A Student's Guide to Symplectic Spaces, Grassmannians

Total Page:16

File Type:pdf, Size:1020Kb

A Student's Guide to Symplectic Spaces, Grassmannians A Student’s Guide to Symplectic Spaces, Grassmannians and Maslov Index Paolo Piccione Daniel Victor Tausk DEPARTAMENTO DE MATEMATICA´ INSTITUTO DE MATEMATICA´ E ESTAT´ISTICA UNIVERSIDADE DE SAO˜ PAULO Contents Preface v Introduction vii Chapter 1. Symplectic Spaces 1 1.1. A short review of Linear Algebra 1 1.2. Complex structures 5 1.3. Complexification and real forms 8 1.3.1. Complex structures and complexifications 13 1.4. Symplectic forms 16 1.4.1. Isotropic and Lagrangian subspaces. 20 1.4.2. Lagrangian decompositions of a symplectic space 24 1.5. Index of a symmetric bilinear form 28 Exercises for Chapter 1 35 Chapter 2. The Geometry of Grassmannians 39 2.1. Differentiable manifolds and Lie groups 39 2.1.1. Classical Lie groups and Lie algebras 41 2.1.2. Actions of Lie groups and homogeneous manifolds 44 2.1.3. Linearization of the action of a Lie group on a manifold 48 2.2. Grassmannians and their differentiable structure 50 2.3. The tangent space to a Grassmannian 53 2.4. The Grassmannian as a homogeneous space 55 2.5. The Lagrangian Grassmannian 59 k 2.5.1. The submanifolds Λ (L0) 64 Exercises for Chapter 2 68 Chapter 3. Topics of Algebraic Topology 71 3.1. The fundamental groupoid and the fundamental group 71 3.1.1. The Seifert–van Kampen theorem for the fundamental groupoid 75 3.1.2. Stability of the homotopy class of a curve 77 3.2. The homotopy exact sequence of a fibration 80 3.2.1. Applications to the theory of classical Lie groups 92 3.3. Singular homology groups 99 3.3.1. The Hurewicz’s homomorphism 109 Exercises for Chapter 3 113 Chapter 4. Curves of Symmetric Bilinear Forms 116 4.1. A few preliminary results 116 4.2. Evolution of the index: a simple case 117 4.3. Partial signatures and another “evolution of the index” theorem 120 Exercises for Chapter 4 127 iii iv CONTENTS Chapter 5. The Maslov Index 129 5.1. A definition of Maslov index using relative homology 129 5.2. A definition of Maslov index using the fundamental groupoid 138 5.3. Isotropic reduction and Maslov index 141 5.4. Maslov index for pairs of Lagrangian curves 145 5.5. Computation of the Maslov index via partial signatures 149 5.6. The Conley–Zehnder index 152 Exercises for Chapter 5 153 Appendix A. Kato selection theorem 157 A.1. Algebraic preliminaries 157 A.2. Polynomials, roots and covering maps 160 A.3. Multiplicity of roots as line integrals 163 A.4. Eigenprojections and line integrals 165 A.5. One-parameter holomorphic families of linear maps 167 A.6. Regular and singular points 170 Exercises for Appendix A 175 Appendix B. Generalized Jordan Chains 181 Exercises for Appendix B 184 Appendix C. Answers and Hints to the exercises 185 C.1. From Chapter 1 185 C.2. From Chapter 2 189 C.3. From Chapter 3 192 C.4. From Chapter 4 194 C.5. From Chapter 5 194 C.6. From Appendix A 196 C.7. From Appendix B 200 Bibliography 201 Index 202 Preface This is a revised edition of a booklet originally published with the title “On the geometry of grassmannians and the symplectic group: the Maslov index and its applications”. The original text was used as a textbook for a short course given by the authors at the XI School of Differential Geometry, held at the Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brazil, in 2000. This new edition was written between November 2007 and September 2008 at the University of Sao˜ Paulo. Several changes and additions have been made to the original text. The first two chapters have basically remained in their original form, while in Chapter 3 a section on the Seifert–van Kampen theorem for the fundamental groupoid of a topological space has been added. Former Chapter 4 has been divided in two parts that have become Chapters 4 and 5 in the present edition. This is where most of the changes appear. In Chapter 4 we have added material on the notion of partial signatures at a singularity of a smooth path of symmetric bilinear forms. The partial signatures are used to compute the jump of the index for a path of real analytic forms in terms of higher order derivatives. In Chapter 5, we have added a new and more general definition of Maslov index for continuous curves with arbitrary endpoints in the Lagrangian Grassmannian of a finite dimensional symplectic space. In the original edition, we discussed only the homological definition, which applies only to curves with “nondegenerate” endpoints. The presentation of this new definition employs the Seifert–van Kampen theorem for the fundamental groupoid of a topological space that was added to Chapter 3. We also discuss the notion of Maslov index for pairs of Lagrangian paths, and related topics, like the notion of Conley–Zehnder index for symplectic paths. Given an isotropic subspace of a symplectic space, there is a natural construc- tion of a new symplectic space called an isotropic reduction of the symplectic space (see Example 1.4.17). In this new edition of the book we have also added a section in Chapter 5 containing some material concerning the computation of the Maslov index of a continuous path of Lagrangians that contain a fixed isotropic subspace. This is reduced to the computation of the Maslov index in an isotropic reduction of the symplectic space. Finally, two appendices have been added. Appendix A contains a detailed proof of the celebrated Kato’s selection theorem, in the finite dimensional case. Kato’s theorem gives the existence of a real analytic path of orthonormal bases of eigenvectors for a given real analytic path of symmetric operators. The proof of Kato’s theorem presented in Appendix A is accessible to students with some back- ground in Differential Geometry, including basic notions of covering spaces and analytic functions of one complex variable. Kato’s theorem is needed for the proof of the formula giving the Maslov index of a real analytic path of Lagrangians in v vi PREFACE terms of partial signatures. Appendix B contains an algebraic theory of general- ized Jordan chains. Generalized Jordan chains are related to the notion of partial signature discussed in Chapter 4. Former Chapter 5, which contained material on some recent applications of the notion of Maslov index in the context of linear Hamiltonian systems, has been removed from the present version. Incidentally, this book will be published 150 years after the publication of C. R. Darwin’s On the origin of species, in 1859. Both authors are convinced evolution- ists, and they wish to give a tribute to Darwin’s scientific work with two quotations of the scientist at the beginning and at the end of the book. The authors grate- fully acknowledge the partial financial support provided by Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnologico´ (CNPq), Brazil, and by Fundac¸ao˜ de Amparo a Pesquisa do Estado de Sao˜ Paulo (Fapesp), Sao˜ Paulo, Brazil. Dedication. This book is dedicated to Prof. Elon Lages Lima and to Prof. Man- fredo Perdigao˜ do Carmo on occasion of their 80th anniversary. Elon and Manfredo are both authors of great math books from which the authors have learned and still learn a lot. Sao˜ Paulo, October 2008 Introduction The goal of this book is to describe the algebraic, the topological and the geo- metrical issues that are related to the notion of Maslov index. The authors’ inten- tion was to provide a self-contained text accessible to students with a reasonable background in Linear Algebra, Topology and some basic Calculus on differential manifolds. The new title of the book reflects this objective. The notion of symplectic forms appears naturally in the context of Hamiltonian mechanics (see [1]). Unlike inner products, symplectic forms are anti-symmetric and may vanish when restricted to a subspace. The subspaces on which the sym- plectic form vanishes are called isotropic and the maximal isotropic subspaces are called Lagrangian. Hamiltonian systems naturally give rise to curves of symplecto- morphisms, i.e., linear isomorphisms that preserve a symplectic form. In such con- text, subspaces of the space where the symplectic form is defined may be thought of as spaces of initial conditions for the Hamiltonian system. Lagrangian initial conditions appear in many situations such as the problem of conjugate points in Riemannian and semi-Riemannian geometry. Lagrangian initial conditions give rise, by the curve of symplectomorphisms, to curves of Lagrangian subspaces. The Maslov index is a (semi-)integer invariant associated to such curves. In many ap- plications it has an interesting geometric meaning; for instance, in Riemannian geometry the Maslov index of the curve of Lagrangians associated to a geodesic is (up to an additive constant) equal to the sum of the multiplicities of conjugate (or focal) points along the geodesic (see [6, 12]). Applications of Malsov index (and other related indexes) can be found, for instance, in [2, 3, 4, 5, 10, 14, 15, 16, 18]. Chapter 1 deals with the linear algebraic part of the theory. We introduce the basic notion of symplectic space, the morphisms of such spaces and the notion of isotropic and Lagrangian subspaces of a symplectic space. Symplectic structures are intimately related to inner products and complex structures, which are also discussed in the chapter. The last part of the chapter deals with the notion of index of a symmetric bilinear form and its main properties. Chapter 2 deals with the geometrical framework of the theory. We describe the differential structure of Grassmannians, that are compact manifolds whose el- ements are subspaces of a given vector space.
Recommended publications
  • Math 651 Homework 1 - Algebras and Groups Due 2/22/2013
    Math 651 Homework 1 - Algebras and Groups Due 2/22/2013 1) Consider the Lie Group SU(2), the group of 2 × 2 complex matrices A T with A A = I and det(A) = 1. The underlying set is z −w jzj2 + jwj2 = 1 (1) w z with the standard S3 topology. The usual basis for su(2) is 0 i 0 −1 i 0 X = Y = Z = (2) i 0 1 0 0 −i (which are each i times the Pauli matrices: X = iσx, etc.). a) Show this is the algebra of purely imaginary quaternions, under the commutator bracket. b) Extend X to a left-invariant field and Y to a right-invariant field, and show by computation that the Lie bracket between them is zero. c) Extending X, Y , Z to global left-invariant vector fields, give SU(2) the metric g(X; X) = g(Y; Y ) = g(Z; Z) = 1 and all other inner products zero. Show this is a bi-invariant metric. d) Pick > 0 and set g(X; X) = 2, leaving g(Y; Y ) = g(Z; Z) = 1. Show this is left-invariant but not bi-invariant. p 2) The realification of an n × n complex matrix A + −1B is its assignment it to the 2n × 2n matrix A −B (3) BA Any n × n quaternionic matrix can be written A + Bk where A and B are complex matrices. Its complexification is the 2n × 2n complex matrix A −B (4) B A a) Show that the realification of complex matrices and complexifica- tion of quaternionic matrices are algebra homomorphisms.
    [Show full text]
  • Symplectic Linear Algebra Let V Be a Real Vector Space. Definition 1.1. A
    INTRODUCTION TO SYMPLECTIC TOPOLOGY C. VITERBO 1. Lecture 1: Symplectic linear algebra Let V be a real vector space. Definition 1.1. A symplectic form on V is a skew-symmetric bilinear nondegen- erate form: (1) ω(x, y)= ω(y, x) (= ω(x, x) = 0); (2) x, y such− that ω(x,⇒ y) = 0. ∀ ∃ % For a general 2-form ω on a vector space, V , we denote ker(ω) the subspace given by ker(ω)= v V w Vω(v, w)=0 { ∈ |∀ ∈ } The second condition implies that ker(ω) reduces to zero, so when ω is symplectic, there are no “preferred directions” in V . There are special types of subspaces in symplectic manifolds. For a vector sub- space F , we denote by F ω = v V w F,ω(v, w) = 0 { ∈ |∀ ∈ } From Grassmann’s formula it follows that dim(F ω)=codim(F ) = dim(V ) dim(F ) Also we have − Proposition 1.2. (F ω)ω = F (F + F )ω = F ω F ω 1 2 1 ∩ 2 Definition 1.3. A subspace F of V,ω is ω isotropic if F F ( ω F = 0); • coisotropic if F⊂ω F⇐⇒ | • Lagrangian if it is⊂ maximal isotropic. • Proposition 1.4. (1) Any symplectic vector space has even dimension (2) Any isotropic subspace is contained in a Lagrangian subspace and Lagrangians have dimension equal to half the dimension of the total space. (3) If (V1,ω1), (V2,ω2) are symplectic vector spaces with L1,L2 Lagrangian subspaces, and if dim(V1) = dim(V2), then there is a linear isomorphism ϕ : V V such that ϕ∗ω = ω and ϕ(L )=L .
    [Show full text]
  • CLIFFORD ALGEBRAS and THEIR REPRESENTATIONS Introduction
    CLIFFORD ALGEBRAS AND THEIR REPRESENTATIONS Andrzej Trautman, Uniwersytet Warszawski, Warszawa, Poland Article accepted for publication in the Encyclopedia of Mathematical Physics c 2005 Elsevier Science Ltd ! Introduction Introductory and historical remarks Clifford (1878) introduced his ‘geometric algebras’ as a generalization of Grassmann alge- bras, complex numbers and quaternions. Lipschitz (1886) was the first to define groups constructed from ‘Clifford numbers’ and use them to represent rotations in a Euclidean ´ space. E. Cartan discovered representations of the Lie algebras son(C) and son(R), n > 2, that do not lift to representations of the orthogonal groups. In physics, Clifford algebras and spinors appear for the first time in Pauli’s nonrelativistic theory of the ‘magnetic elec- tron’. Dirac (1928), in his work on the relativistic wave equation of the electron, introduced matrices that provide a representation of the Clifford algebra of Minkowski space. Brauer and Weyl (1935) connected the Clifford and Dirac ideas with Cartan’s spinorial represen- tations of Lie algebras; they found, in any number of dimensions, the spinorial, projective representations of the orthogonal groups. Clifford algebras and spinors are implicit in Euclid’s solution of the Pythagorean equation x2 y2 + z2 = 0 which is equivalent to − y x z p = 2 p q (1) −z y + x q ! " ! " # $ so that x = q2 p2, y = p2 + q2, z = 2pq. If the numbers appearing in (1) are real, then − this equation can be interpreted as providing a representation of a vector (x, y, z) R3, null ∈ with respect to a quadratic form of signature (1, 2), as the ‘square’ of a spinor (p, q) R2.
    [Show full text]
  • University of California Santa Cruz on An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ ON AN EXTENSION OF THE MEAN INDEX TO THE LAGRANGIAN GRASSMANNIAN A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in MATHEMATICS by Matthew I. Grace September 2020 The Dissertation of Matthew I. Grace is approved: Professor Viktor Ginzburg, Chair Professor Ba¸sakG¨urel Professor Richard Montgomery Dean Quentin Williams Interim Vice Provost and Dean of Graduate Studies Copyright c by Matthew I. Grace 2020 Table of Contents List of Figuresv Abstract vi Dedication vii Acknowledgments viii I Preliminaries1 I.1 Introduction . .2 I.2 Historical Context . .8 I.3 Definitions and Conventions . 21 I.4 Dissertation Outline . 28 I.4.1 Outline of Results . 28 I.4.2 Outline of Proofs . 31 II Linear Canonical Relations and Isotropic Pairs 34 II.1 Strata of the Lagrangian Grassmannian . 35 II.2 Iterating Linear Canonical Relations . 37 II.3 Conjugacy Classes of Isotropic Pairs . 40 II.4 Stratum-Regular Paths . 41 III The Set H of Exceptional Lagrangians 50 III.1 The Codimension of H ............................... 51 III.2 Admissible Linear Canonical Relations . 54 IV The Conley-Zehnder Index and the Circle Map ρ 62 IV.1 Construction of the Conley-Zehnder Index . 63 IV.2 Properties of the Circle Map Extensionρ ^ ..................... 65 iii V Unbounded Sequences in the Symplectic Group 69 V.1 A Sufficient Condition for Asymptotic Hyperbolicity . 70 V.2 A Decomposition for Certain Unbounded Sequences of Symplectic Maps . 76 V.2.1 Preparation for the Proof of Theorem V.2.1................ 78 V.2.2 Proof of Theorem V.2.1..........................
    [Show full text]
  • On the Complexification of the Classical Geometries And
    On the complexication of the classical geometries and exceptional numb ers April Intro duction The classical groups On R Spn R and GLn C app ear as the isometry groups of sp ecial geome tries on a real vector space In fact the orthogonal group On R represents the linear isomorphisms of arealvector space V of dimension nleaving invariant a p ositive denite and symmetric bilinear form g on V The symplectic group Spn R represents the isometry group of a real vector space of dimension n leaving invariant a nondegenerate skewsymmetric bilinear form on V Finally GLn C represents the linear isomorphisms of a real vector space V of dimension nleaving invariant a complex structure on V ie an endomorphism J V V satisfying J These three geometries On R Spn R and GLn C in GLn Rintersect even pairwise in the unitary group Un C Considering now the relativeversions of these geometries on a real manifold of dimension n leads to the notions of a Riemannian manifold an almostsymplectic manifold and an almostcomplex manifold A symplectic manifold however is an almostsymplectic manifold X ie X is a manifold and is a nondegenerate form on X so that the form is closed Similarly an almostcomplex manifold X J is called complex if the torsion tensor N J vanishes These three geometries intersect in the notion of a Kahler manifold In view of the imp ortance of the complexication of the real Lie groupsfor instance in the structure theory and representation theory of semisimple real Lie groupswe consider here the question on the underlying geometrical
    [Show full text]
  • Classification on the Grassmannians
    GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Classification on the Grassmannians: Theory and Applications Jen-Mei Chang Department of Mathematics and Statistics California State University, Long Beach [email protected] AMS Fall Western Section Meeting Special Session on Metric and Riemannian Methods in Shape Analysis October 9, 2010 at UCLA GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Outline 1 Geometric Framework Evolution of Classification Paradigms Grassmann Framework Grassmann Separability 2 Some Empirical Results Illumination Illumination + Low Resolutions 3 Compression on G(k, n) Motivations, Definitions, and Algorithms Karcher Compression for Face Recognition GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Architectures Historically Currently single-to-single subspace-to-subspace )2( )3( )1( d ( P,x ) d ( P,x ) d(P,x ) ... P G , , … , x )1( x )2( x( N) single-to-many many-to-many Image Set 1 … … G … … p * P , Grassmann Manifold Image Set 2 * X )1( X )2( … X ( N) q Project Eigenfaces GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Some Approaches • Single-to-Single 1 Euclidean distance of feature points. 2 Correlation. • Single-to-Many 1 Subspace method [Oja, 1983]. 2 Eigenfaces (a.k.a. Principal Component Analysis, KL-transform) [Sirovich & Kirby, 1987], [Turk & Pentland, 1991]. 3 Linear/Fisher Discriminate Analysis, Fisherfaces [Belhumeur et al., 1997]. 4 Kernel PCA [Yang et al., 2000]. GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Some Approaches • Many-to-Many 1 Tangent Space and Tangent Distance - Tangent Distance [Simard et al., 2001], Joint Manifold Distance [Fitzgibbon & Zisserman, 2003], Subspace Distance [Chang, 2004].
    [Show full text]
  • Arxiv:1711.05949V2 [Math.RT] 27 May 2018 Mials, One Obtains a Sum Whose Summands Are Rational Functions in Ti
    RESIDUES FORMULAS FOR THE PUSH-FORWARD IN K-THEORY, THE CASE OF G2=P . ANDRZEJ WEBER AND MAGDALENA ZIELENKIEWICZ Abstract. We study residue formulas for push-forward in the equivariant K-theory of homogeneous spaces. For the classical Grassmannian the residue formula can be obtained from the cohomological formula by a substitution. We also give another proof using sym- plectic reduction and the method involving the localization theorem of Jeffrey–Kirwan. We review formulas for other classical groups, and we derive them from the formulas for the classical Grassmannian. Next we consider the homogeneous spaces for the exceptional group G2. One of them, G2=P2 corresponding to the shorter root, embeds in the Grass- mannian Gr(2; 7). We find its fundamental class in the equivariant K-theory KT(Gr(2; 7)). This allows to derive a residue formula for the push-forward. It has significantly different character comparing to the classical groups case. The factor involving the fundamen- tal class of G2=P2 depends on the equivariant variables. To perform computations more efficiently we apply the basis of K-theory consisting of Grothendieck polynomials. The residue formula for push-forward remains valid for the homogeneous space G2=B as well. 1. Introduction ∗ r Suppose an algebraic torus T = (C ) acts on a complex variety X which is smooth and complete. Let E be an equivariant complex vector bundle over X. Then E defines an element of the equivariant K-theory of X. In our setting there is no difference whether one considers the algebraic K-theory or the topological one.
    [Show full text]
  • Patterns of Maximally Entangled States Within the Algebra of Biquaternions
    J. Phys. Commun. 4 (2020) 055018 https://doi.org/10.1088/2399-6528/ab9506 PAPER Patterns of maximally entangled states within the algebra of OPEN ACCESS biquaternions RECEIVED 21 March 2020 Lidia Obojska REVISED 16 May 2020 Siedlce University of Natural Sciences and Humanities, ul. 3 Maja 54, 08-110 Siedlce, Poland ACCEPTED FOR PUBLICATION E-mail: [email protected] 20 May 2020 Keywords: bipartite entanglement, biquaternions, density matrix, mereology PUBLISHED 28 May 2020 Original content from this Abstract work may be used under This paper proposes a description of maximally entangled bipartite states within the algebra of the terms of the Creative Commons Attribution 4.0 biquaternions–Ä . We assume that a bipartite entanglement is created in a process of splitting licence. one particle into a pair of two indiscernible, yet not identical particles. As a result, we describe an Any further distribution of this work must maintain entangled correlation by the use of a division relation and obtain twelve forms of biquaternions, attribution to the author(s) and the title of representing pure maximally entangled states. Additionally, we obtain other patterns, describing the work, journal citation mixed entangled states. Finally, we show that there are no other maximally entangled states in Ä and DOI. than those presented in this work. 1. Introduction In 1935, Einstein, Podolski and Rosen described a strange phenomenon, in which in its pure state, one particle behaves like a pair of two indistinguishable, yet not identical, particles [1]. This phenomenon, called by Einstein ’a spooky action at a distance’, has been investigated by many authors, who tried to explain this strange correlation [2–9].
    [Show full text]
  • Majorana Spinors
    MAJORANA SPINORS JOSE´ FIGUEROA-O'FARRILL Contents 1. Complex, real and quaternionic representations 2 2. Some basis-dependent formulae 5 3. Clifford algebras and their spinors 6 4. Complex Clifford algebras and the Majorana condition 10 5. Examples 13 One dimension 13 Two dimensions 13 Three dimensions 14 Four dimensions 14 Six dimensions 15 Ten dimensions 16 Eleven dimensions 16 Twelve dimensions 16 ...and back! 16 Summary 19 References 19 These notes arose as an attempt to conceptualise the `symplectic Majorana{Weyl condition' in 5+1 dimensions; but have turned into a general discussion of spinors. Spinors play a crucial role in supersymmetry. Part of their versatility is that they come in many guises: `Dirac', `Majorana', `Weyl', `Majorana{Weyl', `symplectic Majorana', `symplectic Majorana{Weyl', and their `pseudo' counterparts. The tra- ditional physics approach to this topic is a mixed bag of tricks using disparate aspects of representation theory of finite groups. In these notes we will attempt to provide a uniform treatment based on the classification of Clifford algebras, a work dating back to the early 60s and all but ignored by the theoretical physics com- munity. Recent developments in superstring theory have made us re-examine the conditions for the existence of different kinds of spinors in spacetimes of arbitrary signature, and we believe that a discussion of this more uniform approach is timely and could be useful to the student meeting this topic for the first time or to the practitioner who has difficulty remembering the answer to questions like \when do symplectic Majorana{Weyl spinors exist?" The notes are organised as follows.
    [Show full text]
  • Filtering Grassmannian Cohomology Via K-Schur Functions
    FILTERING GRASSMANNIAN COHOMOLOGY VIA K-SCHUR FUNCTIONS THE 2020 POLYMATH JR. \Q-B-AND-G" GROUPy Abstract. This paper is concerned with studying the Hilbert Series of the subalgebras of the cohomology rings of the complex Grassmannians and La- grangian Grassmannians. We build upon a previous conjecture by Reiner and Tudose for the complex Grassmannian and present an analogous conjecture for the Lagrangian Grassmannian. Additionally, we summarize several poten- tial approaches involving Gr¨obnerbases, homological algebra, and algebraic topology. Then we give a new interpretation to the conjectural expression for the complex Grassmannian by utilizing k-conjugation. This leads to two conjectural bases that would imply the original conjecture for the Grassman- nian. Finally, we comment on how this new approach foreshadows the possible existence of analogous k-Schur functions in other Lie types. Contents 1. Introduction2 2. Conjectures3 2.1. The Grassmannian3 2.2. The Lagrangian Grassmannian4 3. A Gr¨obnerBasis Approach 12 3.1. Patterns, Patterns and more Patterns 12 3.2. A Lex-greedy Approach 20 4. An Approach Using Natural Maps Between Rings 23 4.1. Maps Between Grassmannians 23 4.2. Maps Between Lagrangian Grassmannians 24 4.3. Diagrammatic Reformulation for the Two Main Conjectures 24 4.4. Approach via Coefficient-Wise Inequalities 27 4.5. Recursive Formula for Rk;` 27 4.6. A \q-Pascal Short Exact Sequence" 28 n;m 4.7. Recursive Formula for RLG 30 4.8. Doubly Filtered Basis 31 5. Schur and k-Schur Functions 35 5.1. Schur and Pieri for the Grassmannian 36 5.2. Schur and Pieri for the Lagrangian Grassmannian 37 Date: August 2020.
    [Show full text]
  • §4 Grassmannians 73
    §4 Grassmannians 4.1 Plücker quadric and Gr(2,4). Let 푉 be 4-dimensional vector space. e set of all 2-di- mensional vector subspaces 푈 ⊂ 푉 is called the grassmannian Gr(2, 4) = Gr(2, 푉). More geomet- rically, the grassmannian Gr(2, 푉) is the set of all lines ℓ ⊂ ℙ = ℙ(푉). Sending 2-dimensional vector subspace 푈 ⊂ 푉 to 1-dimensional subspace 훬푈 ⊂ 훬푉 or, equivalently, sending a line (푎푏) ⊂ ℙ(푉) to 한 ⋅ 푎 ∧ 푏 ⊂ 훬푉 , we get the Plücker embedding 픲 ∶ Gr(2, 4) ↪ ℙ = ℙ(훬 푉). (4-1) Its image consists of all decomposable¹ grassmannian quadratic forms 휔 = 푎∧푏 , 푎, 푏 ∈ 푉. Clearly, any such a form has zero square: 휔 ∧ 휔 = 푎 ∧ 푏 ∧ 푎 ∧ 푏 = 0. Since an arbitrary form 휉 ∈ 훬푉 can be wrien¹ in appropriate basis of 푉 either as 푒 ∧ 푒 or as 푒 ∧ 푒 + 푒 ∧ 푒 and in the laer case 휉 is not decomposable, because of 휉 ∧ 휉 = 2 푒 ∧ 푒 ∧ 푒 ∧ 푒 ≠ 0, we conclude that 휔 ∈ 훬 푉 is decomposable if an only if 휔 ∧ 휔 = 0. us, the image of (4-1) is the Plücker quadric 푃 ≝ { 휔 ∈ 훬푉 | 휔 ∧ 휔 = 0 } (4-2) If we choose a basis 푒, 푒, 푒, 푒 ∈ 푉, the monomial basis 푒 = 푒 ∧ 푒 in 훬 푉, and write 푥 for the homogeneous coordinates along 푒, then straightforward computation 푥 ⋅ 푒 ∧ 푒 ∧ 푥 ⋅ 푒 ∧ 푒 = 2 푥 푥 − 푥 푥 + 푥 푥 ⋅ 푒 ∧ 푒 ∧ 푒 ∧ 푒 < < implies that 푃 is given by the non-degenerated quadratic equation 푥푥 = 푥푥 + 푥푥 .
    [Show full text]
  • 8. Grassmannians
    66 Andreas Gathmann 8. Grassmannians After having introduced (projective) varieties — the main objects of study in algebraic geometry — let us now take a break in our discussion of the general theory to construct an interesting and useful class of examples of projective varieties. The idea behind this construction is simple: since the definition of projective spaces as the sets of 1-dimensional linear subspaces of Kn turned out to be a very useful concept, let us now generalize this and consider instead the sets of k-dimensional linear subspaces of Kn for an arbitrary k = 0;:::;n. Definition 8.1 (Grassmannians). Let n 2 N>0, and let k 2 N with 0 ≤ k ≤ n. We denote by G(k;n) the set of all k-dimensional linear subspaces of Kn. It is called the Grassmannian of k-planes in Kn. Remark 8.2. By Example 6.12 (b) and Exercise 6.32 (a), the correspondence of Remark 6.17 shows that k-dimensional linear subspaces of Kn are in natural one-to-one correspondence with (k − 1)- n− dimensional linear subspaces of P 1. We can therefore consider G(k;n) alternatively as the set of such projective linear subspaces. As the dimensions k and n are reduced by 1 in this way, our Grassmannian G(k;n) of Definition 8.1 is sometimes written in the literature as G(k − 1;n − 1) instead. Of course, as in the case of projective spaces our goal must again be to make the Grassmannian G(k;n) into a variety — in fact, we will see that it is even a projective variety in a natural way.
    [Show full text]