The Distribution of Calcium Oxalate Crystals in Genus Dieffenbachia Schott

Total Page:16

File Type:pdf, Size:1020Kb

The Distribution of Calcium Oxalate Crystals in Genus Dieffenbachia Schott THE DISTRIBUTION OF CALCIUM OXALATE CRYSTALS IN GENUS DIEFFENBACHIA SCHOTT. AND THE RELATIONSHIP BETWEEN ENVIRONMENTAL FACTORS AND CRYSTAL QUANTITY AND QUALITY By HUI CAO A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2003 ACKNOWLEDGMENTS Before you read my thesis, I would like to let you know how grateful I am to my committee members. Without their help, it would be impossible for me to complete my thesis. First of all, I would like to thank Dr. Dennis B. McConnell for his great mental guidance, his patience, and his warm-heartedness. I learned more than horticultural knowledge from him. He also taught me how to write, taught me so much about America the country, her culture, her history, and the language. As an international student, I am so lucky to have him as my advisor. I would also like to express my sincere thanks to Dr. Jianjun Chen for all the help and guidance he has provided during the course of these investigations. It would have been impossible to complete these studies in a timely fashion without his support and use of his facilities. I appreciate his tremendous help with experiment design and his continuous advice on my study and research. Of course the research assistantship he granted me made this thesis possible. At the same time, I want to thank Dr. Ray A. Bucklin for his great suggestions on my proposal and thesis and Dr. Richard J. Henny for his supply of experiment material and sharing his knowledge on Dieffenbachia breeding and culture. I wish to thank Dr. Bijan Dehgan and Fe Almira in my lab for their help with my experiment and their friendship. I also want to extend my appreciation to my friends, Francis Kok and Carmen Valero Aracama, for their kind help and encouragements. ii TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. ii LIST OF TABLES...............................................................................................................v LIST OF FIGURES ........................................................................................................... vi ABSTRACT..................................................................................................................... viii CHAPTER 1 LITERATURE REVIEW .............................................................................................1 Dieffenbachia Genus ....................................................................................................1 Calcium Oxalate ...........................................................................................................2 Biomineralization ..................................................................................................2 Functions ...............................................................................................................3 Dieffenbachia Toxicity .................................................................................................5 History ...................................................................................................................5 Symptoms..............................................................................................................8 Related Studies .............................................................................................................9 The Causes of the Toxicity....................................................................................9 Toxicity Comparison...........................................................................................12 Crystal Formation Regulation Mechanisms ........................................................12 CaOx Deposition in Relation to Nutrient Levels ................................................13 2 INVESTIGATIONS ON THE RELATIONSHIP OF CALCIUM OXALATE CRYSTAL WITH NITROGEN LEVELS, IRRIGATION SYSTEMS, AND LIGHT INTENSITIES ...............................................................................................17 Comparison of CaOx Raphide Idioblast Numbers in Dieffenbachia Grown under Different Nitrogen Levels and Irrigation Systems.................................................17 Materials and Methods ........................................................................................17 Results and Discussion........................................................................................19 Comparison of CaOx Raphide Idioblast Number in Leaf Midribs of Dieffenbachia Grown under Different Light Intensities................................................................20 Materials and Methods ........................................................................................21 Results and Discussion........................................................................................21 Conclusions.................................................................................................................22 iii 3 INVESTIGATION ON THE DISTRIBUTION OF CALCIUM OXALATE CRYSTALS IN DIEFFENBACHIA...........................................................................31 Materials and Methods ...............................................................................................31 Results and Discussion ...............................................................................................33 CaOx Crystal Quantity in Relation to Differentiation.........................................36 The Relationship of R/D Ratio with Developmental Stage.................................38 Cultivar Differences in CaOx Crystal Densities .................................................39 4 INVESTIGATION ON THE RELATIONSHIP BETWEEN CALCIUM OXALATE CRYSTAL AND RHIZOSPHERIC CALCIUM AND/OR MAGNESIUM LEVELS .....................................................................................................................52 Materials and Methods ...............................................................................................52 Results and Discussion ...............................................................................................53 5 CONCLUSIONS ........................................................................................................62 LITERATURE CITED ......................................................................................................64 BIOGRAPHICAL SKETCH .............................................................................................68 iv LIST OF TABLES Table page 3.1. CaOx raphide and druse idioblast ratios of 3 different stem and leaf developmental stages of 3 Dieffenbachia cultivars..................................................40 3.2. Total CaOx crystal density in stems and leaf blades of 3 Dieffenbachia cultivars..41 4.1. Ca and Mg concentrations used in groups 1-10. ......................................................57 v LIST OF FIGURES Figure page 1.1. Dieffenbachia production in a commercial foliage nursery. ....................................16 2.1. Distribution of CaOx raphide idioblasts in Dieffenbachia x ‘Tropic Breeze’ leaf midrib free hand cross sections. ........................................................................23 2.2. Number of CaOx raphide idioblasts in basal half of leaf midrib of D. maculata 'Exotic Perfection' at different N levels under ebb-and-flow irrigation system.. .....24 2.3. Number of CaOx raphide idioblasts in basal half of leaf midrib of D. x 'Tropic Breeze' at different N levels under ebb-and-flow irrigation system and 285 µmol•m-2•s-1 light level......................................................................................25 2.4. Number of CaOx raphide idioblasts in basal half of leaf midrib of D. x 'Snow Flake' at different N levels under ebb-and-flow irrigation system and 285 µmol•m-2•s-1 light level......................................................................................26 2.5. Number of CaOx raphide idioblasts in basal half of leaf midrib of D. x 'Snow Flake' at different N levels under overhead irrigation system.......................27 2.6. Performance of D. x ‘Snow Flake’ under 3 N levels. ..............................................28 2.7. Number of CaOx raphide idioblasts in basal half of leaf midrib of D. x 'Tropic Breeze' at different N levels under ebb-and-flow irrigation system and 8 µmol•m-2•s-1 light level..........................................................................................29 2.8. Number of CaOx raphide idioblasts in basal half of leaf midrib of D. x 'Snow Flake' at different N levels under ebb-and-flow irrigation system and 8 µmol•m-2•s-1 light level……..................................................................................30 3.1. Cross section of the third internode of D.x ‘Star Bright’.........................................42 3.2. Density of CaOx druse and raphide idioblasts in stems of 3 Dieffenbachia cultivars. .. ................................................................................................................43 3.3. Cross section of the first internode of D. x ‘Star Bright’. ........................................44 3.4. Crystal sand observed in cross section of the second internode of D. maculata ‘Rebecca’. .................................................................................................................45 vi 3.5. Cross section of D. maculata ‘Carina’ spadix male flower zone.............................46 3.6. Cross section
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • A REVIEW Summary Dieffenbachia May Well Be the Most Toxic Genus in the Arace
    Journal of Ethnopharmacology, 5 (1982) 293 - 302 293 DIEFFENBACH/A: USES, ABUSES AND TOXIC CONSTITUENTS: A REVIEW JOSEPH ARDITTI and ELOY RODRIGUEZ Department of Developmental and Cell Biology, University of California, Irvine, California 92717 (US.A.) (Received December 28, 1980; accepted June 30, 1981) Summary Dieffenbachia may well be the most toxic genus in the Araceae. Cal­ cium oxalate crystals, a protein and a nitrogen-free compound have been implicated in the toxicity, but the available evidence is unclear. The plants have also been used as food, medicine, stimulants, and to inflict punishment. Introduction Dieffenbachia is a very popular ornamental plant which belongs to the Araceae. One member of the genus, D. seguine, was cultivated in England before 1759 (Barnes and Fox, 1955). At present the variegated D. picta and its numerous cultivars are most popular. The total number of Dieffenbachia plants in American homes is estimated to be in the millions. The plants can be 60 cm to 3 m tall, and have large spotted and/or variegated (white, yellow, green) leaves that may be 30 - 45 cm long and 15 - 20 cm wide. They grow well indoors and in some areas outdoors. Un­ fortunately, however, Dieffenbachia may well be the most toxic genus in the Araceae, a family known for its poisonous plants (Fochtman et al., 1969; Pam el, 1911 ). As a result many children (Morton, 1957, 1971 ), adults (O'Leary and Hyattsville, 1964), and pets are poisoned by Dieffenbachia every year (Table 1 ). Ingestion of even a small portion of stem causes a burn­ ing sensation as well as severe irritation of the mouth, throat and vocal cords (Pohl, 1955).
    [Show full text]
  • Atoll Research Bulletin No. 503 the Vascular Plants Of
    ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll.
    [Show full text]
  • Contextualising the Neolithic Occupation of Southern Vietnam
    10 The Archaeobotany of Kuk Carol Lentfer and Tim Denham Introduction The study of plants in archaeology—archaeobotany—is key to discovering how and when people exploited, cultivated and domesticated plants in the past, influenced their dispersal and effected their present-day biogeographic distributions. Archaeobotanical study incorporates a complex of methodologies, often reliant on carefully planned and executed sampling strategies and dependent on good preservation of various plant remains (Pearsall 2000). Traditionally, the method for studying plant remains in archaeological deposits has been the analysis of macro remains of hardy material such as seeds, wood and nutshell (Textbox 10.1). These can provide direct evidence for human/plant association. However, they are not always available for study, being best preserved in extremely dry and cold environments, as well as in anaerobic conditions such as waterlogged deposits. Generally, macrobotanical remains are poorly preserved in well drained, acidic environments, particularly in the wet tropics, unless they have been burnt and converted to charcoal; even after burning it is usually only the hardy types of material that are preserved. Consequently, macrobotanical remains are limited in what they can tell us about the finer details of changing environments, plant distributions, manipulation and human exploitation because preservation in the wet tropics, when it does occur, is inconsistent, favouring some plants and/or plant parts over others. It is often the case, therefore, that other analytical techniques are required to complement and enhance the analysis of macroremains or fill the gap in instances where they are not preserved. As well as firmly established pollen/spore and microcharcoal analyses, a host of microscopic techniques have been developed and applied to tropical archaeobotany over the last three decades of the 20th century (see Hather 1994), involving plant fibres, parenchyma and other plant tissues, as well as phytolith, starch and raphide analyses.
    [Show full text]
  • Steciana Doi:10.12657/Steciana.020.013 ISSN 1689-653X
    2016, Vol. 20(3): 103–116 Steciana doi:10.12657/steciana.020.013 www.up.poznan.pl/steciana ISSN 1689-653X CALCIUM OXALATE CRYSTALS IN SOME PHILODENDRON SCHOTT (ARACEAE) SPECIES Małgorzata KliMKo, Magdalena WaWrzyńsKa, Justyna Wiland-szyMańsKa M. Klimko, Department of Botany, Poznań University of Life Sciences, Wojska Polskiego 71 C, 60-625 Poznań, Poland, e-mail: [email protected] M. Wawrzyńska, Klaudyna Potocka High School, Zmartwychwstańców 10, 61-501 Poznań, Poland, e-mail: [email protected] J. Wiland-Szymańska, Department of Plant Taxonomy, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland, e-mail: [email protected] (Received: April 25, 2016. Accepted: May 11, 2016) abstract. The type and distribution (locations) of calcium oxalate crystals in mature leaves of 19 taxa of Philodendron (subgenera Meconostigma, Pteromischum and Philodendron) were studied. The calcium oxalate crystals were mainly found in the form of raphides, druses, styloids and prisms. The leaves of Philodendron demonstrate the presence of five distinctive raphide crystal types (biforine, thin-walled spindle-shaped, wide cells containing a wide raphide bundle, bundles of obliquely overlapping crystal and unmodified cells with either a single crystal needle or their cluster). Styloids and druses were found in all taxa at varying frequencies. Simple prisms and variations in crystal forms were most frequently observed in the ground tissue in petioles and midribs. This study represents additional data concerning calcium oxalate crystals in Philodendron. Key Words: Philodendron, calcium oxalate crystals, petiole, lamina, subgenera Meconostigma, Pteromischum and Philodendron INTRODUCTION loids, acicular crystals that form singly; (4) prisms, consisting of simple regular prismatic shapes, and The family Araceae comprises 2823 species in 106 (5) crystal sand, small tetrahedral crystals forming genera (govaerts et al.
    [Show full text]
  • Disentangling the Phenotypic Variation and Pollination Biology of the Cyclocephala Sexpunctata Species Complex (Coleoptera:Scara
    DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) A Thesis by Matthew Robert Moore Bachelor of Science, University of Nebraska-Lincoln, 2009 Submitted to the Department of Biological Sciences and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science July 2011 © Copyright 2011 by Matthew Robert Moore All Rights Reserved DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) The following faculty members have examined the final copy of this thesis for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science with a major in Biological Sciences. ________________________ Mary Jameson, Committee Chair ________________________ Bin Shuai, Committee Member ________________________ Gregory Houseman, Committee Member ________________________ Peer Moore-Jansen, Committee Member iii DEDICATION To my parents and my dearest friends iv "The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science. He to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, is as good as dead: his eyes are closed." – Albert Einstein v ACKNOWLEDMENTS I would like to thank my academic advisor, Mary Jameson, whose years of guidance, patience and enthusiasm have so positively influenced my development as a scientist and person. I would like to thank Brett Ratcliffe and Matt Paulsen of the University of Nebraska State Museum for their generous help with this project.
    [Show full text]
  • *IAS NL Apr 05
    the IAS Newsletter Vol. 27 – 2 • April 2005 A QUARTERLY PUBLICATION FOR MEMBERS OF THE INTERNATIONAL AROID SOCIETY Ecuador 2004 Part I: ContTable of Contentsents Ecuador 2004 Part I: July 6–August 5, 2004 July 6–August 5, 2004 By Dr. Thomas Croat . .1 Thomas B. Croat, Missouri Botanical Garden Review of “Araceae from the Early his year’s trip to Ecuador was to rain and a slick trail. This year Cretaceous of Portugal” By Dan H. Nicolson . .4 primarily designed to explore during the dry season we were able the southeastern part of the to make it all the way to the top. Revisions for Sale . .6 T country, especially the Cordillera del Konnyaku: Eating Amorphophallus Cóndor, but the expedition ended up The following day, we went on in Konjak By Albert Huntington . .8 covering many areas. the direction of Puyo, then collected Review of “Aronstabgewächse, along the road to Macas, where we Anmutige und Vielgestaltige Exoten” During the first month, which I will spent the night at the Hotel California. (Aroids, Graceful and Variable report on in this newsletter article, I Macas had been our headquarters Exotics) By Dan Nicolson . .10 collected with Lynn Hannon, Greg during explorations made into the Recent Aroid Literature Walhert, a potential graduate student Parque Nacional Sangay two years By Emily Yates . .11 from San Francisco State, and Tuntiak ago, along the uncompleted road Alocasia “Calodora” and/or Katan Jua. Tuntiak is a botany student to Riobamba. Naturally, the hotel “Portidora” By LariAnn Garner . .15 and an indigenous Shuar, whose managers always remember us, since people inhabit the southeastern part few quests arrive with bags of plants of the country.
    [Show full text]
  • UC Irvine UC Irvine Previously Published Works
    UC Irvine UC Irvine Previously Published Works Title Dieffenbachia: uses, abuses and toxic constituents: a review. Permalink https://escholarship.org/uc/item/26b242zs Journal Journal of ethnopharmacology, 5(3) ISSN 0378-8741 Authors Arditti, J Rodriguez, E Publication Date 1982-05-01 DOI 10.1016/0378-8741(82)90015-0 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Journal of Ethnopharmacology, 5 (1982) 293 - 302 293 DIEFFENBACH/A: USES, ABUSES AND TOXIC CONSTITUENTS: A REVIEW JOSEPH ARDITTI and ELOY RODRIGUEZ Department of Developmental and Cell Biology, University of California, Irvine, California 92717 (US.A.) (Received December 28, 1980; accepted June 30, 1981) Summary Dieffenbachia may well be the most toxic genus in the Araceae. Cal­ cium oxalate crystals, a protein and a nitrogen-free compound have been implicated in the toxicity, but the available evidence is unclear. The plants have also been used as food, medicine, stimulants, and to inflict punishment. Introduction Dieffenbachia is a very popular ornamental plant which belongs to the Araceae. One member of the genus, D. seguine, was cultivated in England before 1759 (Barnes and Fox, 1955). At present the variegated D. picta and its numerous cultivars are most popular. The total number of Dieffenbachia plants in American homes is estimated to be in the millions. The plants can be 60 cm to 3 m tall, and have large spotted and/or variegated (white, yellow, green) leaves that may be 30 - 45 cm long and 15 - 20 cm wide. They grow well indoors and in some areas outdoors.
    [Show full text]
  • National Wetland Plant List: 2016 Wetland Ratings
    Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1–17. Published 28 April 2016. ISSN 2153 733X THE NATIONAL WETLAND PLANT LIST: 2016 WETLAND RATINGS ROBERT W. LICHVAR U.S. Army Engineer Research and Development Center Cold Regions Research and Engineering Laboratory 72 Lyme Road Hanover, New Hampshire 03755-1290 DARIN L. BANKS U.S. Environmental Protection Agency, Region 7 Watershed Support, Wetland and Stream Protection Section 11201 Renner Boulevard Lenexa, Kansas 66219 WILLIAM N. KIRCHNER U.S. Fish and Wildlife Service, Region 1 911 NE 11 th Avenue Portland, Oregon 97232 NORMAN C. MELVIN USDA Natural Resources Conservation Service Central National Technology Support Center 501 W. Felix Street, Bldg. 23 Fort Worth, Texas 76115-3404 ABSTRACT The U.S. Army Corps of Engineers (Corps) administers the National Wetland Plant List (NWPL) for the United States (U.S.) and its territories. Responsibility for the NWPL was transferred to the Corps from the U.S. Fish and Wildlife Service (FWS) in 2006. From 2006 to 2012 the Corps led an interagency effort to update the list in conjunction with the U.S. Environmental Protection Agency (EPA), the FWS, and the USDA Natural Resources Conservation Service (NRCS), culminating in the publication of the 2012 NWPL. In 2013 and 2014 geographic ranges and nomenclature were updated. This paper presents the fourth update of the list under Corps administration. During the current update, the indicator status of 1689 species was reviewed. A total of 306 ratings of 186 species were changed during the update.
    [Show full text]
  • Research Paper ASSESSMENT of MONOCOTYLEDONOUS PLANT SPECIES DIVERSITY from KARJAT TAHSIL of AHMEDNAGAR, MAHARASHTRA, INDIA Jour
    Journal of Global Biosciences Peer Reviewed, Refereed, Open-Access Journal ISSN 2320-1355 Volume 9, Number 12, 2020, pp. 8206-8212 Website: www.mutagens.co.in URL: www.mutagens.co.in/jgb/vol.09/12/091208.pdf Research Paper ASSESSMENT OF MONOCOTYLEDONOUS PLANT SPECIES DIVERSITY FROM KARJAT TAHSIL OF AHMEDNAGAR, MAHARASHTRA, INDIA Suresh Palve1, Suvrna Gaikwad2, Dadasaheb Wadavkar3, Sauraj Torane4 and Harshal Wangikar5 1-3Department of Botany, Dada Patil Mahavidyalaya, Karjat. 41402, Dist. Ahmednagar, (M.S.), India 4Department of Botany, Tuljaram Chaturchand College of Arts, Science & Commerce, Baramati, India. 5Bharati Vidyapeeth's Dr. Patangrao Kadam Mahavidyalaya, Sangli 416416 Maharashtra, India. Abstract The Present study was conducted to collect, identify and document the monocot flora of Karjat Tahsil of district Ahmednagar (MS) India. Karjat Tahsil is located within 18019’86” N to 18049’86” N latitude and 74043’ 20” E to 75013’20” E longitude. Survey of monocot plants of the Karjat tahsil were carried out during June 2017 to March 2020. Plant materials have been collected for each of the species from all the study sites as per standard taxonomic procedure. The different species are collected during the surveys were identified with the help of some flora, taxonomic literature, taxonomy expert and Department of Botany Dada Patil Mahavidyalaya, Karjat. A total of 66 monocotyledonous plants belong to 19 families have been found in the investigation. Poaceae was the dominant family, followed by Commelinaceae and Araceae. Key words: Monocotyledonous plants, Karjat Tahsil, Maharashtra. INTRODUCTION Floristic diversity is defined as the variety and variability of plants in a given region. The floristic diversity can be measured at any level from overall global diversity to ecosystem, community, populations, species and even to genes within a single individual.
    [Show full text]
  • Poisonous and Injurious Plants of the United States: a Bibliography
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 5-2020 Poisonous and Injurious Plants of the United States: A Bibliography James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Poisonous and Injurious Plants of the United States: A Bibliography" (2020). Botanical Studies. 67. https://digitalcommons.humboldt.edu/botany_jps/67 This Poisonous Plants is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. POISONOUS & INJURIOUS PLANTS OF THE UNITED STATES: A BIBLIOGRAPHY James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California 23 May 2020 TABLE OF CONTENTS 1 • Introduction. 1 2 • General References . 2 3 • Symptoms & Sites . 8 4 • Poisonous Principles (Toxins). 12 5 • Food & Beverage Plants . 17 6 • Plants of Home & Garden . 19 7 • Medicinal Plants . 20 8 • Plants Poisonous to Pets & Horses . 21 9 • Purposeful Uses of Poisonous Plants Arrow and Dart Poisons. 22 Fish Poisons (Piscicides) . 23 Insecticides . 24 Rat Poisons (Raticides) . 25 Snail Poisons (Molluscides) . 25 10 • Plants by Major Group and Family Lycophytes . 26 Ferns. 26 Gymnosperms . 28 Flowering Plants . 30 11 • Plants by Region & State. 82 12 • Plants by Common & Scientific Names . 88 13 • Plants by Genus and Family .
    [Show full text]
  • Variegated Plants for Hawai'i Landscapes
    Ornamentals and Flowers Jan. 2010 OF-48 Variegated Plants for Hawai‘i Landscapes Melvin Wong Department of Tropical Plant and Soil Sciences hite is a contrasting color to Tall, attractive variegated any dark, cool color such as tropical plants are not common. green.W Green is the dominant color The banana Musa paradisiaca in landscapes because it is the ‘Koa‘e’, which is somewhat com- color of most foliage. Variegated mon in Kona on Hawai‘i, is an color can be green and white or exception. It is distinguished by green and yellow. Not many large striking white and green variega- tropical plants are variegated, but tion on the foliage and the fruit. many tropical shrubs and ground- The green and white variegated covers are. Chinese ficus tree with aerial Many plants that can exist in a roots is another example, but it tropical or subtropical environment probably should not be used in do not necessarily give a “tropical” the same landscape with ‘Koa‘e’ feeling. Examples, in my opin- because the two have completely ion, are plumerias, bougainvilleas, different looks. rainbow shower trees, ixoras, and The variegated bamboo Bam- hibiscuses. busa vulgaris ‘Aureo-variegata’ Groups of plants that I believe (variegated giant golden bamboo) provide more of a tropical look is another exception, this one yel- are palms, heliconias, gingers, low and green. Tall green plants bamboos, ferns, bromeliads, birds of paradise, tī, or- can also be used in landscapes in the background to set chids, members of the Araceae and Marantacea families, off green and yellow variegated shrubs and groundcovers certain aquatic plants, some tropical vines such as the in the foreground.
    [Show full text]