Groups with Given Element Orders Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Homology of Peiffer Products of Groups
New York Journal of Mathematics New York J. Math. 6 (2000) 55–71. The Homology of Peiffer Products of Groups W. A. Bogley and N. D. Gilbert Abstract. The Peiffer product of groups first arose in work of J.H.C. White- head on the structure of relative homotopy groups, and is closely related to problems of asphericity for two-complexes. We develop algebraic methods for computing the second integral homology of a Peiffer product. We show that a Peiffer product of superperfect groups is superperfect, and determine when a Peiffer product of cyclic groups has trivial second homology. We also introduce a double wreath product as a Peiffer product. Contents Introduction 55 1. The low-dimensional homology of products of subgroups 57 2. Twisted bilinear relations 60 3. The structure of SG∗H 61 4. Computations 63 References 70 Introduction Given two groups acting on each other by automorphisms, it is natural to ask whether these groups can be embedded in an overgroup in such a way that the given actions are realized by conjugation. If the actions are trivial, this can be done simply by forming the direct product of the two groups. In general, the question has a negative answer. One is led to the following construction. Let G and H be groups and suppose we are given fixed actions (g, h) 7→ gh and (h, g) 7→ hg of each group on the other. Received October 1, 1999. Mathematics Subject Classification. 20J05, 20E22, 20F05. Key words and phrases. homology, Peiffer product, asphericity, two-complex, double wreath product. -
Minimal Generation of Transitive Permutation Groups
Minimal generation of transitive permutation groups Gareth M. Tracey∗ Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom October 30, 2017 Abstract This paper discusses upper bounds on the minimal number of elements d(G) required to generate a transitive permutation group G, in terms of its degree n, and its order G . In particular, we | | reduce a conjecture of L. Pyber on the number of subgroups of the symmetric group Sym(n). We also prove that our bounds are best possible. 1 Introduction A well-developed branch of finite group theory studies properties of certain classes of permutation groups as functions of their degree. The purpose of this paper is to study the minimal generation of transitive permutation groups. For a group G, let d(G) denote the minimal number of elements required to generate G. In [21], [7], [26] and [28], it is shown that d(G)= O(n/√log n) whenever G is a transitive permutation group of degree n 2 (here, and throughout this paper, “ log ” means log to the base 2). A beautifully ≥ constructed family of examples due to L. Kov´acs and M. Newman shows that this bound is ‘asymp- totically best possible’ (see Example 6.10), thereby ending the hope that a bound of d(G)= O(log n) could be proved. The constants involved in these theorems, however, were never estimated. We prove: arXiv:1504.07506v3 [math.GR] 30 Jan 2018 Theorem 1.1. Let G be a transitive permutation group of degree n 2. Then ≥ (1) d(G) cn ,where c := 1512660 log (21915)/(21915) = 0.920581 . -
Bounds of Some Invariants of Finite Permutation Groups Hülya Duyan
Bounds of Some Invariants of Finite Permutation Groups H¨ulya Duyan Department of Mathematics and its Applications Central European University Budapest, Hungary CEU eTD Collection A dissertation presented for the degree of Doctor of Philosophy in Mathematics CEU eTD Collection Abstract Let Ω be a non-empty set. A bijection of Ω onto itself is called a permutation of Ω and the set of all permutations forms a group under composition of mapping. This group is called the symmetric group on Ω and denoted by Sym(Ω) (or Sym(n) or Sn where jΩj = n). A permutation group on Ω is a subgroup of Sym(Ω). Until 1850's this was the definition of group. Although this definition and the ax- iomatic definition are the same, usually what we first learn is the axiomatic approach. The reason is to not to restrict the group elements to being permutations of some set Ω. Let G be a permutation group. Let ∼ be a relation on Ω such that α ∼ β if and only if there is a transformation g 2 G which maps α to β where α; β 2 Ω. ∼ is an equivalence relation on Ω and the equivalence classes of ∼ are the orbits of G. If there is one orbit then G is called transitive. Assume that G is intransitive and Ω1;:::; Ωt are the orbits of G on Ω. G induces a transitive permutation group on each Ωi, say Gi where i 2 f1; : : : ; tg. Gi are called the transitive constituents of G and G is a subcartesian product of its transitive constituents. -
A Survey on Automorphism Groups of Finite P-Groups
A Survey on Automorphism Groups of Finite p-Groups Geir T. Helleloid Department of Mathematics, Bldg. 380 Stanford University Stanford, CA 94305-2125 [email protected] February 2, 2008 Abstract This survey on the automorphism groups of finite p-groups focuses on three major topics: explicit computations for familiar finite p-groups, such as the extraspecial p-groups and Sylow p-subgroups of Chevalley groups; constructing p-groups with specified automorphism groups; and the discovery of finite p-groups whose automorphism groups are or are not p-groups themselves. The material is presented with varying levels of detail, with some of the examples given in complete detail. 1 Introduction The goal of this survey is to communicate some of what is known about the automorphism groups of finite p-groups. The focus is on three topics: explicit computations for familiar finite p-groups; constructing p-groups with specified automorphism groups; and the discovery of finite p-groups whose automorphism groups are or are not p-groups themselves. Section 2 begins with some general theorems on automorphisms of finite p-groups. Section 3 continues with explicit examples of automorphism groups of finite p-groups found in the literature. This arXiv:math/0610294v2 [math.GR] 25 Oct 2006 includes the computations on the automorphism groups of the extraspecial p- groups (by Winter [65]), the Sylow p-subgroups of the Chevalley groups (by Gibbs [22] and others), the Sylow p-subgroups of the symmetric group (by Bon- darchuk [8] and Lentoudis [40]), and some p-groups of maximal class and related p-groups. -
A Classification of Clifford Algebras As Images of Group Algebras of Salingaros Vee Groups
DEPARTMENT OF MATHEMATICS TECHNICAL REPORT A CLASSIFICATION OF CLIFFORD ALGEBRAS AS IMAGES OF GROUP ALGEBRAS OF SALINGAROS VEE GROUPS R. Ablamowicz,M.Varahagiri,A.M.Walley November 2017 No. 2017-3 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505 A Classification of Clifford Algebras as Images of Group Algebras of Salingaros Vee Groups Rafa lAb lamowicz, Manisha Varahagiri and Anne Marie Walley Abstract. The main objective of this work is to prove that every Clifford algebra C`p;q is R-isomorphic to a quotient of a group algebra R[Gp;q] modulo an ideal J = (1 + τ) where τ is a central element of order 2. p+q+1 Here, Gp;q is a 2-group of order 2 belonging to one of Salingaros isomorphism classes N2k−1;N2k; Ω2k−1; Ω2k or Sk. Thus, Clifford al- gebras C`p;q can be classified by Salingaros classes. Since the group algebras R[Gp;q] are Z2-graded and the ideal J is homogeneous, the quotient algebras R[G]=J are Z2-graded. In some instances, the isomor- ∼ phism R[G]=J = C`p;q is also Z2-graded. By Salingaros Theorem, the groups Gp;q in the classes N2k−1 and N2k are iterative central products of the dihedral group D8 and the quaternion group Q8, and so they are extra-special. The groups in the classes Ω2k−1 and Ω2k are central products of N2k−1 and N2k with C2 × C2, respectively. The groups in the class Sk are central products of N2k or N2k with C4. Two algorithms to factor any Gp;q into an internal central product, depending on the class, are given. -
Structural Features of the Real and Rational Numbers ENCYCLOPEDIA of MATHEMATICS and ITS APPLICATIONS
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS FOUNDED BY G.-C. ROTA Editorial Board P. Flajolet, M. Ismail, E. Lutwak Volume 112 The Classical Fields: Structural Features of the Real and Rational Numbers ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS FOUNDING EDITOR G.-C. ROTA Editorial Board P. Flajolet, M. Ismail, E. Lutwak 40 N. White (ed.) Matroid Applications 41 S. Sakai Operator Algebras in Dynamical Systems 42 W. Hodges Basic Model Theory 43 H. Stahl and V. Totik General Orthogonal Polynomials 45 G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions 46 A. Bj¨orner et al. Oriented Matroids 47 G. Edgar and L. Sucheston Stopping Times and Directed Processes 48 C. Sims Computation with Finitely Presented Groups 49 T. Palmer Banach Algebras and the General Theory of *-Algebras I 50 F. Borceux Handbook of Categorical Algebra I 51 F. Borceux Handbook of Categorical Algebra II 52 F. Borceux Handbook of Categorical Algebra III 53 V. F. Kolchin Random Graphs 54 A. Katok and B. Hasselblatt Introduction to the Modern Theory of Dynamical Systems 55 V. N. Sachkov Combinatorial Methods in Discrete Mathematics 56 V. N. Sachkov Probabilistic Methods in Discrete Mathematics 57 P. M. Cohn Skew Fields 58 R. Gardner Geometric Tomography 59 G. A. Baker, Jr., and P. Graves-Morris Pade´ Approximants, 2nd edn 60 J. Krajicek Bounded Arithmetic, Propositional Logic, and Complexity Theory 61 H. Groemer Geometric Applications of Fourier Series and Spherical Harmonics 62 H. O. Fattorini Infinite Dimensional Optimization and Control Theory 63 A. C. Thompson Minkowski Geometry 64 R. B. Bapat and T. -
On the Structure of the Power Graph and the Enhanced Power Graph of a Group
On the structure of the power graph and the enhanced power graph of a group Ghodratollah Aalipour Saieed Akbari School of Mathematical Science Department of Mathematical Sciences Rochester Institute of Technology (RIT) Sharif University of Technology Rochester, NY 14623, USA. Tehran, Iran. [email protected] s [email protected] Peter J. Cameron Reza Nikandish School of Mathematics and Statistics Department of Basic Sciences University of St Andrews Jundi-Shapur University of Technology St Andrews, Fife KY16 9SS, UK. Dezful, Iran. [email protected] [email protected] Farzad Shaveisi Department of Mathematics, Faculty of Science Razi University Kermanshah, Iran. [email protected] Submitted: Sep 28, 2016; Accepted: Jul 17, 2017; Published: Jul 28, 2017 Mathematics Subject Classifications: 05C25, 05C69, 20D60 Abstract Let G be a group. The power graph of G is a graph with the vertex set G, having an edge between two elements whenever one is a power of the other. We characterize nilpotent groups whose power graphs have finite independence number. For a bounded exponent group, we prove its power graph is a perfect graph and we determine its clique/chromatic number. Furthermore, it is proved that for every group G, the clique number of the power graph of G is at most countably infinite. We also measure how close the power graph is to the commuting graph by introducing a new graph which lies in between. We call this new graph the enhanced power graph. For an arbitrary pair of these three graphs we characterize finite groups for which this pair of graphs are equal. -
Non-Cyclic Graph of a Group, E.G., the Non-Cyclic Graph of Any Non Locally Cyclic Group Is Always Connected and Its Diameter Is Less Than Or Equal to 3
NON-CYCLIC GRAPH OF A GROUP A. Abdollahi ∗ and A. Mohammadi Hassanabadi Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran. NON-CYCLIC GRAPH OF A GROUP Abstract. We associate a graph ΓG to a non locally cyclic group G (called the non-cyclic graph of G) as follows: take G\Cyc(G) as vertex set, where Cyc(G)= {x ∈ G | hx, yi is cyclic for all y ∈ G}, and join two vertices if they do not generate a cyclic subgroup. We study the properties of this graph and we establish some graph theoretical properties (such as regularity) of this graph in terms of the group ones. We prove that the clique number of ΓG is finite if and only if ΓG has no infinite clique. We prove that if G is a finite nilpotent group and H is a group with ΓG =∼ ΓH and |Cyc(G)| = |Cyc(H)| = 1, then H is a finite nilpotent group. We give some examples of groups G whose non-cyclic graphs are “unique”, i.e., if ΓG =∼ ΓH for some group H, then G =∼ H. In view of these examples, we conjecture that every finite non-abelian simple group has a unique non-cyclic graph. Also we give some examples of finite non-cyclic groups G with the property that if ΓG =∼ ΓH for some group H, then |G| = |H|. These suggest the question whether the latter property holds for all finite non-cyclic groups. 1. Introduction and results arXiv:0708.2327v1 [math.GR] 17 Aug 2007 Let G be a group. -
Random Generation of Finite and Profinite Groups and Group
Annals of Mathematics 173 (2011), 769{814 doi: 10.4007/annals.2011.173.2.4 Random generation of finite and profinite groups and group enumeration By Andrei Jaikin-Zapirain and Laszl´ o´ Pyber Abstract We obtain a surprisingly explicit formula for the number of random ele- ments needed to generate a finite d-generator group with high probability. As a corollary we prove that if G is a d-generated linear group of dimension n then cd + log n random generators suffice. Changing perspective we investigate profinite groups F which can be generated by a bounded number of elements with positive probability. In response to a question of Shalev we characterize such groups in terms of certain finite quotients with a transparent structure. As a consequence we settle several problems of Lucchini, Lubotzky, Mann and Segal. As a byproduct of our techniques we obtain that the number of r-relator groups of order n is at most ncr as conjectured by Mann. 1. Introduction Confirming an 1882 conjecture of Netto [40], Dixon [13] proved in 1969 that two randomly chosen elements generate the alternating group Alt(n) with probability that tends to 1 as n ! 1. This was extended in [21] and [24] to arbitrary sequences of non-abelian finite simple groups. Such results form the basis of applying probabilistic methods to the solution of various problems concerning finite simple groups [50]. Interest in random generation of more general families of finite groups arose when it was realized that randomized algorithms play a critical role in handling matrix groups [4]. -
Threads Through Group Theory
Contemporary Mathematics Threads Through Group Theory Persi Diaconis Abstract. This paper records the path of a letter that Marty Isaacs wrote to a stranger. The tools in the letter are used to illustrate a different way of studying random walk on the Heisenberg group. The author also explains how the letter contributed to the development of super-character theory. 1. Introduction Marty Isaacs believes in answering questions. They can come from students, colleagues, or perfect strangers. As long as they seem serious, he usually gives it a try. This paper records the path of a letter that Marty wrote to a stranger (me). His letter was useful; it is reproduced in the Appendix and used extensively in Section 3. It led to more correspondence and a growing set of extensions. Here is some background. I am a mathematical statistician who, for some unknown reason, loves finite group theory. I was trying to make my own peace with a corner of p-group theory called extra-special p-groups. These are p-groups G with center Z(G) equal to commutator subgroup G0 equal to the cyclic group Cp. I found considerable literature about the groups [2, Sect. 23], [22, Chap. III, Sect. 13], [39, Chap. 4, Sect. 4] but no \stories". Where do these groups come from? Who cares about them, and how do they fit into some larger picture? My usual way to understand a group is to invent a \natural" random walk and study its rate of convergence to the uniform distribution. This often calls for detailed knowledge of the conjugacy classes, characters, and of the geometry of the Cayley graph underlying the walk. -
Free Products of Abelian Groups in the Unit Group of Integral Group Rings
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 5, May 1998, Pages 1257{1265 S 0002-9939(98)04340-8 FREE PRODUCTS OF ABELIAN GROUPS IN THE UNIT GROUP OF INTEGRAL GROUP RINGS ERIC JESPERS AND GUILHERME LEAL (Communicated by Ronald M. Solomon) Abstract. We classify finite groups G which are such that the unit group of the integral group ring ZG has a subgroup of finite index which is a non-trivial free product of abelian groups. For a finite commutative group G it is well known, and first discovered by Hig- man, that the unit group (ZG) of the integral group ring ZG is the direct product of the trivial units and aU finitely generated free abelian group. In particular, the structure of the unit group is known. For a nonabelian finite group G the struc- ture of the unit group (ZG) is much more complicated. The few known structure theorems state that (UZG) seldom belongs to a well studied class of groups, such as solvable and nilpotentU groups (see for example [9, 10]). The reason for this is that (ZG) contains a free subgroup of rank 2 except when G is abelian or G is a HamiltonianU 2-group, a result due to Hartley and Pickel. Recently, Marciniak and Sehgal explicitly described generators for such a free subgroup. The study of free subgroups in (ZG)wascontinuedin[4];itisshownthatthere are only four finite groups G whichU are such that (ZG) contains a noncyclic free subgroup of finite index. In [5] and [6] a classificationU is given of the finite groups G which are such that (ZG) has a subgroup of finite index which is the direct product of noncyclic freeU subgroups. -
On Lsomorphism Testing of a Class of 2-Nilpotent Groups*
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF COMPUTER AND SYSTEM SCIENCES 42, 237-248 (1991) On lsomorphism Testing of a Class of 2-Nilpotent Groups* MAX GARZON AND YECHEZKEL ZALCSTEIN~ Department of Mathematical Sciences, Memphis State University, Memphis, Tennessee 38152 Received September 25, 1987; revised September 20, 1989 A polynomial time isomorphism test for a class of groups, properly containing the class of abelian groups, given either by multiplication tables or by generators and relators, is described. It is also shown that graph isomorphism testing is uniformly reducible to a word problem of a finitely presented group. 8 1991 Academic Press, Inc. 1. INTRODUCTION In contrast to graph isomorphism, very little is known about the complexity of group isomorphism testing. For groups given by multiplication tables, Tarjan [ 151 has produced an O(nlogn)-t’ tme isomorphism test (for groups of order it given by multiplication tables) which was discovered independently in [9] as a sharper O(log* n)-space algorithm. Since two finite presentations of a finitely generated abelian group are isomorphic if and only if their associated matrices over the integers have the same invariant factors (which can be computed in time polyno- mial in the size of the presentations [S], even under the logarithmic cost criterion [S]), isomorphism of finitely generated abelian groups given by generators and relators can be tested in polynomial time. On the other hand, testing isomorphism of arbitrary finite groups given by generators and relations is, to the best of our knowledge, an open problem.