Development of Replicative and Nonreplicative Hepatitis B Virus Vectors

Total Page:16

File Type:pdf, Size:1020Kb

Development of Replicative and Nonreplicative Hepatitis B Virus Vectors Gene Therapy (1997) 4, 1330–1340 1997 Stockton Press All rights reserved 0969-7128/97 $12.00 Development of replicative and nonreplicative hepatitis B virus vectors S Chaisomchit, DLJ Tyrrell and L-J Chang Department of Medical Microbiology and Immunology and Glaxo Wellcome Heritage Research Institute, University of Alberta, Edmonton, Alberta, Canada To investigate the possibility of using hepatitis B virus transactivation activity of the HBVtat recombinant since a (HBV) as a vector, the tat gene from human immunodefi- frameshift mutation in the pol gene did not affect the ciency virus type 1 (HIV-1) was inserted into the full-length recombinant tat function. The functional tat protein, there- HBV genome in-frame with the polymerase (pol) open fore, was most likely expressed as a Tat-Pol fusion pro- reading frame in the tether region and downstream of the duct. Endogenous polymerase assays showed that the pol preS1 promoter. We demonstrated that the tat gene was protein expressed from the HBVtat recombinant was still expressed with full activity in transactivating the HIV-1 long active although at a reduced level. Hepatitis B surface anti- terminal repeat (LTR). The expression of the tat gene in gens and e antigen produced from this recombinant were the context of the HBV genome in chicken hepatoma and detected at similar levels as those produced from the wild human cervical carcinoma cells, however, was not as type. Notably, the capability of forming complete HBV par- efficient as that in human hepatoblastoma cells, which ticles was still retained. These studies indicate the potential reflects the cellular and species specificity of promoters of of constructing HBV as a replicative vector. We also hepadnaviruses. Detection of RNA expressed from this showed that manipulation of a nonreplicative HBV vector HBVtat recombinant revealed transcription of the tat gene was possible. Expression of the HBV polymerase could be by two promoters: the core/pol promoter and the preS1 completely eliminated and replication of the nonreplicative promoter. A Pol-Tat fusion protein expressed by the HBV recombinant could be supported by Pol trans- core/pol promoter did not seem to contribute to the tat complementation. Keywords: HBV; tat; vector; gene therapy; liver Introduction The genomic organization of these viruses is extremely compact and efficiently organized with overlapping open As we are faced with a number of diseases involving the reading frames (ORFs).13,14 Hepatitis B virus (HBV), the liver, particularly inherited single gene defects and viral prototype of hepadnaviruses and causative agent for diseases, a novel therapeutic approach using targeted human hepatitis, carries four major overlapping ORFs: gene transfer to this organ is of particular interest, preS1/preS2/S (collectively known as the envelope or especially strategies of using human viruses as vectors. surface gene), preC/C, X and P. The envelope gene, In vitro protocols for transferring the low density lipopro- encompassing the preS1, preS2 and S regions as delin- tein (LDL) receptor gene into hepatocytes using a retrovi- eated by three in-frame initiation codons, codes for three 1,2 ral vector have been established. Adenoviral vectors envelope proteins: large (L), middle (M) and major (S). have also been used to deliver therapeutic genes, such as The preC/C gene, including the preC and C regions as 3 4,5 6,7 the genes for factors VIII and IX and LDL receptor delineated by two in-frame initiation codons, codes for into liver cells. However, these viral vectors infect a wide secreted HBV e antigen (HBeAg) and capsid or core pro- range of tissues, not specifically targeting to the liver. tein (HBcAg). The X gene codes for a transactivating pro- Expression of the transferred gene by adenoviral vectors, tein which has activity on HBV enhancers and other for example, is detected in different tissues after systemic cellular genes.15 The P or polymerase (pol) gene has the 6,8,9 7,10,11 administration or via portal or splenic vein. longest ORF. It encompasses about 80% of the entire viral Therefore, the use of hepadnaviruses which are hepato- genome and overlaps with the C-terminus of the preC/C tropic and possess strong liver-specific promoter and gene, the entire envelope gene and the N-terminus of the 12 enhancer elements, as vector systems, may provide a X gene. The C-terminus of the X gene also overlaps with more efficient means for gene delivery to the liver. the N-terminus of the preC/C gene. The protein product Hepadnaviruses are among the smallest DNA viruses (Pol) encoded by the pol gene can be divided into three known, carrying only 3200 base pairs in their genome. major functional domains: the terminal protein domain at the N-terminus, the reverse transcriptase–DNA poly- merase in the central domain and the RNase H domain 16,17 Correspondence: L-J Chang, 611 HMRC, University of Alberta, Edmon- at the C-terminus. The terminal protein and reverse ton, Alberta T6G 2S2, Canada transcriptase–DNA polymerase domains are separated Received 16 April 1997; accepted 7 August 1997 by a spacer or tether region. Four promoter elements, the HBV vectors S Chaisomchit et al 1331 preS1, preS2/S, X and core/pol promoters,18 which regu- late transcription of pregenomic and subgenomic mess- engers for expression of the corresponding genes, have been identified on the HBV genome. Almost all nucleo- tides are included in coding sequences and are therefore indispensable. Only the spacer or tether region may be nonessential for the pol gene function or HBV repli- cation.17,19 To our knowledge, HBV or other hepadnaviruses have not yet been engineered and used as gene transfer tools. The unusually efficient genome of HBV is a factor that limits its genetic manipulation. Mutations, insertions or deletions in many regions of the HBV genome have del- eterious effects on viral gene expression and repli- cation.17,20–24 The tether region of the pol gene, however, seems to be dispensable for HBV replication and can be manipulated. Mutational and computer sequence analy- ses show that this region starts upstream of the preS1 gene and overlaps with the preS1 and preS2 regions.17,21 Part of the tether region, however, does not overlap with any other HBV genes. A mutational analysis of the pol gene of HBV has demonstrated that up to 90 codons of the intervening tether sequence can be deleted without significant loss of the endogenous polymerase activity.17 It has also been shown that such a deletion has no effect on the RNA encapsidation process.25 Mutants of HBV containing deletions in the preS1 region which overlaps the tether region are capable of replication.23 The duck hepatitis B virus (DHBV) genome carrying the gene for protein A (123 amino acids) inserted in the tether region also retains the capability of expressing an active endogenous polymerase.19 This region, moreover, toler- Figure 1 Schematic representation of HBV constructs and mutants. (a) ates many mutations resulting in amino acid changes.26,27 Construction of HBVtat. The HIV-1 tat gene (267 bp) was inserted into The tether region, therefore, seems to be the most suitable the unique BstEII site in-frame with the pol gene and between the pro- site for engineering the HBV genome as a vector. moter (2784 nt) and the initiation codon of the preS1 gene. All the ORFs encoded on the EcoRI–EcoRI monomer of the HBV genome (3221 bp) are We report here that the HBV genome can be manipu- shown with the positions of all initiation codons according to the adw2 lated to accommodate a foreign gene whose functional subtype. The ORFs start from the blunt end and stop at the arrow end. activity can be demonstrated in the context of the full The four domains of the pol gene corresponding to the functional activities length HBV genome in tissue culture cells. We con- of the Pol protein are indicated. The solid bar is the preS1 promoter and structed a recombinant HBV carrying the HIV-1 tat gene the transcription initiation site of the preS1 RNA (2.4 kb) is indicated by in the tether region. Transient expression in hepatoma an arrow. The NcoI site at the initiation codon of the X gene and the BspEI site downstream of the initiation codon of the pol gene are also and cervical carcinoma cells showed that the tat gene was shown. RT/Pol, reverse transcriptase and DNA polymerase; TP, terminal expressed with functional activity. In addition, the protein. (b) Linear map of the HBVtat replication-competent plasmid HBVtat recombinant exhibited polymerase activity, albeit (pTHBVT-d) (9859 bp) with two EcoRI–EcoRI monomers in a head to at a reduced level compared to the wild-type HBV. tail tandem configuration subcloned into the pT7T318U vector. All ORFs Remarkably, intact viral particles were still produced are depicted by solid bars. The locations of the insertion are indicated from human hepatoma cells transfected with the HBVtat by hatched boxes. T3, T3 promoter; T7, T7 promoter; AmpR, ampicillin resistance. (c) Diagrammatic representation of HBVtat mutations. (i) Site- recombinant. We further established a nonreplicative directed mutagenesis of the X gene at the initiation codon (1376 nt) with HBV vector by inserting a full length Zeocin-resistant an additional stop codon at 1397 nt. (ii) Frameshift mutation in the pol gene in-frame with the pol gene which totally ablated the ORF by digestion of the BspEI site and filling in at 2332 nt to 2336 nt. pol gene expression. Production of this nonreplicative The mutated or additional nucleotides are shown as boldface letters. recombinant HBV vector was successfully complemented by the Pol protein in trans. not interfere with any other HBV ORFs.
Recommended publications
  • Immunogenicity and Efficacy Testing in Chimpanzees of an Oral Hepatitis B Vaccine Based on Live Recombinant Adenovirus
    Proc. Natl. Acad. Sci. USA Vol. 86, pp. 6763-6767, September 1989 Medical Sciences Immunogenicity and efficacy testing in chimpanzees of an oral hepatitis B vaccine based on live recombinant adenovirus (adenovirus animal model/adenovirus-vectored vacdnes) MICHAEL D. LUBECK*, ALAN R. DAVIS*, MURTY CHENGALVALA*, ROBERT J. NATUK*, JOHN E. MORIN*, KATHERINE MOLNAR-KIMBER*, BRUCE B. MASON*, BHEEM M. BHAT*, SATOSHI MIZUTANI*, PAUL P. HUNG*, AND ROBERT H. PURCELLO *Wyeth-Ayerst Research, Biotechnology and Microbiology Division, P.O. Pox 8299, Philadelphia, PA 19101; and tLaboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 Contributed by Robert H. Purcell, May 30, 1989 ABSTRACT As a major cause of acute and chronic liver which, because oftheir wide prior usage, are good candidates disease as well as hepatocellular carcinoma, hepatitis B virus as vectors. Other less well-characterized small animal models (HBV) continues to pose significant health problems world- for human adenoviruses have been occasionally reported wide. Recombinant hepatitis B vaccines based on adenovirus (11-13) but are likewise nonpermissive for Ad4 and Ad7 vectors have been developed to address global needs for infections (unpublished data). An early study of animal effective control of hepatitits B infection. Although consider- species including nonhuman primates indicated that human able progress has been made in the construction ofrecombinant adenoviruses do not induce acute respiratory disease in adenoviruses that express large amounts of HBV gene prod- monkeys or chimpanzees following intranasal inoculations ucts, preclinical immunogenicity and efficacy testing of candi- (14). Serological data, however, indicated that such experi- date vaccines has remained difficult due to the lack ofa suitable mental infections occasionally induced anti-adenovirus anti- animal model.
    [Show full text]
  • Inhibition of Hepadnaviral Replication by Polyethylenimine-Based Intravenous Delivery of Antisense Phosphodiester Oligodeoxynucleotides to the Liver
    Gene Therapy (2001) 8, 874–881 2001 Nature Publishing Group All rights reserved 0969-7128/01 $15.00 www.nature.com/gt RESEARCH ARTICLE Inhibition of hepadnaviral replication by polyethylenimine-based intravenous delivery of antisense phosphodiester oligodeoxynucleotides to the liver M Robaczewska1,2, S Guerret3, J-S Remy4, I Chemin1, W-B Offensperger5, M Chevallier6, J-P Behr4, AJ Podhajska2, HE Blum5, C Trepo1 and L Cova1 1INSERM U271, Lyon, France; 2Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland; 3Biomaterials Laboratory, Faculty of Pharmacy, Lyon; 4Faculty of Pharmacy, Illkirch, France; 5Department of Medicine, University of Freiburg, Germany; and 6Laboratoires Marcel Me´rieux, Lyon, France Antisense oligodeoxynucleotides (ODNs) appear as attract- fold as compared with the O-ODN-AS2. Following 9-day ive anti-hepatitis B virus (HBV) agents. We investigated in therapy the intrahepatic levels of both DHBV DNA and RNA vivo, in the duck HBV (DHBV) infection model, whether lin- were significantly decreased in the lPEI/O-ODN-AS2-treated ear polyethylenimine (lPEI)-based intravenous delivery of group as compared with the O-ODN-AS2-treated, control the natural antisense phosphodiester ODNs (O-ODNs) can lPEI/O-ODN-treated, and untreated controls. In addition, prevent their degradation and allow viral replication inhibition inhibition of intrahepatic viral replication by lPEI/O-ODN-AS2 in the liver. DHBV-infected Pekin ducklings were injected was not associated with toxicity and was comparable with with antisense O-ODNs covering the initiation codon of the that induced by the phosphorothioate S-ODN-AS2 at a five- DHBV large envelope protein, either in free form (O-ODN- fold higher dose.
    [Show full text]
  • Hepatitis B Fast Facts Everything You Need to Know in 2 Minutes Or Less!
    Hepatitis B Foundation Cause for a Cure www.hepb.org Hepatitis B Fast Facts Everything you need to know in 2 minutes or less! Hepatitis B is the most common serious liver infection in the world. It is caused by the hepatitis B virus (HBV) that attacks liver cells and can lead to liver failure, cirrhosis (scarring) or cancer of the liver. The virus is transmitted through contact with blood and bodily fluids that contain blood. Most people are able to fight off the hepatitis B infection and clear the virus from their blood. This may take up to six months. While the virus is present in their blood, infected people can pass the virus on to others. Approximately 5-10% of adults, 30-50% of children, and 90% of babies will not get rid of the virus and will develop chronic infection. Chronically infected people can pass the virus on to others and are at increased risk for liver problems later in life. The hepatitis B virus is 100 times more infectious than the AIDS virus. Yet, hepatitis B can be pre- vented with a safe and effective vaccine. For the 400 million people worldwide who are chronically infected with hepatitis B, the vaccine is of no use. However, there are promising new treatments for those who live with chronic hepatitis B. In the World: • This year alone, 10 to 30 million people will become infected with the hepatitis B virus (HBV). • The World Health Organization estimates that 400 million people worldwide are already chronically infected with hepatitis B.
    [Show full text]
  • Prevention & Control of Viral Hepatitis Infection
    Prevention & Control of Viral Hepatitis Infection: A Strategy for Global Action © World Health Organization 2011. All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either express or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. Table of contents Disease burden 02 What is viral hepatitis? 05 Prevention & control: a tailored approach 06 Global Achievements 08 Remaining challenges 10 World Health Assembly: a mandate for comprehensive prevention & control 13 WHO goals and strategy
    [Show full text]
  • Herpes Simplex Virus Type 1 Oril Is Not Required for Virus Infection In
    JOURNAL OF VIROLOGY, Nov. 1987, p. 3528-3535 Vol. 61, No. 11 0022-538X/87/113528-08$02.00/0 Copyright C 1987, American Society for Microbiology Herpes Simplex Virus Type 1 oriL Is Not Required for Virus Replication or for the Establishment and Reactivation of Latent Infection in Mice MARYELLEN POLVINO-BODNAR, PAULO K. ORBERG, AND PRISCILLA A. SCHAFFER* Laboratory of Tumor Virus Genetics, Dana-Farber Cancer Institute, and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115 Received 11 May 1987/Accepted 31 July 1987 During the course of experiments designed to isolate deletion mutants of herpes simplex virus type 1 in the gene encoding the major DNA-binding protein, ICP8, a mutant, d61, that grew efficiently in ICP8-expressing Vero cells but not in normal Vero cells was isolated (P. K. Orberg and P. A. Schaffer, J. Virol. 61:1136-1146, 1987). d61 was derived by cotransfection of ICP8-expressing Vero cells with infectious wild-type viral DNA and a plasmid, pDX, that contains an engineered 780-base-pair (bp) deletion in the ICP8 gene, as well as a spontaneous -55-bp deletion in OriL. Gel electrophoresis and Southern blot analysis indicated that d61 DNA carried both deletions present in pDX. The ability of d61 to replicate despite the deletion in OriL suggested that a functional OriL is not essential for virus replication in vitro. Because d61 harbored two mutations, a second mutant, ts+7, with a deletion in oriL-associated sequences and an intact ICP8 gene was constructed. Both d61 and ts+7 replicated efficiently in their respective permissive host cells, although their yields were slightly lower than those of control viruses with intact oriL sequences.
    [Show full text]
  • Foamy Virus Assembly with Emphasis on Pol Encapsidation
    Viruses 2013, 5, 886-900; doi:10.3390/v5030886 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Foamy Virus Assembly with Emphasis on Pol Encapsidation Eun-Gyung Lee 1, Carolyn R. Stenbak 2 and Maxine L. Linial 1,* 1 Fred Hutchinson Cancer Research Center, Basic Sciences Division; 1100 Fairview Avenue North, Seattle, WA 98109, USA; E-Mails: [email protected] (EGL); [email protected] (MLL) 2 Seattle University, Biology Department; 901 12th Avenue, Seattle, WA 98122, USA; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-206- 667-4442; Fax: +1-206-667-5939 Received: 31 January 2013; in revised form: 11 March 2013 / Accepted: 14 March 2013 / Published: 20 March 2013 Abstract: Foamy viruses (FVs) differ from all other genera of retroviruses (orthoretroviruses) in many aspects of viral replication. In this review, we discuss FV assembly, with special emphasis on Pol incorporation. FV assembly takes place intracellularly, near the pericentriolar region, at a site similar to that used by betaretroviruses. The regions of Gag, Pol and genomic RNA required for viral assembly are described. In contrast to orthoretroviral Pol, which is synthesized as a Gag-Pol fusion protein and packaged through Gag-Gag interactions, FV Pol is synthesized from a spliced mRNA lacking all Gag sequences. Thus, encapsidation of FV Pol requires a different mechanism. We detail how WT Pol lacking Gag sequences is incorporated into virus particles. In addition, a mutant in which Pol is expressed as an orthoretroviral-like Gag-Pol fusion protein is discussed.
    [Show full text]
  • Topological Analysis of the Gp41 MPER on Lipid Bilayers Relevant to the Metastable HIV-1 Envelope Prefusion State
    Topological analysis of the gp41 MPER on lipid bilayers relevant to the metastable HIV-1 envelope prefusion state Yi Wanga,b, Pavanjeet Kaurc,d, Zhen-Yu J. Sune,1, Mostafa A. Elbahnasawya,b,2, Zahra Hayatic,d, Zhi-Song Qiaoa,b,3, Nhat N. Buic, Camila Chilea,b,4, Mahmoud L. Nasre,5, Gerhard Wagnere, Jia-Huai Wanga,f, Likai Songc, Ellis L. Reinherza,b,6, and Mikyung Kima,g,6 aLaboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; bDepartment of Medicine, Harvard Medical School, Boston, MA 02115; cNational High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306; dDepartment of Physics, Florida State University, Tallahassee, FL 32306; eDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; fDepartment of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; and gDepartment of Dermatology, Harvard Medical School, Boston, MA 02215 Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved September 23, 2019 (received for review July 18, 2019) The membrane proximal external region (MPER) of HIV-1 envelope immunologically vulnerable epitopes targeted by several of the most glycoprotein (gp) 41 is an attractive vaccine target for elicitation of broadly neutralizing antibodies (bNAbs) developed during the broadly neutralizing antibodies (bNAbs) by vaccination. However, course of natural HIV-1 infection (10–13). Insertion, deletion, current details regarding the quaternary structural organization of and mutations of residues in the MPER defined the functional the MPER within the native prefusion trimer [(gp120/41)3] are elu- importance of the MPER in Env incorporation, viral fusion, and sive and even contradictory, hindering rational MPER immunogen infectivity (14–16).
    [Show full text]
  • HBV Cccdna: Viral Persistence Reservoir and Key Obstacle for a Cure of Chronic Hepatitis B Michael Nassal
    Downloaded from http://gut.bmj.com/ on June 8, 2015 - Published by group.bmj.com Gut Online First, published on June 5, 2015 as 10.1136/gutjnl-2015-309809 Recent advances in basic science HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B Michael Nassal Correspondence to ABSTRACT frequent viral rebound upon therapy withdrawal Dr Michael Nassal, Department At least 250 million people worldwide are chronically indicates a need for lifelong treatment.6 of Internal Medicine II/ Molecular Biology, University infected with HBV, a small hepatotropic DNA virus that Reactivation can even occur, upon immunosuppres- Hospital Freiburg, Hugstetter replicates through reverse transcription. Chronic infection sion, in patients who resolved an acute HBV infec- Str. 55, Freiburg D-79106, greatly increases the risk for terminal liver disease. tion decades ago,7 indicating that the virus can be Germany; Current therapies rarely achieve a cure due to the immunologically controlled but is not eliminated. [email protected] refractory nature of an intracellular viral replication The virological key to this persistence is an intra- Received 17 April 2015 intermediate termed covalently closed circular (ccc) DNA. cellular HBV replication intermediate, called cova- Revised 12 May 2015 Upon infection, cccDNA is generated as a plasmid-like lently closed circular (ccc) DNA, which resides in Accepted 13 May 2015 episome in the host cell nucleus from the protein-linked the nucleus of infected cells as an episomal (ie, relaxed circular (RC) DNA genome in incoming virions. non-integrated) plasmid-like molecule that gives Its fundamental role is that as template for all viral rise to progeny virus.
    [Show full text]
  • Viroporins: Structures and Functions Beyond Cell Membrane Permeabilization
    Editorial Viroporins: Structures and Functions beyond Cell Membrane Permeabilization José Luis Nieva 1,* and Luis Carrasco 2,* Received: 17 September 2015 ; Accepted: 21 September 2015 ; Published: 29 September 2015 Academic Editor: Eric O. Freed 1 Biophysics Unit (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain 2 Centro de Biología Molecular Severo Ochoa (CSIC, UAM), c/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain * Correspondence: [email protected] (J.L.N.); [email protected] (L.C.); Tel.: +34-94-601-3353 (J.L.N.); +34-91-497-8450 (L.C.) Viroporins represent an interesting group of viral proteins that exhibit two sets of functions. First, they participate in several viral processes that are necessary for efficient production of virus progeny. Besides, viroporins interfere with a number of cellular functions, thus contributing to viral cytopathogenicity. Twenty years have elapsed from the first review on viroporins [1]; since then several reviews have covered the advances on viroporin structure and functioning [2–8]. This Special Issue updates and revises new emerging roles of viroporins, highlighting their potential use as antiviral targets and in vaccine development. Viroporin structure. Viroporins are usually short proteins with at least one hydrophobic amphipathic helix. Homo-oligomerization is achieved by helix–helix interactions in membranes rendering higher order structures, forming aqueous pores. Progress in viroporin structures during the last 2–3 years has in some instances provided a detailed knowledge of their functional architecture, including the fine definition of binding sites for effective inhibitors.
    [Show full text]
  • How Influenza Virus Uses Host Cell Pathways During Uncoating
    cells Review How Influenza Virus Uses Host Cell Pathways during Uncoating Etori Aguiar Moreira 1 , Yohei Yamauchi 2 and Patrick Matthias 1,3,* 1 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; [email protected] 2 Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; [email protected] 3 Faculty of Sciences, University of Basel, 4031 Basel, Switzerland * Correspondence: [email protected] Abstract: Influenza is a zoonotic respiratory disease of major public health interest due to its pan- demic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry. Keywords: influenza; capsid uncoating; HDAC6; ubiquitin; EPS8; TNPO1; pandemic; M1; virus– host interaction Citation: Moreira, E.A.; Yamauchi, Y.; Matthias, P. How Influenza Virus Uses Host Cell Pathways during 1. Introduction Uncoating. Cells 2021, 10, 1722. Viruses are microscopic parasites that, unable to self-replicate, subvert a host cell https://doi.org/10.3390/ for their replication and propagation. Despite their apparent simplicity, they can cause cells10071722 severe diseases and even pose pandemic threats [1–3].
    [Show full text]
  • Assembly Lecture 11 Biology W3310/4310 Virology Spring 2014
    Assembly Lecture 11 Biology W3310/4310 Virology Spring 2014 “Anatomy is des.ny.” --SIGMUND FREUD All virions complete a common set of assembly reac3ons * common to all viruses common to many viruses ©Principles of Virology, ASM Press The structure of a virus parcle determines how it is formed ©Principles of Virology, ASM Press Assembly is dependent on host cell machinery • Cellular chaperones • Transport systems • Secretory pathway • Nuclear import and export machinery Concentrang components for assembly: Nothing happens fast in dilute solu1ons • Viral components oSen visible by light microscopy (‘factories’ or ‘inclusions’) • Concentrate proteins on internal membranes (poliovirus) • Negri bodies (rabies virus) Viral proteins have ‘addresses’ built into their structure • Membrane targeYng: Signal sequences, fa\y acid modificaons • Membrane retenYon signals • Nuclear localizaYon sequences (NLS) • Nuclear export signals 414 Localiza3on of viral proteins to the nucleus CHAPTER 12 Golgi apparatus Ribosome Rough endoplasmic reticulum Plasma membrane Py(VP1) + VP2/3 Ad hexon + 5 100 kDa Nuclear envelope: Outer nuclear membrane Inner nuclear membrane Nucleus Nuclear pore complex Mitochondrion Cytoskeleton: Influenza virus NP Intermediate filament Microtubule Actin filament bundle Extracellular matrix ©Principles of Virology, ASM Press Figure 12.1 Localization of viral proteins to the nucleus. The nucleus and major membrane-bound compartments of the cytoplasm, as well as components of the cytoskeleton, are illustrated schematically and not to scale. Viral proteins destined for the nucleus are synthesized by cytoplasmic polyribosomes, as illustrated for the infl uenza virus NP protein. They engage with the cytoplasmic face of the nuclear pore complex and are translocated into the nucleus by the protein import machinery of the host cell.
    [Show full text]
  • Hepatitis B? HEPATITIS B Hepatitis B Is a Contagious Liver Disease That Results from Infection with the Hepatitis B Virus
    What is Hepatitis B? HEPATITIS B Hepatitis B is a contagious liver disease that results from infection with the Hepatitis B virus. When first infected, a person can develop Are you at risk? an “acute” infection, which can range in severity from a very mild illness with few or no symptoms to a serious condition requiring hospitalization. Acute Hepatitis B refers to the first 6 months after someone is exposed to the Hepatitis B virus. Some people are able to fight the infection and clear the virus. For others, the infection remains and leads to a “chronic,” or lifelong, illness. Chronic Hepatitis B refers to the illness that occurs when the Hepatitis B virus remains in a person’s body. Over time, the infection can cause serious health problems. How is Hepatitis B spread? Hepatitis B is usually spread when blood, semen, or other body fluids from a person infected with the Hepatitis B virus enter the body of someone who is not infected. This can happen through having sex with an infected partner; sharing needles, syringes, or other injection drug equipment; or from direct contact with the blood or open sores of an infected person. Hepatitis B can also be passed from an infected mother to her baby at birth. Who should be tested for Hepatitis B? Approximately 1.2 million people in the United States and 350 million people worldwide have Hepatitis B. Testing for Hepatitis B is recommended for certain groups of people, including: Most are unaware of their infection. ■ People born in Asia, Africa, and other regions with moderate or high rates Is Hepatitis B common? of Hepatitis B (see map) Yes.
    [Show full text]