Weak and Strong Topologies in Topological Abelian Groups

Total Page:16

File Type:pdf, Size:1020Kb

Weak and Strong Topologies in Topological Abelian Groups UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS MATEMÁTICAS WEAK AND STRONG TOPOLOGIES IN TOPOLOGICAL ABELIAN GROUPS MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Lorenzo de Leo Bajo la dirección de los doctores Elena Martín Peinador Dikran Dikranjan Madrid, 2009 • ISBN: 978-84-692-1017-8 ©Lorenzo de Leo, 2008 UNIVERSIDAD COMPLUTENSE DE MADRID Facultad de Ciencias Matem´aticas Weak and strong topologies in topological abelian groups Lorenzo de Leo UNIVERSIDAD COMPLUTENSE DE MADRID Facultad de Ciencias Matem´aticas Weak and strong topologies in topological abelian groups Lorenzo de Leo Memoria presentada para optar al grado de Doctor con menci´on de Doctor Europeus en Matem´aticas, elaborada bajo la direcci´onde: Prof. Elena Mart´ınPeinador Prof. Dikran Dikranjan Resumen El t´ıtulo de esta Memoria ”Las topolog´ıas d´ebiles y fuertes en los grupos topol´ogicos abelianos” requiere una explicaci´on.En el marco de los espacios vectoriales topol´ogicosnociones como topolog´ıad´ebil, topolog´ıa de Mackey, topolog´ıa fuerte son primordialmente el objeto de estudio de la teor´ıa de dualidad. La extensi´onde la teor´ıa de dualidad a la clase m´as amplia de los grupos topol´ogicos abelianos encuentra serios obst´aculos, como por ejemplo la falta de sentido de la noci´onde convexidad, que es la piedra angular en dicha teor´ıa. Una primera idea para trasladar la teor´ıade dualidad a la clase de los grupos topol´ogicosabelianos, es tomar como objeto dualizante el c´ırculo complejo unidad T en lugar del cuerpo de los reales R, y sustituir las for- mas lineales continuas por homomorfismos continuos definidos del grupo en cuesti´onal grupo T. De este modo se obtiene el grupo dual, cuyos elemen- tos se denominan caracteres. La noci´onde grupo dual de un grupo dado se remonta a Pontryagin hacia los a˜nos ’30, y uno de los teoremas m´asbellos y ´utiles que subyace en los or´ıgenes del an´alisisarm´onico es el teorema de du- alidad de Pontryagin van-Kampen. La noci´onequivalente a “convexidad” en el marco de los grupos topol´ogicos, llamada cuasi-convexidad, se inspira en el teorema de Hahn-Banach, v´alido para los espacios localmente convexos. Fu´eintroducida por Vilenkin (en ruso, en 1951) y de hecho los subconjuntos cuasi-convexos en un espacio vectorial topol´ogico son muy distintos de los convexos. Baste decir que el subconjunto de n´umeros reales formado por {0, 1, −1} es cuasi-convexo en el grupo R. No es exagerado decir que la teor´ıade dualidad en grupos topol´ogicosabelianos ha dado lugar a resul- tados matem´aticas de gran complejidad, como iremos desgranando en estas l´ıneas introductorias. Se define la topolog´ıa de Bohr (o topolog´ıad´ebil) en un grupo topol´ogico abeliano como la topolog´ıainicial relativa a sus caracteres continuos. Por tanto es la topolog´ıamenos fina de todas las que admiten el mismo grupo dual. En sentido amplio es la versi´onpara grupos de la topolog´ıad´ebilde un espacio vectorial topol´ogico.Como puede verse en la Bibliograf´ıamuchos matem´aticosnotables se han ocupado de esta topolog´ıacomo Van Dowen, Kunen, Givens, Gladdines, Dikranjan, Hern´andez, Galindo etc. y los resul- ii Resumen tados obtenidos inciden en diversos campos de la Matem´atica. En el extremo contrario a la topolog´ıad´ebilencontramos – en el con- texto de los espacios localmente convexos – la llamada topolog´ıa de Mackey. Tambi´encabe definirla para grupos topol´ogicos abelianos, pero ´esto se ha he- cho muy recientemente. El primero en mencionar algo es Varopoulos (1962) refiri´endose a una clase muy peque˜nade grupos topol´ogicos: los localmente precompactos. La clase m´asnatural de grupos topol´ogicospara definir y estudiar la topolog´ıade Mackey es la formada por los grupos localmente cuasi-convexos. El primer estudio de este tipo se hace por Chasco, Mart´ın Peinador y Tarieladze en [23]. Este trabajo ha sido el origen de esta Tesis. A lo largo de la presente Memoria probamos resultados nuevos que per- miten ampliar el conocimiento de las topolog´ıas d´ebiles y fuertes en los grupos localmente cuasi-convexos. Para lograr nuestro objetivo, es nece- sario consolidar el conocimiento de la topolog´ıade Bohr y de la teor´ıade los subconjuntos cuasi-convex de un grupo topol´ogico.La Tesis est´aestructura en tres partes: 1) Los conjuntos cuasi-convexos. Sobre la estructura y caracteri- zaci´onde subconjuntos cuasi-convexos. Incluso en grupos elementales como Z o T no hay criterios determinantes para dilucidar si un sub- conjunto es o no cuasi-convexo. Hemos dado luz sobre estos conjuntos en los cap´ıtulos 3, 6, 7 y 8. 2) Nuevos aspectos de la topolog´ıa de Bohr y otros tipos de topolog´ıas”d´ebiles” corresponde a los cap´ıtulos 3, 4 y 5. 3) La topolog´ıa de Mackey de un grupo. De hecho esta definici´on aparece por primera vez en esta tesis. Corresponde al cap´ıtulo 9. El estudio en profundidad de esta topolog´ıaes la motivacci´onque subyace en los otros cap´ıtulos. Hemos avanzado sobre lo que ya se sab´ıa, a partir de [23], dando resultados nuevos, y estructurando m´asde fondo la teor´ıa. Queda de manifiesto a lo largo de nuestro estudio que en los grupos abelianos la teor´ıade dualidad presenta notables diferencias con la teoria cl´asica para los espacios localmente convexos y de alg´unmodo tiene una mayor riqueza. No puede considerarse terminado el estudio, de hecho ten- emos problemas abiertos que ser´anmotivo de trabajo en los pr´oximosa˜nos. En los cap´ıtulos 4 y 5 inclu´ımosresultados obtenidos conjuntamente con D. Dikranjan y con M. Tkatchenko, y recogidos en sendos trabajos de pr´oxima publicaci´on(V. [29] y [30]). iii La topolog´ıade Mackey en los grupos abelianos El primero en tratar de dualidades de espacios vectoriales reales y de topo- log´ıascompatibles fu´eGeorge Mackey ([60, 61, 62, 63]). En los trabajos [60, 63], Mackey introdujo lo que ´elllam´o sistema lineal (linear system) como un par (E, L), donde E es un espacio vectorial real y L es un subespacio vectorial del espacio vectorial de las formas lineales l : E → R. Adem´as,denomin´o regular a un sistema lineal (E, L) cuando L separa los puntos de E. Estos objetos se conocen hoy d´ıa como par dual y par dual separado o dualidad (separada). En [61, 62], se consider´oel sistema lineal (E, L) obtenido al fijar una topolog´ıa localmente convexa T en E y tomar como espacio L el formado por todos los funcionales lineales T -continuos; se observ´oas´ımismo que la correspondencia entre T y L no es, en general, un´ıvoca. La existencia de las topolog´ıas localmente convexa m´asd´ebil y m´as fuerte en E entre todas aqu´ellasque dan lugar al mismo sistema lineal regular (E, L) fue formulada en [61, Theorem 1], y probada en [62, The- orem 5]. Mackey no fij´oninguna notaci´onpara estas topolog´ıas,pero en nuestro lenguaje actual son, respectivamente, la topolog´ıa d´ebil (denotada por σ(E, L) en [32, 33, 34]) y la de Mackey (denotada por τ(E, L) en [34]) para el par (E, L). Un espacio localmente convexo E es un espacio de Mackey si su topolog´ıa coincide con τ(E, L), donde L es el conjunto de todos los funcionales lineales continuos de E. Estos espacios fueron introducidos directamente por Mackey (con otra nomenclatura), que desarroll´ouna buena parte de la teor´ıaque hoy en d´ıaconsideramos cl´asica en el marco de los espacios localmente convexos. Los t´erminos “topolog´ıade Mackey” y “espacio de Mackey” aparecieron por primera vez en [18]. En dicho libro podemos encontrar la noci´onde topolog´ıa compatible: una topolog´ıa(localmente convexa) T en E se denomina com- patible con la dualidad (E, L) si L coincide con el conjunto de todos los funcionales lineales T -continuos de E en R. Otra demostraci´onde la existencia y la descripci´onconcreta de la topo- log´ıade Mackey fue alcanzado por R. Arens en [1]. M´asprecisamente, en [1, Theorem 2] se demuestra que, dado un sistema lineal regular (E, L), la topolog´ıa κ en E de la convergencia uniforme sobre los subconjuntos σ(L, E)- compactos y convexos de L es la m´asfuerte entre todas las topolog´ıaslo- calmente convexas t de E tales que “los elementos de L representan exac- tamente los funcionales lineales continuous en Et”. La combinaci´onde [1, Theorem 2] con [61, Theorem 1] se conoce como el Teorema de Mackey- Arens. Casi cuarenta a˜nosdespu´es del articulo de Mackey [62], Kakol observ´oen [56] que la convexidad local es esencial para asegurar la validez del Teorema de Mackey-Arens. El prob´oque, dada una dualidad (E, L), no tiene por qu´e iv Resumen existir la topolog´ıa en E m´asfuerte entre las topolog´ıas (no necesariamente localmente convexas) compatibles con (E, L). Aunque Mackey ten´ıa profundos conocimientos acerca de los grupos topol´ogicos, no formul´oel problema en t´erminos de grupos topol´ogicosa- belianos. Las dualidades de grupos abstractos y las topolog´ıas(de grupo) compatibles fueron consideradas por primera vez por N. T. Varopoulos en [80], donde se desarrolla una teor´ıade dualidad para la clase de los gru- pos localmente precompactos. Sin embargo esta clase de grupos resulta demasiado restringida como se demuestra en [23, Proposition 5.5]. Puesto que los grupos localmente cuasi-convexos presentan una buena analog´ıa con los espacios localmente convexos, los autores de [23] abordan el estudio de la topolog´ıade Mackey para dicha clase de grupos.
Recommended publications
  • Structural Features of the Real and Rational Numbers ENCYCLOPEDIA of MATHEMATICS and ITS APPLICATIONS
    ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS FOUNDED BY G.-C. ROTA Editorial Board P. Flajolet, M. Ismail, E. Lutwak Volume 112 The Classical Fields: Structural Features of the Real and Rational Numbers ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS FOUNDING EDITOR G.-C. ROTA Editorial Board P. Flajolet, M. Ismail, E. Lutwak 40 N. White (ed.) Matroid Applications 41 S. Sakai Operator Algebras in Dynamical Systems 42 W. Hodges Basic Model Theory 43 H. Stahl and V. Totik General Orthogonal Polynomials 45 G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions 46 A. Bj¨orner et al. Oriented Matroids 47 G. Edgar and L. Sucheston Stopping Times and Directed Processes 48 C. Sims Computation with Finitely Presented Groups 49 T. Palmer Banach Algebras and the General Theory of *-Algebras I 50 F. Borceux Handbook of Categorical Algebra I 51 F. Borceux Handbook of Categorical Algebra II 52 F. Borceux Handbook of Categorical Algebra III 53 V. F. Kolchin Random Graphs 54 A. Katok and B. Hasselblatt Introduction to the Modern Theory of Dynamical Systems 55 V. N. Sachkov Combinatorial Methods in Discrete Mathematics 56 V. N. Sachkov Probabilistic Methods in Discrete Mathematics 57 P. M. Cohn Skew Fields 58 R. Gardner Geometric Tomography 59 G. A. Baker, Jr., and P. Graves-Morris Pade´ Approximants, 2nd edn 60 J. Krajicek Bounded Arithmetic, Propositional Logic, and Complexity Theory 61 H. Groemer Geometric Applications of Fourier Series and Spherical Harmonics 62 H. O. Fattorini Infinite Dimensional Optimization and Control Theory 63 A. C. Thompson Minkowski Geometry 64 R. B. Bapat and T.
    [Show full text]
  • On the Structure of the Power Graph and the Enhanced Power Graph of a Group
    On the structure of the power graph and the enhanced power graph of a group Ghodratollah Aalipour Saieed Akbari School of Mathematical Science Department of Mathematical Sciences Rochester Institute of Technology (RIT) Sharif University of Technology Rochester, NY 14623, USA. Tehran, Iran. [email protected] s [email protected] Peter J. Cameron Reza Nikandish School of Mathematics and Statistics Department of Basic Sciences University of St Andrews Jundi-Shapur University of Technology St Andrews, Fife KY16 9SS, UK. Dezful, Iran. [email protected] [email protected] Farzad Shaveisi Department of Mathematics, Faculty of Science Razi University Kermanshah, Iran. [email protected] Submitted: Sep 28, 2016; Accepted: Jul 17, 2017; Published: Jul 28, 2017 Mathematics Subject Classifications: 05C25, 05C69, 20D60 Abstract Let G be a group. The power graph of G is a graph with the vertex set G, having an edge between two elements whenever one is a power of the other. We characterize nilpotent groups whose power graphs have finite independence number. For a bounded exponent group, we prove its power graph is a perfect graph and we determine its clique/chromatic number. Furthermore, it is proved that for every group G, the clique number of the power graph of G is at most countably infinite. We also measure how close the power graph is to the commuting graph by introducing a new graph which lies in between. We call this new graph the enhanced power graph. For an arbitrary pair of these three graphs we characterize finite groups for which this pair of graphs are equal.
    [Show full text]
  • Non-Cyclic Graph of a Group, E.G., the Non-Cyclic Graph of Any Non Locally Cyclic Group Is Always Connected and Its Diameter Is Less Than Or Equal to 3
    NON-CYCLIC GRAPH OF A GROUP A. Abdollahi ∗ and A. Mohammadi Hassanabadi Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran. NON-CYCLIC GRAPH OF A GROUP Abstract. We associate a graph ΓG to a non locally cyclic group G (called the non-cyclic graph of G) as follows: take G\Cyc(G) as vertex set, where Cyc(G)= {x ∈ G | hx, yi is cyclic for all y ∈ G}, and join two vertices if they do not generate a cyclic subgroup. We study the properties of this graph and we establish some graph theoretical properties (such as regularity) of this graph in terms of the group ones. We prove that the clique number of ΓG is finite if and only if ΓG has no infinite clique. We prove that if G is a finite nilpotent group and H is a group with ΓG =∼ ΓH and |Cyc(G)| = |Cyc(H)| = 1, then H is a finite nilpotent group. We give some examples of groups G whose non-cyclic graphs are “unique”, i.e., if ΓG =∼ ΓH for some group H, then G =∼ H. In view of these examples, we conjecture that every finite non-abelian simple group has a unique non-cyclic graph. Also we give some examples of finite non-cyclic groups G with the property that if ΓG =∼ ΓH for some group H, then |G| = |H|. These suggest the question whether the latter property holds for all finite non-cyclic groups. 1. Introduction and results arXiv:0708.2327v1 [math.GR] 17 Aug 2007 Let G be a group.
    [Show full text]
  • Review of Research Journal:International Monthly Scholarly
    Review Of ReseaRch impact factOR : 5.7631(Uif) UGc appROved JOURnal nO. 48514 issn: 2249-894X vOlUme - 7 | issUe - 12 | septembeR - 2018 __________________________________________________________________________________________________________________________ A STUDY ON CYCLIC GROUP AND ITS PROPERTIES Dr. Sheeja S. S. Guest Lecturer in Statistics, Govt. Arts and Science College, Kulathoor, Thiruvananthapuram, Kerala ABSTRACT The most important mathematicians associated with abstract algebra are Fermat, Leonhard Euler, and Carl Friedrich Gauss. Among them Gauss was establisher of many theorems associated with cyclic groups. Through this work we study about cyclic groups and various properties associated with them in a detailed manner. KEYWORDS: Subgroup, Cyclic Group, Virtually Cyclic Group, Meta Cyclic Group, Polycyclic Group. 1. INTRODUCTION In algebra, which is a broad division of Mathematics, abstract algebra is the study of algebraic structures such as groups, rings, field’s vector spaces. The branch abstract algebra get evaluated and developed in the latter half of nineteenth century. The attempts to find the solution of general polynomial equations of higher degree that resulted in the discovery of groups were the initial breakthrough in abstract algebra. Groups and groups theory is considered as the foundation of abstract algebra. Simply a group is an algebraic structure consisting of a set of elements equipped with an operation that combines any two elements to form a third element. Other algebraic structures like rings are defined on the basics of groups. Cyclic group is an important derivative of groups which is defined as the groups which are generated by a single element. 2. FUNDAMENTAL THEOREM OF CYCLIC GROUP Every subgroup of a cyclic group is cyclic.
    [Show full text]
  • Groups with Given Element Orders Introduction
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Siberian Federal University Digital Repository Journal of Siberian Federal University. Mathematics & Physics 2014, 7(2), 191–203 УДК 512.54 Groups with Given Element Orders Daria V. Lytkina∗ Siberian State University of Telecommunications and Informtaion Sciencies, Kirova, 86, Novosibirsk, 630102; Novosibirsk State University, Pirogova, 2, Novosibirsk, 630090 Russia Victor D. Mazurov† Sobolev Institute of Mathematics, Prospekt Akad. Koptyuga, 4, Novosibirsk, 630090 Russia Received 25.12.2013, received in revised form 04.02.2014, accepted 20.02.2014 This paper is a survey of some results and open problems about the structure of (mostly infinite) periodic groups with a given set of element orders. It is based on a talk of authors given on the conference "Algebra and Logic: Theory and Application" dedicated to the 80-th anniversary of V. P. Shunkov (Krasnoyarsk, July 21–27, 2013). Keywords: spectrum, exponent, periodic group, locally finite group. To the memory of Vladimir Petrovich Shunkov Introduction In late October 1900, William Burnside wrote a letter to Robert Fricke which contained in particular the following lines: "I take the opportunity of asking you, whether the following question has ever presented itself to you; and if it has, whether you have come to any conclusion about it. Can a group, generated by a finite number of operations, and such that the order of every one of its operations is finite and less than an assigned integer, consist of an infinite number of operations. E.g. as a very particular case: If S1 & S2 are operations, and if Σ, representing in turn a b c e m any and every combination or repetition of S1 & S2, such as S1 S2S1...S2, is such that Σ = 1, where m is a given integer, is the group generated by S1 & S2 a group of finite order or not.
    [Show full text]
  • Fundamentals of Group Theory: an Advanced Approach, 1 DOI 10.1007/978-0-8176-8301-6 1, © Springer Science+Business Media, LLC 2012 2 Fundamentals of Group Theory
    Steven Roman Fundamentals of Group Theory An Advanced Approach Steven Roman Irvine, CA USA ISBN 978-0-8176-8300-9 e-ISBN 978-0-8176-8301-6 DOI 10.1007/978-0-8176-8301-6 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011941115 Mathematics Subject Classification (2010): 20-01 © Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Birkhäuser Boston is part of Springer Science+Business Media (www.birkhauser.com) To Donna Preface This book is intended to be an advanced look at the basic theory of groups, suitable for a graduate class in group theory, part of a graduate class in abstract algebra or for independent study. It can also be read by advanced undergraduates. Indeed, I assume no specific background in group theory, but do assume some level of mathematical sophistication on the part of the reader.
    [Show full text]
  • 012-Stonehewer 165..188
    REND.SEM.MAT.UNIV.PADOVA, Vol. 115 2006) Cyclic Quasinormal Subgroups of Arbitrary Groups *). STEWART E. STONEHEWER **) - GIOVANNI ZACHER ***) To Professor Guido Zappa on his 90th birthday ABSTRACT - In recent years several papers have appeared showing how cyclic quasinormal subgroups are embedded in finite groups and many structure theorems have been proved. The purpose of the present work is twofold. First we show that, without exception, all of these theorems remain valid for finite cyclic quasinormal subgroups of infinite groups. Secondly we obtain analogous results for infinite cyclic quasinormal subgroups, where the statements turn out to be even stronger. 1. Introduction and statement of results. Let A be a cyclic quasinormal subgroup of a group G. Thus for every subgroup X of G, AX XA hA; Xi. When G is finite, then the structure of the normal closure AG of A in G is quite well understood. If A has odd order, then [A; G] is abelian and A acts on it by conjugation as a group of power automorphisms [2]). When A has even order, then [A; G] is nilpo- tent of class at most 2. When dihedral actions are excluded in certain subgroups of products AX, where X is cyclic see below), then [A; G]0 has order at most 2 and A acts on [A; G]=[A; G]0 as power automorphisms [3]). But always [A; G; A] is abelian and A acts on it again as power auto- morphisms [4]). Many of the arguments used in obtaining these results involved in- duction on group orders; and at the time, infinite groups did not appear to be the natural setting for the work.
    [Show full text]
  • Subgroup Lattices of Groups De Gruyter Expositions in Mathematics 14
    DE GRUYTER Roland Schmidt EXPOSITIONS IN MATHEMATICS 14 Subgroup lattices of Groups de Gruyter Expositions in Mathematics 14 Editors 0. H. Kegel, Albert-Ludwigs-Universitat, Freiburg V. P. Maslov, Academy of Sciences, Moscow W. D. Neumann, The University of Melbourne, Parkville R. 0. Wells, Jr., Rice University, Houston de Gruyter Expositions in Mathematics I The Analytical and Topological Theory of Semigroups, K. H. Hofmann, J. D. Lawson, J. S. Pym (Eds.) 2Combinatorial Homotopy and 4-Dimensional Complexes, H. J. Baues 3The Stefan Problem, A. M. Meirmanov 4Finite Soluble Groups, K. Doerk, T. O. Hawkes 5The Riemann Zeta-Function, A. A. Karatsuba, S. M. Voronin 6Contact Geometry and Linear Differential Equations, V. R. Nazaikinskii, V. E. Shatalov, B. Yu. Sternin 7Infinite Dimensional Lie Superalgebras, Yu. A. Bahturin, A. A. Mikhalev, V. M. Petrogradsky, M. V. Zaicev 8Nilpotent Groups and their Automorphisms, E. I. Khukhro 9Invariant Distances and Metrics in Complex Analysis, M. Jarnicki, P. Pflug 10The Link Invariants of the Chern-Simons Field Theory, E. Guadagnini 1 I Global Affine Differential Geometry of Hypersurfaces, A.-M. Li, U. Simon, G. Zhao 12Moduli Spaces of Abelian Surfaces: Compactification, Degeneration, and Theta Functions, K. Hulek, C. Kahn, S. H. Weintraub 13 Elliptic Problems in Domains with Piecewise Smooth Boundaries, S. A. Na- zarov, B. A. Plamenevsky Subgroup Lattices of Groups by Roland Schmidt W DE G Walter de GruyterBerlin New York 1994 Author Roland Schmidt Mathematisches Seminar Universitat Kiel Ludewig-Meyn-StraBe 4 D-24098 Kiel Germany 1991 Mathematics Subject Classification: 20-01, 20-02 Keywords: Group, lattice, subgroup lattice, projectivity, duality ® Printed on acid-free paper which falls within the guidelines of the ANSI to ensure permanence and durability.
    [Show full text]
  • Bibliography
    Bibliography This is primarily a list of books where the topics are pursued further (and which were often used as sources); it is followed by a list of papers referred to in the text as well as a small selection of articles having a bearing on the text. FA refers to the sequel of this book: Further Algebra and Applications. See below. Anderson, F. W. and Fuller, K. R. (1973) Rings and Categories of Modules, Graduate Texts in Mathematics 13, Springer Verlag, Berlin. Artin, E. (1948) Galois Theory, Notre Dame Math. Lectures No.2, Notre Dame, IN. Artin, E. (1957) Geometric Algebra, Interscience, New York. Barwise, J. (ed.) (1977) Handbook of Logic, North-Holland, Amsterdam. Birkhoff, G. (1967) Lattice Theory (3rd edn), AMS, Providence, RI. Bourbaki, N. (1961-80) Algebre, Chs. 1-10, Hermann, Paris, later Masson, Paris. Bourbaki, N. (1984) Elements d'Histoire de Mathematiques, Masson, Paris. Burnside, W. (1911) Theory of Groups of Finite Order (2nd edn), Cambridge Univer- sity Press; reprinted 1955, Dover, New York. Chase, S. U., Harrison, D. K. and Rosenberg, A. (1965) Galois Theory and Cohomol­ ogy Theory of Commutative Rings, Mem. Amer. Math. Soc. 52, AMS, Providence, RI. Chevalley, C. (1951) Introduction to the Theory ofAlgebraic Functions of One Variable, No.24, AMS Colloquium Publications, Providence, RI. Cohen, P. J. (1966) Set Theory and the Continuum Hypothesis, Benjamin, New York. Cohn, P. M. (1981) Universal Algebra (2nd edn), Reidel, Dordrecht. Cohn, P. M. (1985) Free Rings and Their Relations (2nd edn), LMS Monographs No.19, Academic Press, New York. Cohn, P. M. (1991) Algebraic Numbers and Algebraic Functions, Chapman & Hall! CRC Press.
    [Show full text]
  • On the Structure of the Power Graph and the Enhanced Power Graph of a Group
    On the structure of the power graph and the enhanced power graph of a group ∗ Ghodratollah Aalipour† Saieed Akbari‡ Peter J. Cameron§ Reza Nikandish¶ Farzad Shaveisik Abstract Let G be a group. The power graph of G is a graph with the vertex set G, having an edge between two elements whenever one is a power of the other. We characterize nilpotent groups whose power graphs have finite independence num- ber. For a bounded exponent group, we prove its power graph is a perfect graph and we determine its clique/chromatic number. Furthermore, it is proved that for every group G, the clique number of the power graph of G is at most countably infinite. We also measure how close the power graph is to the commuting graph by introducing a new graph which lies in between. We call this new graph as the enhanced power graph. For an arbitrary pair of these three graphs we characterize finite groups for which this pair of graphs are equal. 1 Introduction We begin with some standard definitions from graph theory and group theory. Let G be a graph with vertex set V (G). If x ∈ V (G), then the number of vertices adjacent to x is called the degree of x, and denoted by deg(x). The distance between two vertices in a graph is the number of edges in a shortest path connecting them. The diameter of a connected graph G, denoted by diam(G), is the maximum distance arXiv:1603.04337v1 [math.CO] 14 Mar 2016 between any pair of vertices of G.
    [Show full text]
  • Ore's Theorem
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2011 Ore's theorem Jarom Viehweg Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Mathematics Commons Recommended Citation Viehweg, Jarom, "Ore's theorem" (2011). Theses Digitization Project. 145. https://scholarworks.lib.csusb.edu/etd-project/145 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. Ore's Theorem A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Jarom Vlehweg June 2011 Ore's Theorem A Thesis Presented to the Faculty of California State University, San Bernardino by Jarom Viehweg June 2011 Approved by: an Garjo8jrimni Date Corey Dunn, Committee Member Zahid Hasan, Committee Member Peter Williams, Chair, Charles Stanton Department of Mathematics Graduate Coordinator. Department of Mathematics Ill Abstract In elementary group theory, containment defines a partial order relation on the subgroups of a fixed group. This order relation is a lattice in the sense that it is a partially ordered set in which any two elements have a greatest lower bound and a least upper bound relative to the ordering. Lattices occur frequently in mathematics and form an extensive subject of study with a vast literature. While the subgroups of every group G always form a lattice, one might ask if every conceivable lattice is isomorphic to the subgroup lattice of some group.
    [Show full text]
  • ON a SET of NORMAL SUBGROUPS by I
    ON A SET OF NORMAL SUBGROUPS by I. D. MACDONALD (Received 4 April, 1961) 1. The commutator [a, 6] of two elements a and b in a group G satisfies the identity ab = ba\a, b~\. The subgroups we study are contained in the commutator subgroup G', which is the subgroup generated by all the commutators. The group G is covered by a well-known set of normal subgroups, namely the normal closures {g}G of the cyclic subgroups {g} in G. In a similar way one may associate a subgroup K(g) with each element g, by defining K(g) to be the subgroup generated by the commutators [g, x] as x takes all values in G. These subgroups generate G' (but do not cover G' in general), and are normal in G in consequence of the identical relation (A) l9,xY = [g,yylt holding for all g, x and y in G. (By ab we mean b~*ab) It is easy to see that {g}G = {g, K(g)}. The subgroups K(g) appear in a number of situations. For instance, it is shown in Theorem 3 of [1] that if every K(g) in G is abelian, then the commutator subgroup G" of G' lies in the centre of G and has exponent 2. Again, every K(g) is finite if and only if every ele- ment of G has just a finite number of conjugates. One part of this statement is clear, and to prove the other part suppose that every element of G has only a finite number of conjugates.
    [Show full text]