Aristotelian Infinites 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Cardinal Sin: the Infinite in Spinoza's Philosophy
Macalester College DigitalCommons@Macalester College Philosophy Honors Projects Philosophy Department Spring 2014 A Cardinal Sin: The nfinitI e in Spinoza's Philosophy Samuel H. Eklund Macalester College, [email protected] Follow this and additional works at: http://digitalcommons.macalester.edu/phil_honors Part of the Philosophy Commons Recommended Citation Eklund, Samuel H., "A Cardinal Sin: The nfinitI e in Spinoza's Philosophy" (2014). Philosophy Honors Projects. Paper 7. http://digitalcommons.macalester.edu/phil_honors/7 This Honors Project is brought to you for free and open access by the Philosophy Department at DigitalCommons@Macalester College. It has been accepted for inclusion in Philosophy Honors Projects by an authorized administrator of DigitalCommons@Macalester College. For more information, please contact [email protected]. A Cardinal Sin: The Infinite in Spinoza’s Philosophy By: Samuel Eklund Macalester College Philosophy Department Honors Advisor: Geoffrey Gorham Acknowledgements This thesis would not have been possible without my advisor, Professor Geoffrey Gorham. Through a collaborative summer research grant, I was able to work with him in improving a vague idea about writing on Spinoza’s views on existence and time into a concrete analysis of Spinoza and infinity. Without his help during the summer and feedback during the past academic year, my views on Spinoza wouldn’t have been as developed as they currently are. Additionally, I would like to acknowledge the hard work done by the other two members of my honors committee: Professor Janet Folina and Professor Andrew Beveridge. Their questions during the oral defense and written feedback were incredibly helpful in producing the final draft of this project. -
The Modal Logic of Potential Infinity, with an Application to Free Choice
The Modal Logic of Potential Infinity, With an Application to Free Choice Sequences Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ethan Brauer, B.A. ∼6 6 Graduate Program in Philosophy The Ohio State University 2020 Dissertation Committee: Professor Stewart Shapiro, Co-adviser Professor Neil Tennant, Co-adviser Professor Chris Miller Professor Chris Pincock c Ethan Brauer, 2020 Abstract This dissertation is a study of potential infinity in mathematics and its contrast with actual infinity. Roughly, an actual infinity is a completed infinite totality. By contrast, a collection is potentially infinite when it is possible to expand it beyond any finite limit, despite not being a completed, actual infinite totality. The concept of potential infinity thus involves a notion of possibility. On this basis, recent progress has been made in giving an account of potential infinity using the resources of modal logic. Part I of this dissertation studies what the right modal logic is for reasoning about potential infinity. I begin Part I by rehearsing an argument|which is due to Linnebo and which I partially endorse|that the right modal logic is S4.2. Under this assumption, Linnebo has shown that a natural translation of non-modal first-order logic into modal first- order logic is sound and faithful. I argue that for the philosophical purposes at stake, the modal logic in question should be free and extend Linnebo's result to this setting. I then identify a limitation to the argument for S4.2 being the right modal logic for potential infinity. -
Cantor on Infinity in Nature, Number, and the Divine Mind
Cantor on Infinity in Nature, Number, and the Divine Mind Anne Newstead Abstract. The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and sets. Cantor’s “actualism” went against the Aristote- lian tradition in metaphysics and mathematics. Under the pressures to defend his theory, his metaphysics changed from Spinozistic monism to Leibnizian volunta- rist dualism. The factor motivating this change was two-fold: the desire to avoid antinomies associated with the notion of a universal collection and the desire to avoid the heresy of necessitarian pantheism. We document the changes in Can- tor’s thought with reference to his main philosophical-mathematical treatise, the Grundlagen (1883) as well as with reference to his article, “Über die verschiedenen Standpunkte in bezug auf das aktuelle Unendliche” (“Concerning Various Perspec- tives on the Actual Infinite”) (1885). I. he Philosophical Reception of Cantor’s Ideas. Georg Cantor’s dis- covery of transfinite numbers was revolutionary. Bertrand Russell Tdescribed it thus: The mathematical theory of infinity may almost be said to begin with Cantor. The infinitesimal Calculus, though it cannot wholly dispense with infinity, has as few dealings with it as possible, and contrives to hide it away before facing the world Cantor has abandoned this cowardly policy, and has brought the skeleton out of its cupboard. He has been emboldened on this course by denying that it is a skeleton. Indeed, like many other skeletons, it was wholly dependent on its cupboard, and vanished in the light of day.1 1Bertrand Russell, The Principles of Mathematics (London: Routledge, 1992 [1903]), 304. -
Leibniz and the Infinite
Quaderns d’Història de l’Enginyeria volum xvi 2018 LEIBNIZ AND THE INFINITE Eberhard Knobloch [email protected] 1.-Introduction. On the 5th (15th) of September, 1695 Leibniz wrote to Vincentius Placcius: “But I have so many new insights in mathematics, so many thoughts in phi- losophy, so many other literary observations that I am often irresolutely at a loss which as I wish should not perish1”. Leibniz’s extraordinary creativity especially concerned his handling of the infinite in mathematics. He was not always consistent in this respect. This paper will try to shed new light on some difficulties of this subject mainly analysing his treatise On the arithmetical quadrature of the circle, the ellipse, and the hyperbola elaborated at the end of his Parisian sojourn. 2.- Infinitely small and infinite quantities. In the Parisian treatise Leibniz introduces the notion of infinitely small rather late. First of all he uses descriptions like: ad differentiam assignata quavis minorem sibi appropinquare (to approach each other up to a difference that is smaller than any assigned difference)2, differat quantitate minore quavis data (it differs by a quantity that is smaller than any given quantity)3, differentia data quantitate minor reddi potest (the difference can be made smaller than a 1 “Habeo vero tam multa nova in Mathematicis, tot cogitationes in Philosophicis, tot alias litterarias observationes, quas vellem non perire, ut saepe inter agenda anceps haeream.” (LEIBNIZ, since 1923: II, 3, 80). 2 LEIBNIZ (2016), 18. 3 Ibid., 20. 11 Eberhard Knobloch volum xvi 2018 given quantity)4. Such a difference or such a quantity necessarily is a variable quantity. -
Achievements and Fallacies in Hume's Account of Infinite
-1- ACHIEVEMENTS AND FALLACIES IN HUME’S ACCOUNT OF INFINITE DIVISIBILITY James Franklin Hume Studies 20 (1994): 85-101 Throughout history,almost all mathematicians, physicists and philosophers have been of the opinion that space and time are infinitely divisible. That is, it is usually believedthat space and time do not consist of atoms, but that anypiece of space and time of non-zero size, howeversmall, can itself be divided into still smaller parts. This assumption is included in geometry,asinEuclid, and also in the Euclidean and non- Euclidean geometries used in modern physics. Of the fewwho have denied that space and time are infinitely divisible, the most notable are the ancient atomists, and Berkeleyand Hume. All of these assert not only that space and time might be atomic, but that theymust be. Infinite divisibility is, theysay, impossible on purely conceptual grounds. In the hundred years or so before Hume’s Tr eatise, there were occasional treatments of the matter,in places such as the Port Royal Logic, and Isaac Barrow’smathematical lectures of the 1660’s, 1 Theydonot add anything substantial to medievaltreatments of the same topic. 2 Mathematicians certainly did not take seriously the possibility that space and time might be atomic; Pascal, for example, instances the Chevalier de Me´re´’s belief in atomic space as proof of his total incompetence in mathematics. 3 The problem acquired amore philosophical cast when Bayle, in his Dictionary, tried to showthat both the assertion and the denial of the infinite divisibility of space led to contradictions; the problem thus appears as a general challenge to "Reason". -
Quantum Reversal of Soul Energy Fran De Aquino
Quantum Reversal of Soul Energy Fran de Aquino To cite this version: Fran de Aquino. Quantum Reversal of Soul Energy. 2012. hal-01129313 HAL Id: hal-01129313 https://hal.archives-ouvertes.fr/hal-01129313 Preprint submitted on 10 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Quantum Reversal of Soul Energy Fran De Aquino Maranhao State University, Physics Department, S.Luis/MA, Brazil. Copyright © 2012 by Fran De Aquino. All Rights Reserved. In the last decades, the existence of the Soul has been seriously considered by Quantum Physics. It has been frequently described as a body of unknown energy coupled to human body by means of a mutual interaction. The Quantum Physics shows that energy is quantized, i.e., it has discrete values that are defined as energy levels. Thus, along the life of a person, the energy of its soul is characterized by several quantum levels of energy. Here, we show by means of application of specific electromagnetic radiations on the human body, that it is possible to revert the energy of the soul to previous energy levels. This process can have several therapeutic applications. -
Measuring Fractals by Infinite and Infinitesimal Numbers
MEASURING FRACTALS BY INFINITE AND INFINITESIMAL NUMBERS Yaroslav D. Sergeyev DEIS, University of Calabria, Via P. Bucci, Cubo 42-C, 87036 Rende (CS), Italy, N.I. Lobachevsky State University, Nizhni Novgorod, Russia, and Institute of High Performance Computing and Networking of the National Research Council of Italy http://wwwinfo.deis.unical.it/∼yaro e-mail: [email protected] Abstract. Traditional mathematical tools used for analysis of fractals allow one to distinguish results of self-similarity processes after a finite number of iterations. For example, the result of procedure of construction of Cantor’s set after two steps is different from that obtained after three steps. However, we are not able to make such a distinction at infinity. It is shown in this paper that infinite and infinitesimal numbers proposed recently allow one to measure results of fractal processes at different iterations at infinity too. First, the new technique is used to measure at infinity sets being results of Cantor’s proce- dure. Second, it is applied to calculate the lengths of polygonal geometric spirals at different points of infinity. 1. INTRODUCTION During last decades fractals have been intensively studied and applied in various fields (see, for instance, [4, 11, 5, 7, 12, 20]). However, their mathematical analysis (except, of course, a very well developed theory of fractal dimensions) very often continues to have mainly a qualitative character and there are no many tools for a quantitative analysis of their behavior after execution of infinitely many steps of a self-similarity process of construction. Usually, we can measure fractals in a way and can give certain numerical answers to questions regarding fractals only if a finite number of steps in the procedure of their construction has been executed. -
Continuity Properties and Infinite Divisibility of Stationary Distributions
The Annals of Probability 2009, Vol. 37, No. 1, 250–274 DOI: 10.1214/08-AOP402 c Institute of Mathematical Statistics, 2009 CONTINUITY PROPERTIES AND INFINITE DIVISIBILITY OF STATIONARY DISTRIBUTIONS OF SOME GENERALIZED ORNSTEIN–UHLENBECK PROCESSES By Alexander Lindner and Ken-iti Sato Technische Universit¨at of Braunschweig and Hachiman-yama, Nagoya ∞ −Nt− Properties of the law µ of the integral R0 c dYt are studied, where c> 1 and {(Nt,Yt),t ≥ 0} is a bivariate L´evy process such that {Nt} and {Yt} are Poisson processes with parameters a and b, respectively. This is the stationary distribution of some generalized Ornstein–Uhlenbeck process. The law µ is parametrized by c, q and r, where p = 1 − q − r, q, and r are the normalized L´evy measure of {(Nt,Yt)} at the points (1, 0), (0, 1) and (1, 1), respectively. It is shown that, under the condition that p> 0 and q > 0, µc,q,r is infinitely divisible if and only if r ≤ pq. The infinite divisibility of the symmetrization of µ is also characterized. The law µ is either continuous-singular or absolutely continuous, unless r = 1. It is shown that if c is in the set of Pisot–Vijayaraghavan numbers, which includes all integers bigger than 1, then µ is continuous-singular under the condition q> 0. On the other hand, for Lebesgue almost every c> 1, there are positive constants C1 and C2 such that µ is absolutely continuous whenever q ≥ C1p ≥ C2r. For any c> 1 there is a positive constant C3 such that µ is continuous-singular whenever q> 0 and max{q,r}≤ C3p. -
Aristotle's Physics
PROPOSAL : Aristotle’s Physics , A Critical Guide EditedbyMariskaLeunissen,TheUniversityofNorthCarolinaatChapelHill A. Project description The importance of Aristotle’s Physics : Throughout his life, Aristotle was deeply committed to the study of natural phenomena: about one third of the surviving Corpus Aristotelicum investigatesandexplainsthemotionsandattributesofthingsthathaveanature, that is, of things that have an internal principle of change and rest. The Physics – an intellectual masterpiece in itself and one of the mostlywidely readAristotelian treatises – forms Aristotle’s most fundamental treatise in his studies of natural philosophy. In this treatise,Aristotleinvestigatestheprinciplesandcausesofallnaturalthingsingeneral,and,in thecourseofdoingso,definesalargenumberofkeyconceptsofhisnaturalphilosophy, suchasmotionandchange,spaceandtime,matterandform,causalexplanation,luckand spontaneity, teleology and necessity. In addition, Aristotle specifies in the Physics the methodologicalguidelinesforhowoneshouldstudynatureifonewantstogainscientific knowledgeofit,whichincludesthefamousbutstillill-understoodrecommendationtostart fromthingsthatare“moreknownandclearertous”and towork fromthere towhat is “moreknownandclearerbynature”.Inthisway,the Physics laysoutAristotle’sconceptual apparatus and methodological framework for all of his natural philosophy, including his psychology,biology,andotherinquiriesintothemorespecificandmorecomplexsegments ofthenaturalworldpreservedinAristotle’sremainingnaturaltreatises. The Physics isnotjustrelevantforAristotle’snaturalphilosophy,however;sincetheobjects -
On Theodorus' Lesson in the Theaetetus 147D-E by S
On Theodorus’ lesson in the Theaetetus 147d-e by S. Negrepontis and G. Tassopoulos In the celebrated Theaetetus 147d3-e1 passage Theodorus is giving a lesson to Theaetetus and his companion, proving certain quadratic incommensurabilities. The dominant view on this passage, expressed independently by H. Cherniss and M. Burnyeat, is that Plato has no interest to, and does not, inform the reader about Theodorus’ method of incommensurability proofs employed in his lesson, and that, therefore, there is no way to decide from the Platonic text, our sole information on the lesson, whether the method is anthyphairetic as Zeuthen, Becker, van der Waerden suggest, or not anthyphairetic as Hardy-Wright, Knorr maintain. Knorr even claims that it would be impossible for Theodorus to possess a rigorous proof of Proposition X.2 of the Elements, necessary for an anthyphairetic method, because of the reliance of the proof of this Proposition, in the Elements, on Eudoxus principle. But it is not difficult to see that Knorr’s claim is undermined by the fact that an elementary proof of Proposition X.2, in no way involving Eudoxus principle, is readily obtained either from the proof of Proposition X.3 of the Elements itself (which is contrapositive and thus logically equivalent to X.2), or from an ancient argument going back to the originator of the theory of proportion reported by Aristotle in the Topics 158a-159b passage. The main part of the paper is devoted to a discussion of the evidence for a distributive rendering of the plural ‘hai dunameis’ in the crucial statement, ’because the powers (‘hai dunameis’) were shown to be infinite in multitude’ in 147d7-8 (contrary to the Burnyeat collective, set-theoretic rendering), necessarily resulting in an anthyphairetic method for Theodorus’ proofs of incommensurability (contrary to the Cherniss-Burnyeat neutrality thesis). -
Early Greeks and Aristotle
Topics Moore Chaps 1 & 2: Early Greeks & Aristotle I. Early Greeks II. The Method of Exhaustion I. Early Greeks III.Aristotle 1. Anaximander (b. 610 B.C.) “to apeiron” - “the unlimited”, “unbounded” Solution to the Problem of the One and the Many: Observable objects = composites of the four elements: - fundamental substance of reality earth, air, fire, water. - underlying substratum for change Question: How do such opposing elements combine to form objects? - neutral substratum in which Answer: Through the mediation of to apeiron opposites/strife are reconciled 2. The Pythagoreans (Pythagoras b. 570 B.C.) the physical world = product of the imposition of “peras” (limits) on “a peiron” result = order/harmony basis for this order = natural numbers 3. The Eleatics Parmenides of Elea (515 B.C.) Claim: It is meaningless to speak of what is not. Everything is. “The One” - the metaphysically infinite - indivisible, homogeneous, eternal Further claim: Change is an illusion. (Change is a transition from what is, to what is not. This is impossible, since talk of what is not is incoherent.) Zeno (490 B.C.) Paradoxes of motion: intended to demonstrate that motion is not real - Achilles and the Tortoise - Paradox of the runner: ABE D C Claim: Achilles will never reach the finish-line at B. Proof: (1) To reach B, must reach C = AB/2. (2) To reach C, must reach D = AC/2, etc... (3) Thus there are an infinite number of finite line segments between A and B. (4) So Achilles would need an infinite amount of time to traverse them all! Assumptions: (a) AB is infinitely divisible. -
Lost in the Labyrinth: Spinoza, Leibniz and the Continuum Lost in the Labyrinth: Spinoza, Leibniz and the Continuum
LOST IN THE LABYRINTH: SPINOZA, LEIBNIZ AND THE CONTINUUM LOST IN THE LABYRINTH: SPINOZA, LEIBNIZ AND THE CONTINUUM By PATRICK RIESTERER, B.A. A Thesis Submitted to the School of Graduate Studies In Partial Fulfillment ofthe Requirements For the Degree Master ofArts McMaster University © Copyright by Patrick Riesterer, August 2006 MASTER OF ARTS (2006) McMaster University (Philosophy) Hamilton, Ontario TITLE: Lost in the Labyrinth: Spinoza, Leibniz and the Continuum AUTHOR: Patrick Riesterer, B.A. (Trinity Western University) SUPERVISOR: Professor Richard Arthur NUMBER OF PAGES: vi, 110 ii Abstract In this thesis, I address the extent ofSpinoza's influence on the development of Leibniz's response to the continuum problem, with particular emphasis on his relational philosophy oftime and space. I expend the first chapter carefully reconstructing Spinoza's position on infinity and time. We see that Spinoza developed a threefold definition ofinfinity to explain the difference between active substance and its passive modes. Spinoza advances a syncategorematic interpretation ofinfinity, and founds a causal theory oftime directly on this conception ofinfinity. In the second chapter, I examine the changes Leibniz's understanding ofthe continuum problem underwent during 1676 and immediately thereafter. During this period, Leibniz's interacted extensively with Spinoza's ideas. We see that several fundamental features ofLeibniz's philosophy oftime take shape at this time. Leibniz adopts a Spinozistic definition ofdivine eternity and immensity, he reevaluates several analogies in an attempt to understand how the attributes ofa substance interrelate, and he develops the notion ofthe law of the series that will become an essential feature ofmonadic appetition. Leibniz synthesizes several ofthese discoveries into a first philosophy ofmotion.