Quaternion Algebraic Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Quaternion Algebraic Geometry Quaternion Algebraic Geometry Dominic Widdows June 5, 2006 Abstract QUATERNION ALGEBRAIC GEOMETRY DOMINIC WIDDOWS St Anne’s College, Oxford Thesis submitted Hilary Term, 2000, in support of application to supplicate for the degree of D.Phil. This thesis is a collection of results about hypercomplex and quaternionic manifolds, focussing on two main areas. These are exterior forms and double complexes, and the ‘algebraic geometry’ of hypercomplex manifolds. The latter area is strongly influenced by techniques from quaternionic algebra. A new double complex on quaternionic manifolds is presented, a quaternionic version of the Dolbeault complex on a complex manifold. It arises from the decomposition of real-valued exterior forms on a quaternionic manifold M into irreducible representations of Sp(1). This decomposition gives a double complex of differential forms and operators ∼ as a result of the Clebsch-Gordon formula Vr⊗V1 = Vr+1⊕Vr−1 for Sp(1)-representations. The properties of the double complex are investigated, and it is established that it is elliptic in most places. Joyce has created a new theory of quaternionic algebra [J1] by defining a quaternionic tensor product for AH-modules (H-modules equipped with a special real subspace). The 1 theory can be described using sheaves over CP , an interpretation due to Quillen [Q]. AH-modules and their quaternionic tensor products are classified. Stable AH-modules are described using Sp(1)-representations. This theory is especially useful for describing hypercomplex manifolds and forming close analogies with complex geometry. Joyce has defined and investigated q-holomorphic functions on hypercomplex manifolds. There is also a q-holomorphic cotangent space which again arises as a result of the Clebsch-Gordon formula. AH-module bundles are defined and their q-holomorphic sections explored. Quaternion-valued differential forms on hypercomplex manifolds are of special inter- est. Their decomposition is finer than that of real forms, giving a second double complex with special advantages. The cohomology of these complexes leads to new invariants of compact quaternionic and hypercomplex manifolds. Quaternion-valued vector fields are also studied, and lead to the definition of quater- nionic Lie algebras. The investigation of finite-dimensional quaternionic Lie algebras allows the calculation of some simple quaternionic cohomology groups. Acknowledgements I would like to express gratitude, appreciation and respect for my supervisor Do- minic Joyce. Without his inspiration as a mathematician this thesis would not have been conceived; without his patience and friendship it would certainly not have been completed. Dedication To the memory of Dr Peter Rowe, 1938-1998, who taught me relativity as an undergraduate in Durham. His determination to teach concepts before examination techniques introduced me to differential geometry. i Contents Introduction 1 1 The Quaternions and the Group Sp(1) 4 1.1 The Quaternions . 4 1.2 The Lie Group Sp(1) and its Representations . 9 1.3 Difficulties with the Quaternions . 12 2 Quaternionic Differential Geometry 17 2.1 Complex, Hypercomplex and Quaternionic Manifolds . 17 2.2 Differential Forms on Complex Manifolds . 20 2.3 Differential Forms on Quaternionic Manifolds . 23 3 A Double Complex on Quaternionic Manifolds 25 3.1 Real forms on Complex Manifolds . 25 3.2 Construction of the Double Complex . 28 3.3 Ellipticity and the Double Complex . 32 3.4 Quaternion-valued forms on Hypercomplex Manifolds . 40 4 Developments in Quaternionic Algebra 42 4.1 The Quaternionic Algebra of Joyce . 42 4.2 Duality in Quaternionic Algebra . 48 4.3 Real Subspaces of Complex Vector Spaces . 52 4.4 K-modules . 53 4.5 The Sheaf-Theoretic approach of Quillen . 56 5 Quaternionic Algebra and Sp(1)-representations 61 5.1 Stable AH-modules and Sp(1)-representations . 61 5.2 Sp(1)-Representations and the Quaternionic Tensor Product . 68 5.3 Semistable AH-modules and Sp(1)-representations . 74 5.4 Examples and Summary of AH-modules . 77 6 Hypercomplex Manifolds 80 6.1 Q-holomorphic Functions and H-algebras . 81 6.2 The Quaternionic Cotangent Space . 86 6.3 AH-bundles . 90 6.4 Q-holomorphic AH-bundles . 93 ii 7 Quaternion Valued Forms and Vector Fields 100 7.1 The Quaternion-valued Double Complex . 101 7.2 Vector Fields and Quaternionic Lie Algebras . 109 7.3 Hypercomplex Lie groups . 112 References 117 iii Introduction This aim of this thesis is to describe and develop various aspects of quaternionic algebra and geometry. The approach is based upon two pillars, namely the differential geometry of quaternionic manifolds and Joyce’s recent theory of quaternionic algebra. Contribu- tions are made to both fields of study, enabling these strands to be woven together in describing the algebraic geometry of hypercomplex manifolds. A recurrent theme throughout will be representations of the group Sp(1) of unit quaternions. Our contribution to the theory of quaternionic manifolds relies on decom- posing the Sp(1)-action on exterior forms, whilst the main new insight in quaternionic algebra is that the most important building blocks of Joyce’s theory are best described and manipulated as Sp(1)-representations. The importance of Sp(1)-representations to both areas is chiefly responsible for the successful synthesis of methods in the work on hypercomplex manifolds. Another frequent source of motivation is the behaviour of the complex numbers. Many situations in complex algebra and geometry have interesting quaternionic ana- logues. Aspects of complex geometry can often be described using the group U(1) of unit complex numbers; replacing this with the group Sp(1) can lead directly to quaternionic versions. The decomposition of exterior forms on quaternionic manifolds is precisely such an example, as is all the work on q-holomorphic functions and forms on hypercom- plex manifolds. On the other hand, Joyce’s quaternionic algebra is such a rich theory precisely because real subspaces of quaternionic vector spaces behave so differently from real subspaces of complex vector spaces. Much of the original work presented is enticingly simple — indeed, I have often felt both surprised and privileged that it has not been carried out before. One of the main explanations for this is the relative unpopularity suffered by the quaternions in the 20th century. This situation has left various aspects of quaternionic behaviour unexplored. To help understand the reasons for this omission and the consequent opportunities for development, the first chapter is devoted to a survey of the history of the quaternions and their applications. Background material also includes an introduction to the group Sp(1) and its representations. The irreducible representations on complex vector spaces and their tensor products are described, as are real and quaternionic representations. Chapter 2 is about quaternionic structures in differential geometry. The approach is based on the work of Salamon [S3]. Taking complex manifolds as a model, hyper- complex manifolds (those possessing a torsion-free GL(n, H)-structure) are defined, fol- lowed by the broader class of quaternionic manifolds (those possessing a torsion-free Sp(1)GL(n, H)-structure). After reviewing the Dolbeault complex, we consider the decomposition of differential forms on quaternionic manifolds, including an important elliptic complex discovered by Salamon upon which the integrability of the quaternionic 1 structure depends. This complex is in fact the top row of a hitherto undiscovered double complex on quaternionic manifolds, which is the subject of Chapter 3. As an Sp(1)-representation, 4n ∗ ∼ the cotangent space of a quaternionic manifold M takes the form T M = 2nV1, where 2 V1 is the basic representation of Sp(1) on C . Decomposition of the induced Sp(1)- representation on ΛkT ∗M is a simple process achieved by considering weights. That this decomposition gives rise to a double complex results from the Clebsch-Gordon formula ∗ ∼ ∼ Vr ⊗T M = Vr ⊗2nV1 = 2n(Vr+1 ⊕Vr−1). The new double complex is shown to be elliptic everywhere except along its bottom row, consisting of the basic representations V1 and the trivial representations V0. This double complex presents us with new quaternionic cohomology groups. In the fourth chapter (which is partly a summary of the work of Joyce [J1] and Quillen [Q]) we move to our other major area of interest, the theory of quaternionic algebra. The building blocks of this theory are H-modules equipped with a special real subspace. Such an object is called an AH-module. Joyce has discovered a canonical tensor product operation for AH-modules which is both associative and commutative. Using ideas from Quillen’s work, we classify AH-modules up to isomorphism. Dual AH-modules are defined and shown to have interesting properties. Particularly well- behaved is the category of stable AH-modules. In Chapter 5 it is shown that all stable AH-modules and their duals are conveniently described using Sp(1)-representations. The resulting theory is ideally adapted for describing hypercomplex geometry, a pro- cess begun in Chapter 6. A hypercomplex manifold M has a triple of global anticom- muting complex structures which can be identified with the imaginary quaternions. This identification enables tensors on hypercomplex manifolds to be treated using the tech- niques of quaternionic algebra. Joyce has already used such an approach to define and investigate q-holomorphic functions on hypercomplex manifolds, which are seen as the quaternionic analogue of holomorphic functions. There is a natural product map on the AH-module of q-holomorphic functions, which gives the q-holomorphic functions an algebraic structure which Joyce calls an H-algebra. Using the Sp(1)-version of quaternionic algebra, we define a natural splitting of the ∗ ∼ quaternionic cotangent space H ⊗ T M = A ⊕ B, and show that q-holomorphic func- tions are precisely those whose differentials take values in A ⊂ H ⊗ T ∗M. The bundle A is hence defined to be the q-holomorphic cotangent space of M.
Recommended publications
  • Math 651 Homework 1 - Algebras and Groups Due 2/22/2013
    Math 651 Homework 1 - Algebras and Groups Due 2/22/2013 1) Consider the Lie Group SU(2), the group of 2 × 2 complex matrices A T with A A = I and det(A) = 1. The underlying set is z −w jzj2 + jwj2 = 1 (1) w z with the standard S3 topology. The usual basis for su(2) is 0 i 0 −1 i 0 X = Y = Z = (2) i 0 1 0 0 −i (which are each i times the Pauli matrices: X = iσx, etc.). a) Show this is the algebra of purely imaginary quaternions, under the commutator bracket. b) Extend X to a left-invariant field and Y to a right-invariant field, and show by computation that the Lie bracket between them is zero. c) Extending X, Y , Z to global left-invariant vector fields, give SU(2) the metric g(X; X) = g(Y; Y ) = g(Z; Z) = 1 and all other inner products zero. Show this is a bi-invariant metric. d) Pick > 0 and set g(X; X) = 2, leaving g(Y; Y ) = g(Z; Z) = 1. Show this is left-invariant but not bi-invariant. p 2) The realification of an n × n complex matrix A + −1B is its assignment it to the 2n × 2n matrix A −B (3) BA Any n × n quaternionic matrix can be written A + Bk where A and B are complex matrices. Its complexification is the 2n × 2n complex matrix A −B (4) B A a) Show that the realification of complex matrices and complexifica- tion of quaternionic matrices are algebra homomorphisms.
    [Show full text]
  • CLIFFORD ALGEBRAS and THEIR REPRESENTATIONS Introduction
    CLIFFORD ALGEBRAS AND THEIR REPRESENTATIONS Andrzej Trautman, Uniwersytet Warszawski, Warszawa, Poland Article accepted for publication in the Encyclopedia of Mathematical Physics c 2005 Elsevier Science Ltd ! Introduction Introductory and historical remarks Clifford (1878) introduced his ‘geometric algebras’ as a generalization of Grassmann alge- bras, complex numbers and quaternions. Lipschitz (1886) was the first to define groups constructed from ‘Clifford numbers’ and use them to represent rotations in a Euclidean ´ space. E. Cartan discovered representations of the Lie algebras son(C) and son(R), n > 2, that do not lift to representations of the orthogonal groups. In physics, Clifford algebras and spinors appear for the first time in Pauli’s nonrelativistic theory of the ‘magnetic elec- tron’. Dirac (1928), in his work on the relativistic wave equation of the electron, introduced matrices that provide a representation of the Clifford algebra of Minkowski space. Brauer and Weyl (1935) connected the Clifford and Dirac ideas with Cartan’s spinorial represen- tations of Lie algebras; they found, in any number of dimensions, the spinorial, projective representations of the orthogonal groups. Clifford algebras and spinors are implicit in Euclid’s solution of the Pythagorean equation x2 y2 + z2 = 0 which is equivalent to − y x z p = 2 p q (1) −z y + x q ! " ! " # $ so that x = q2 p2, y = p2 + q2, z = 2pq. If the numbers appearing in (1) are real, then − this equation can be interpreted as providing a representation of a vector (x, y, z) R3, null ∈ with respect to a quadratic form of signature (1, 2), as the ‘square’ of a spinor (p, q) R2.
    [Show full text]
  • On the Complexification of the Classical Geometries And
    On the complexication of the classical geometries and exceptional numb ers April Intro duction The classical groups On R Spn R and GLn C app ear as the isometry groups of sp ecial geome tries on a real vector space In fact the orthogonal group On R represents the linear isomorphisms of arealvector space V of dimension nleaving invariant a p ositive denite and symmetric bilinear form g on V The symplectic group Spn R represents the isometry group of a real vector space of dimension n leaving invariant a nondegenerate skewsymmetric bilinear form on V Finally GLn C represents the linear isomorphisms of a real vector space V of dimension nleaving invariant a complex structure on V ie an endomorphism J V V satisfying J These three geometries On R Spn R and GLn C in GLn Rintersect even pairwise in the unitary group Un C Considering now the relativeversions of these geometries on a real manifold of dimension n leads to the notions of a Riemannian manifold an almostsymplectic manifold and an almostcomplex manifold A symplectic manifold however is an almostsymplectic manifold X ie X is a manifold and is a nondegenerate form on X so that the form is closed Similarly an almostcomplex manifold X J is called complex if the torsion tensor N J vanishes These three geometries intersect in the notion of a Kahler manifold In view of the imp ortance of the complexication of the real Lie groupsfor instance in the structure theory and representation theory of semisimple real Lie groupswe consider here the question on the underlying geometrical
    [Show full text]
  • Patterns of Maximally Entangled States Within the Algebra of Biquaternions
    J. Phys. Commun. 4 (2020) 055018 https://doi.org/10.1088/2399-6528/ab9506 PAPER Patterns of maximally entangled states within the algebra of OPEN ACCESS biquaternions RECEIVED 21 March 2020 Lidia Obojska REVISED 16 May 2020 Siedlce University of Natural Sciences and Humanities, ul. 3 Maja 54, 08-110 Siedlce, Poland ACCEPTED FOR PUBLICATION E-mail: [email protected] 20 May 2020 Keywords: bipartite entanglement, biquaternions, density matrix, mereology PUBLISHED 28 May 2020 Original content from this Abstract work may be used under This paper proposes a description of maximally entangled bipartite states within the algebra of the terms of the Creative Commons Attribution 4.0 biquaternions–Ä . We assume that a bipartite entanglement is created in a process of splitting licence. one particle into a pair of two indiscernible, yet not identical particles. As a result, we describe an Any further distribution of this work must maintain entangled correlation by the use of a division relation and obtain twelve forms of biquaternions, attribution to the author(s) and the title of representing pure maximally entangled states. Additionally, we obtain other patterns, describing the work, journal citation mixed entangled states. Finally, we show that there are no other maximally entangled states in Ä and DOI. than those presented in this work. 1. Introduction In 1935, Einstein, Podolski and Rosen described a strange phenomenon, in which in its pure state, one particle behaves like a pair of two indistinguishable, yet not identical, particles [1]. This phenomenon, called by Einstein ’a spooky action at a distance’, has been investigated by many authors, who tried to explain this strange correlation [2–9].
    [Show full text]
  • Majorana Spinors
    MAJORANA SPINORS JOSE´ FIGUEROA-O'FARRILL Contents 1. Complex, real and quaternionic representations 2 2. Some basis-dependent formulae 5 3. Clifford algebras and their spinors 6 4. Complex Clifford algebras and the Majorana condition 10 5. Examples 13 One dimension 13 Two dimensions 13 Three dimensions 14 Four dimensions 14 Six dimensions 15 Ten dimensions 16 Eleven dimensions 16 Twelve dimensions 16 ...and back! 16 Summary 19 References 19 These notes arose as an attempt to conceptualise the `symplectic Majorana{Weyl condition' in 5+1 dimensions; but have turned into a general discussion of spinors. Spinors play a crucial role in supersymmetry. Part of their versatility is that they come in many guises: `Dirac', `Majorana', `Weyl', `Majorana{Weyl', `symplectic Majorana', `symplectic Majorana{Weyl', and their `pseudo' counterparts. The tra- ditional physics approach to this topic is a mixed bag of tricks using disparate aspects of representation theory of finite groups. In these notes we will attempt to provide a uniform treatment based on the classification of Clifford algebras, a work dating back to the early 60s and all but ignored by the theoretical physics com- munity. Recent developments in superstring theory have made us re-examine the conditions for the existence of different kinds of spinors in spacetimes of arbitrary signature, and we believe that a discussion of this more uniform approach is timely and could be useful to the student meeting this topic for the first time or to the practitioner who has difficulty remembering the answer to questions like \when do symplectic Majorana{Weyl spinors exist?" The notes are organised as follows.
    [Show full text]
  • Maxwell's Equations
    Maxwell’s equations Daniel Henry Gottlieb August 1, 2004 Abstract We express Maxwell’s equations as a single equation, first using the divergence of a special type of matrix field to obtain the four current, and then the divergence of a special matrix to obtain the Electromagnetic field. These two equations give rise to a remarkable dual set of equations in which the operators become the matrices and the vectors become the fields. The decoupling of the equations into the wave equation is very simple and natural. The divergence of the stress energy tensor gives the Lorentz Law in a very natural way. We compare this approach to the related descriptions of Maxwell’s equations by biquaternions and Clifford algebras. 1 Introduction Maxwell’s equations have been expressed in many forms in the century and a half since their dis- covery. The original equations were 16 in number. The vector forms, written below, consist of 4 equations. The differential form versions consists of two equations; see [Misner, Thorne and Wheeler(1973); see equations 4.10, 4.11]. See also [Steven Parrott(1987) page 98 -100 ] The ap- plication of quaternions, and their complexification, the biquaternions, results in a version of one equation. William E. Baylis (1999) equation 3.8, is an example. In this work, we obtain one Maxwell equation, (10), representing the electromagnetic field as a matrix and the divergence as a vector multiplying the field matrix. But we also obtain a remarkable dual formulation of Maxwell’s equation, (15), wherein the operator is now the matrix and the field is now the vector.
    [Show full text]
  • 5 Spinor Calculus
    5 Spinor Calculus 5.1 From triads and Euler angles to spinors. A heuristic introduction. As mentioned already in Section 3.4.3, it is an obvious idea to enrich the Pauli algebra formalism by introducing the complex vector space V(2; C) on which the matrices operate. The two-component complex vectors are traditionally called spinors28. We wish to show that they give rise to a wide range of applications. In fact we shall introduce the spinor concept as a natural answer to a problem that arises in the context of rotational motion. In Section 3 we have considered rotations as operations performed on a vector space. Whereas this approach enabled us to give a group-theoretical definition of the magnetic field, a vector is not an appropriate construct to account for the rotation of an orientable object. The simplest mathematical model suitable for this purpose is a Cartesian (orthogonal) three-frame, briefly, a triad. The problem is to consider two triads with coinciding origins, and the rotation of the object frame is described with respect to the space frame. The triads are represented in terms of their respective unit vectors: the space frame as Σs(x^1; x^2; x^3) and the object frame as Σc(e^1; e^2; e^3). Here c stands for “corpus,” since o for “object” seems ambiguous. We choose the frames to be right-handed. These orientable objects are not pointlike, and their parametrization offers novel problems. In this sense we may refer to triads as “higher objects,” by contrast to points which are “lower objects.” The thought that comes most easily to mind is to consider the nine direction cosines e^i · x^k but this is impractical, because of the six relations connecting these parameters.
    [Show full text]
  • Classification of Left Octonion Modules
    Classification of left octonion modules Qinghai Huo, Yong Li, Guangbin Ren Abstract It is natural to study octonion Hilbert spaces as the recently swift development of the theory of quaternion Hilbert spaces. In order to do this, it is important to study first its algebraic structure, namely, octonion modules. In this article, we provide complete classification of left octonion modules. In contrast to the quaternionic setting, we encounter some new phenomena. That is, a submodule generated by one element m may be the whole module and may be not in the form Om. This motivates us to introduce some new notions such as associative elements, conjugate associative elements, cyclic elements. We can characterize octonion modules in terms of these notions. It turns out that octonions admit two distinct structures of octonion modules, and moreover, the direct sum of their several copies exhaust all octonion modules with finite dimensions. Keywords: Octonion module; associative element; cyclic element; Cℓ7-module. AMS Subject Classifications: 17A05 Contents 1 introduction 1 2 Preliminaries 3 2.1 The algebra of the octonions O .............................. 3 2.2 Universal Clifford algebra . ... 4 3 O-modules 6 4 The structure of left O-moudles 10 4.1 Finite dimensional O-modules............................... 10 4.2 Structure of general left O-modules............................ 13 4.3 Cyclic elements in left O-module ............................. 15 arXiv:1911.08282v2 [math.RA] 21 Nov 2019 1 introduction The theory of quaternion Hilbert spaces brings the classical theory of functional analysis into the non-commutative realm (see [10, 16, 17, 20, 21]). It arises some new notions such as spherical spectrum, which has potential applications in quantum mechanics (see [4, 6]).
    [Show full text]
  • Unifying the Hyperbolic and Spherical 2-Body Problem with Biquaternions
    Unifying the Hyperbolic and Spherical 2-Body Problem with Biquaternions Philip Arathoon December 2020 Abstract The 2-body problem on the sphere and hyperbolic space are both real forms of holo- morphic Hamiltonian systems defined on the complex sphere. This admits a natural description in terms of biquaternions and allows us to address questions concerning the hyperbolic system by complexifying it and treating it as the complexification of a spherical system. In this way, results for the 2-body problem on the sphere are readily translated to the hyperbolic case. For instance, we implement this idea to completely classify the relative equilibria for the 2-body problem on hyperbolic 3-space for a strictly attractive potential. Background and outline The case of the 2-body problem on the 3-sphere has recently been considered by the author in [1]. This treatment takes advantage of the fact that S3 is a group and that the action of SO(4) on S3 is generated by the left and right multiplication of S3 on itself. This allows for a reduction in stages, first reducing by the left multiplication, and then reducing an intermediate space by the residual right-action. An advantage of this reduction-by-stages is that it allows for a fairly straightforward derivation of the relative equilibria solutions: the relative equilibria may first be classified in the intermediate reduced space and then reconstructed on the original phase space. For the 2-body problem on hyperbolic space the same idea does not apply. Hyperbolic 3-space H3 cannot be endowed with an isometric group structure and the symmetry group SO(1; 3) does not arise as a direct product of two groups.
    [Show full text]
  • Are Octonions Necessary to the Standard Model?
    Vigier IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1251 (2019) 012044 doi:10.1088/1742-6596/1251/1/012044 Are octonions necessary to the Standard Model? Peter Rowlands, Sydney Rowlands Physics Department, University of Liverpool, Oliver Lodge Laboratory, Oxford St, Liverpool. L69 7ZE, UK [email protected] Abstract. There have been a number of claims, going back to the 1970s, that the Standard Model of particle physics, based on fermions and antifermions, might be derived from an octonion algebra. The emergence of SU(3), SU(2) and U(1) groups in octonion-based structures is suggestive of the symmetries of the Standard Model, but octonions themselves are an unsatisfactory model for physical application because they are antiassociative and consequently not a group. Instead, the ‘octonion’ models have to be based on adjoint algebras, such as left- or right-multiplied octonions, which can be seen to have group-like properties. The most promising of these candidates is the complexified left-multiplied octonion algebra, because it reduces, in effect, to Cl(6), which has been identified by one of us (PR) in a number of previous publications as the basic structure for the entire foundation of physics, as well as the algebra required for the Standard Model and the Dirac equation. Though this algebra has long been shown by PR as equivalent to using a complexified left-multiplied or ‘broken’ octonion, it doesn’t need to be derived in this way, as its real origins are in the respective real, complex, quaternion and complexified quaternion algebras of the fundamental parameters of mass, time, charge and space.
    [Show full text]
  • A Student's Guide to Symplectic Spaces, Grassmannians
    A Student’s Guide to Symplectic Spaces, Grassmannians and Maslov Index Paolo Piccione Daniel Victor Tausk DEPARTAMENTO DE MATEMATICA´ INSTITUTO DE MATEMATICA´ E ESTAT´ISTICA UNIVERSIDADE DE SAO˜ PAULO Contents Preface v Introduction vii Chapter 1. Symplectic Spaces 1 1.1. A short review of Linear Algebra 1 1.2. Complex structures 5 1.3. Complexification and real forms 8 1.3.1. Complex structures and complexifications 13 1.4. Symplectic forms 16 1.4.1. Isotropic and Lagrangian subspaces. 20 1.4.2. Lagrangian decompositions of a symplectic space 24 1.5. Index of a symmetric bilinear form 28 Exercises for Chapter 1 35 Chapter 2. The Geometry of Grassmannians 39 2.1. Differentiable manifolds and Lie groups 39 2.1.1. Classical Lie groups and Lie algebras 41 2.1.2. Actions of Lie groups and homogeneous manifolds 44 2.1.3. Linearization of the action of a Lie group on a manifold 48 2.2. Grassmannians and their differentiable structure 50 2.3. The tangent space to a Grassmannian 53 2.4. The Grassmannian as a homogeneous space 55 2.5. The Lagrangian Grassmannian 59 k 2.5.1. The submanifolds Λ (L0) 64 Exercises for Chapter 2 68 Chapter 3. Topics of Algebraic Topology 71 3.1. The fundamental groupoid and the fundamental group 71 3.1.1. The Seifert–van Kampen theorem for the fundamental groupoid 75 3.1.2. Stability of the homotopy class of a curve 77 3.2. The homotopy exact sequence of a fibration 80 3.2.1. Applications to the theory of classical Lie groups 92 3.3.
    [Show full text]
  • ALGEBRA: LECTURE NOTES §1. Categories and Functors 2 §1.1
    ALGEBRA: LECTURE NOTES JENIA TEVELEV CONTENTS x1. Categories and Functors 2 x1.1. Categories 2 x1.2. Functors 5 x1.3. Equivalence of Categories 6 x1.4. Representable Functors 7 x1.5. Products and Coproducts 8 x1.6. Natural Transformations 9 x1.7. Exercises 10 x2. Tensor Products 12 x2.1. Tensor Product of Vector Spaces 12 x2.2. Tensor Product of R-modules 14 x2.3. Categorical aspects of tensors: Yoneda’s Lemma 16 x2.4. Hilbert’s 3d Problem 21 x2.5. Right-exactness of a tensor product 25 x2.6. Restriction of scalars 28 x2.7. Extension of scalars 29 x2.8. Exercises 30 x3. Algebraic Extensions 31 x3.1. Field Extensions 31 x3.2. Adjoining roots 33 x3.3. Algebraic Closure 35 x3.4. Finite Fields 37 x3.5. Exercises 37 x4. Galois Theory 39 x4.1. Separable Extensions 39 x4.2. Normal Extensions 40 x4.3. Main Theorem of Galois Theory 41 x4.4. Exercises 43 x5. Applications of Galois Theory - I 44 x5.1. Fundamental Theorem of Algebra 44 x5.2. Galois group of a finite field 45 x5.3. Cyclotomic fields 45 x5.4. Kronecker–Weber Theorem 46 x5.5. Cyclic Extensions 48 x5.6. Composition Series and Solvable Groups 50 x5.7. Exercises 52 x6. Applications of Galois Theory -II 54 x6.1. Solvable extensions: Galois Theorem. 54 1 2 JENIA TEVELEV x6.2. Norm and Trace 56 x6.3. Lagrange resolvents 57 x6.4. Solving solvable extensions 58 x6.5. Exercises 60 x7. Transcendental Extensions 61 x7.1. Transcendental Numbers: Liouville’s Theorem 61 x7.2.
    [Show full text]