D., D.Sci. Dr. Oláh Márk, M.D., Ph.D. Examination board: Prof. Dr. Vígh Béla, M.D., Ph.D., D.Sci Dr. Kovács Krisztina Judit, Ph.D., D.Sci. Dr. Lovas Gábor, M.D., Ph.D. Budapest 2013 1. Introduction The central role of the hypothalamus in the regulation of food intake and energy expenditure has long been established. The hypothalamus receives hormonal input such as insulin, leptin, and ghrelin from the periphery. The gate for the most important adiposity signals is the arcuate nucleus, which contains neurons expressing orexigenic and anorexigenic peptides, respectively. These neurons convey peripheral input to the paraventricular and ventromedial nuclei, and the lateral hypothalamic area, which all play critical roles in body weight regulations. The hypothalamic dorsomedial nucleus (DMH) has also been implicated in the regulation of body weight homeostasis along with other hypothalamic nuclei including the arcuate, ventromedial, and paraventricular nuclei as well as the lateral hypothalamus. Lesions of the DMH affected ingestive behavior. Electrophysiological data suggested that neurons in this nucleus integrate hormonal input and ascending brainstem information and, in turn, modulate food intake and energy balance. In response to refeeding of fasted rats, Fos-activated neurons were reported in the DMH. Major projections relay vagus-mediated signals from the gastrointestinal tract, and humoral signals to the hypothalamus from the nucleus of the solitary tract (NTS), a viscerosensory cell group in the dorsomedial medulla. -
Cortex and Thalamus Lecture.Pptx
Cerebral Cortex and Thalamus Hyperbrain Ch 2 Monica Vetter, PhD January 24, 2013 Learning Objectives: • Anatomy of the lobes of the cortex • Relationship of thalamus to cortex • Layers and connectivity of the cortex • Vascular supply to cortex • Understand the location and function of hypothalamus and pituitary • Anatomy of the basal ganglia • Primary functions of the different lobes/ cortical regions – neurological findings 1 Types of Cortex • Sensory (Primary) • Motor (Primary) • Unimodal association • Multimodal association - necessary for language, reason, plan, imagine, create Note: • Gyri • Sulci • Fissures • Lobes 2 The Thalamus is highly interconnected with the cerebral cortex, and handles most information traveling to or from the cortex. “Specific thalamic Ignore nuclei” – have well- names of defined sensory or thalamic nuclei for motor functions now - A few Other nuclei have will more distributed reappear later function 3 Thalamus Midbrain Pons Limbic lobe = cingulate gyrus Structure of Neocortex (6 layers) white matter gray matter Pyramidal cells 4 Connectivity of neurons in different cortical layers Afferents = inputs Efferents = outputs (reciprocal) brainstem etc Eg. Motor – Eg. Sensory – more efferent more afferent output input Cortico- cortical From Thalamus To spinal cord, brainstem etc. To Thalamus Afferent and efferent connections to different ….Depending on whether they have more layers of cortex afferent or efferent connections 5 Different areas of cortex were defined by differences in layer thickness, and size and -
Distinct Representations of Olfactory Information in Different Cortical Centres
LETTER doi:10.1038/nature09868 Distinct representations of olfactory information in different cortical centres Dara L. Sosulski1, Maria Lissitsyna Bloom1{, Tyler Cutforth1{, Richard Axel1 & Sandeep Robert Datta1{ Sensory information is transmitted to the brain where it must be behaviours, but is unlikely to specify innate behaviours. Rather, innate processed to translate stimulus features into appropriate beha- olfactory behaviours are likely to result from the activation of genetically vioural output. In the olfactory system, distributed neural activity determined, stereotyped neural circuits. We have therefore developed a in the nose is converted into a segregated map in the olfactory strategy to trace the projections from identified glomeruli in the olfactory bulb1–3. Here we investigate how this ordered representation is bulb to higher olfactory cortical centres. transformed in higher olfactory centres in mice. We have Mitral and tufted cells that innervate a single glomerulus were developed a tracing strategy to define the neural circuits that labelled by electroporation of tetramethylrhodamine (TMR)-dextran convey information from individual glomeruli in the olfactory under the guidance of a two-photon microscope. This technique labels bulb to the piriform cortex and the cortical amygdala. The spatial mitral and tufted cells that innervate a single glomerulus and is suffi- order in the bulb is discarded in the piriform cortex; axons from ciently robust to allow the identification of axon termini within mul- individual glomeruli project diffusely to the piriform without tiple higher order olfactory centres (Figs 1a–c, 2 and Supplementary apparent spatial preference. In the cortical amygdala, we observe Figs 1–4). Labelling of glomeruli in the olfactory bulbs of mice that broad patches of projections that are spatially stereotyped for indi- express GFP under the control of specific odorant receptor promoters vidual glomeruli. -
Critical Role of Dorsomedial Hypothalamic Nucleus in a Wide Range of Behavioral Circadian Rhythms
The Journal of Neuroscience, November 19, 2003 • 23(33):10691–10702 • 10691 Behavioral/Systems/Cognitive Critical Role of Dorsomedial Hypothalamic Nucleus in a Wide Range of Behavioral Circadian Rhythms Thomas C. Chou,1,2 Thomas E. Scammell,2 Joshua J. Gooley,1,2 Stephanie E. Gaus,1,2 Clifford B. Saper,2 and Jun Lu2 1Department of Neurobiology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, and 2Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215 The suprachiasmatic nucleus (SCN) contains the brain’s circadian pacemaker, but mechanisms by which it controls circadian rhythms of sleep and related behaviors are poorly understood. Previous anatomic evidence has implicated the dorsomedial hypothalamic nucleus (DMH) in circadian control of sleep, but this hypothesis remains untested. We now show that excitotoxic lesions of the DMH reduce circadian rhythms of wakefulness, feeding, locomotor activity, and serum corticosteroid levels by 78–89% while also reducing their overall daily levels. We also show that the DMH receives both direct and indirect SCN inputs and sends a mainly GABAergic projection to the sleep-promoting ventrolateral preoptic nucleus, and a mainly glutamate–thyrotropin-releasing hormone projection to the wake- promoting lateral hypothalamic area, including orexin (hypocretin) neurons. Through these pathways, the DMH may influence a wide range of behavioral circadian rhythms. Key words: suprachiasmatic nucleus; sleep; feeding; corticosteroid; locomotor activity; melatonin Introduction sponses, in feeding, and in the circadian release of corticosteroids In many animals, the suprachiasmatic nucleus (SCN) strongly (for review, see Bellinger et al., 1976; Kalsbeek et al., 1996; Ber- influences circadian rhythms of sleep–wake behaviors, but the nardis and Bellinger, 1998; DiMicco et al., 2002), although many pathways mediating these influences are poorly understood. -
Dense Representation of Natural Odorants in the Mouse Olfactory Bulb
BRIEF COMMUNICATIONS Dense representation of Online Methods), leading to a reduced number of activated glomeruli (n = 6 odorant-mouse pairs, paired t test, P < 0.005; Fig. 1e). natural odorants in the mouse We then applied 40 different natural odorants using the olfactom- eter to minimize the animal’s stress and to have a better temporal olfactory bulb control of the odorant application. In all of the mice that we tested (n = 8), every odorant evoked a specific dense pattern of glomerular Roberto Vincis1,2, Olivier Gschwend1–3, Khaleel Bhaukaurally1–3, activity (Fig. 2a and Supplementary Fig. 1). For each odorant, we Jonathan Beroud1,2 & Alan Carleton1,2 analyzed the image sequence (Online Methods and Supplementary Fig. 2) and quantified the number of activated glomeruli (Fig. 2b In mammals, odorant molecules are thought to activate and Supplementary Fig. 3). We found that the number of activated only a few glomeruli, leading to the hypothesis that odor glomeruli for each stimulus ranged between 10 and 40 glomeruli representation in the olfactory bulb is sparse. However, the (Fig. 2b). For the same set of 30 natural stimuli, the total number of studies supporting this model used anesthetized animals or activated glomeruli per olfactory bulb was 443 ± 15 glomeruli (n = 5 monomolecular odorants at limited concentration ranges. mice; Fig. 2c,d). By merging the glomeruli activated by several odor- Using optical imaging and two-photon microscopy, we found ants (Online Methods), we obtained a map composed of glomeruli that natural odorants at their native concentrations could elicit with a unique identity showing that the natural odorants that we dense representations in the olfactory bulb. -
Functional Organization of Sensory Input to the Olfactory Bulb Glomerulus Analyzed by Two-Photon Calcium Imaging
Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging Matt Wachowiak*, Winfried Denk†, and Rainer W. Friedrich†‡ *Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215; and †Department of Biomedical Optics, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany Edited by Charles F. Stevens, The Salk Institute for Biological Studies, La Jolla, CA, and approved May 10, 2004 (received for review January 20, 2004) Glomeruli in the olfactory bulb are anatomically discrete modules OSNs distinguished by histochemical markers terminate in dis- receiving input from idiotypic olfactory sensory neurons. To ex- crete subregions of the axonal compartment (36, 37). These data amine the functional organization of sensory inputs to individual raise the possibility that functionally distinct subdivisions exist .glomeruli, we loaded olfactory sensory neurons with a Ca2؉ within a glomerulus indicator and measured odorant-evoked presynaptic Ca2؉ signals Direct measurements of the activity of glomerular afferents within single glomeruli by using two-photon microscopy in anaes- have been difficult because most functional measures of intra- thetized mice. Odorants evoked patterns of discrete Ca2؉ signals glomerular activity lack sufficient spatial resolution or cellular throughout the neuropil of a glomerulus. Across glomeruli, Ca2؉ specificity. Here, we loaded OSNs with a fluorescent Ca2ϩ signals occurred with equal probability in all glomerular regions. indicator and measured patterns of afferent presynaptic activity ؉ Within single glomeruli, the pattern of intraglomerular Ca2 sig- within glomeruli by two-photon Ca2ϩ imaging in anaesthetized nals was indistinguishable for stimuli of different duration, iden- mice. Our data indicate that OSN input to individual glomeruli tity, and concentration. -
Aversive Stimuli Drive Hypothalamus-To-Habenula
Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior Salvatore Lecca, Frank Meye, Massimo Trusel, Anna Tchenio, Julia Harris, Martin Karl Schwarz, Denis Burdakov, F Georges, Manuel Mameli To cite this version: Salvatore Lecca, Frank Meye, Massimo Trusel, Anna Tchenio, Julia Harris, et al.. Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior. eLife, eLife Sciences Publication, 2017, 6, pp.e30697. 10.7554/eLife.30697. hal-03129952 HAL Id: hal-03129952 https://hal.archives-ouvertes.fr/hal-03129952 Submitted on 3 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SHORT REPORT Aversive stimuli drive hypothalamus-to- habenula excitation to promote escape behavior Salvatore Lecca1,2, Frank Julius Meye1,3, Massimo Trusel1,2, Anna Tchenio1,2, Julia Harris4, Martin Karl Schwarz5, Denis Burdakov4, Francois Georges6,7, Manuel Mameli1,2* 1Institut du Fer a` Moulin, Inserm UMR-S 839, Paris, France; 2Department of Fundamental Neuroscience, The University of Lausanne, Lausanne, Switzerland; -
Medial Temporal Lobe (The Limbic System)
MEDIAL TEMPORAL LOBE (THE LIMBIC SYSTEM) On the medial surface of the temporal lobe are three structures critical for normal human functioning. From rostral to caudal, they are the olfactory cortex, the amygdala, and the hippocampus. We will look at the anatomy and function of each separately, although they are often grouped together as "the limbic system". A. The olfactory system: The olfactory system actually begins in the roof of the nasal cavity. The olfactory receptors are ciliated epithelial cells with an array of receptors capable of detecting thousands of different odors. However, just as with any sensory system, the receptor neurons themselves do not project to the cerebral hemispheres. Their axons project up through the cribiform plate of the skull to synapse on the dendrites of the mitral cells of the olfactory bulb. The axons of the olfactory receptors make up the elusive cranial nerve I. This fragile tract is susceptible to shearing forces in head trauma, and loss of smell is a surprisingly debilitating injury. Here is an example of a section through olfactory bulb. The olfactory bulb is not a simple relay (something which passively transmits the signal), but is a sophisticated structure in itself. The mitral cell- olfactory neuron synapse is actually within a tangle of axons and dendrites that is called a glomerulus. There is a second cell type tucked around these glomeruli which probably affects how the signal is transmitted. These cells are small and densely packed, which gives them the name "granule cells". However, they bear no relation to the granule cells of the cerebellum or cerebral cortex. -
CT of the Abnormal Pituitary Stalk
49 CT of the Abnormal Pituitary Stalk Robert G. Peyster1 Seven cases are presented in which enlargement of the pituitary stalk was demon Eric D. Hoover1 strated by computed tomography (eT). Histiocytosis X, sarcoidosis, and metastatic cancer were the proven or presumed causes. The discovery of pituitary stalk enlarge ment prompted radiation treatment in three patients and led to the diagnosis of previ ously unsuspected diabetes insipidus in one. High-resolution computed tomography (CT) permits visualization of the pituitary stalk, especially when thin sections (5 mm or small er) are used [1,2]. This structure normally is no more than 4 mm in diameter [1-3]. Although many pathologic conditions are known to involve the pituitary stalk, either from clinical manifestations or autopsy studies, there are few reports of CT visualization of such lesions [4, 5]. We present cases illustrating several causes of enlargement of the pituitary stalk, as demonstrated by CT, and emphasize that this finding , either in isolation or associated with other abnormalities on the CT scan, may significantly affect patient management. Materials and Methods The cases were selected from more than 9000 cranial CT scans obtained at our institution since the installation of the GEj8800 scanner in April 1980. All scans were obtained after rapid drip infusion of 150 ml of Conray 60 (Mallinckrodt). Axial sections were 5 or 10 mm thick and parallel to the orbitomeatal line. Coronal sections were 5 or 1.5 mm thick and as close to perpendicular to the orbitomeatal line as pOSSible, given limitations imposed by patient mobility and metallic dental work. -
Chapter H 62 DESIGN, CONSTRUCTION, INS'falla1'ion
WISCONSIN ADMil:'nS.TRAT!V.E. CODE 163 Chapter H 62 DESIGN, CONSTRUCTION, INS'fALLA1'ION, SUPERVISION, AND INSPECTION OF PLUMBING H 62.01. Basic plumbing principles r-r s2.1s Materials H 62.02\ Definitions JI 62.16 Joints and connections H 62.03 \'-<Fixture unit design basis H 62.17 Repairs and reconstruction H 62.04 \l!ouse sewers H 62.18 Water supply systems H 62,05 ftonse drains H 62,19 Back slphonage and cross H 62,06 Stacks and branches connections H 62,07 Vents H 62.20 Se\vage treatn1ent and dis H 62.08 Traps posal systen1s H 62.09 Cleanouts H 62,21 Inspection and tests H 62.10 Floor drains H 62.22 Sketches H 62.11 Catch basin, su.1nps, ejec~ H 62.23 Approval on experilnental tors basis H 62.12 Fixtures II 62.24 Industrial con11nission l'Cg H 62.13 Rain "'ater connections ulations H 62,14 Special requlreinents H 62.01 Basic phunbing 1>rinciples. (1) All pren1ises intended for huinan occupation or occupancy shall be provided with a supply of pure and wholesome \Vater; such supply shall not be cross connected \vith an unsafe \vater supply nor \vith a \Vaste pipe. (2) Buildings in \vhich \Vater closets and other plumbing fixtures exist shall be provided \vith a supply of \Vater adequate in volume and pressure for flushing purposes. (3) The pipes conveying \vater to \vate1· closets shall be of sufficient size to supply the water at a rate required for adequate flushing \vithout unduly reducing the pressure at other fixtures. -
A Transmitter Candidate for the Retinohypothalamic Tract (Suprachiasmatic Nucleus/Supraoptic Nucleus/Peptide Immunohistochemistry/Circadian Rhythms) JOHN R
Proc. Nati. Acad. Sci. USA Vol. 87, pp. 8065-8069, October 1990 Neurobiology N-Acetylaspartylglutamate: A transmitter candidate for the retinohypothalamic tract (suprachiasmatic nucleus/supraoptic nucleus/peptide immunohistochemistry/circadian rhythms) JOHN R. MOFFETT*, LuRA WILLIAMSON*, MIKLOS PALKOVITSt, AND M. A. A. NAMBOODIRI*t *Department of Biology, Georgetown University, Washington, D.C. 20057; and tLaboratory of Cell Biology, National Institute of Mental Health, Bethesda, MD 20892 Communicated by Dominick P. Purpura, July 2, 1990 ABSTRACT The retinohypothalamic tract is the neural mission in a number of sensory and motor systems in the pathway mediating the photic entrainment of circadian brain (15). Therefore, it was ofinterest to determine ifNAAG rhythms in mammals. Important targets for these retinal fibers could be identified in the terminal fields of the RHT within are the suprachiasmatic nuclei (SCN) of the hypothalamus, the hypothalamus. Here we present immunohistochemical which are thought to be primary sites for the biological clock. and radioimmunoassay data indicating extensive NAAG The neurotransmitters that operate in this projection system immunoreactivity (NAAG-IR) in the SCN and other target have not yet been determined. Immunohistochemistry and zones of the RHT in the rat. Further, the NAAG-IR in the radioimmunoassay performed with affinity-purified antibodies optic chiasm and SCN decreased substantially following to N-acetylaspartylglutamate (NAAG) demonstrate that this unilateral or bilateral optic nerve transections. This obser- neuron-specific dipeptide, which may act as an excitatory vation raises the possibility that NAAG may act as a trans- neurotransmitter, is localized extensively in the retinohypotha- mitter mediating the effects of light in the retinohypothalamic lamic tract and its target zones, including the SCN. -
PACAP in Hypothalamic Regulation of Sleep and Circadian Rhythm: Importance for Headache Philip R
Holland et al. The Journal of Headache and Pain (2018) 19:20 The Journal of Headache https://doi.org/10.1186/s10194-018-0844-4 and Pain REVIEWARTICLE Open Access PACAP in hypothalamic regulation of sleep and circadian rhythm: importance for headache Philip R. Holland1*, Mads Barloese2* and Jan Fahrenkrug3 Abstract The interaction between sleep and primary headaches has gained considerable interest due to their strong, bidirectional, clinical relationship. Several primary headaches demonstrate either a circadian/circannual rhythmicity in attack onset or are directly associated with sleep itself. Migraine and cluster headache both show distinct attack patterns and while the underlying mechanisms of this circadian variation in attack onset remain to be fully explored, recent evidence points to clear physiological, anatomical and genetic points of convergence. The hypothalamus has emerged as a key brain area in several headache disorders including migraine and cluster headache. It is involved in homeostatic regulation, including pain processing and sleep regulation, enabling appropriate physiological responses to diverse stimuli. It is also a key integrator of circadian entrainment to light, in part regulated by pituitary adenylate cyclase-activating peptide (PACAP). With its established role in experimental headache research the peptide has been extensively studied in relation to headache in both humans and animals, however, there are only few studies investigating its effect on sleep in humans. Given its prominent role in circadian entrainment, established in preclinical research, and the ability of exogenous PACAP to trigger attacks experimentally, further research is very much warranted. The current review will focus on the role of the hypothalamus in the regulation of sleep-wake and circadian rhythms and provide suggestions for the future direction of such research, with a particular focus on PACAP.