Hydrol. Earth Syst. Sci., 23, 35–49, 2019 https://doi.org/10.5194/hess-23-35-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Implications of water management representations for watershed hydrologic modeling in the Yakima River basin Jiali Qiu1, Qichun Yang1, Xuesong Zhang1, Maoyi Huang2, Jennifer C. Adam3, and Keyvan Malek3 1Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA 2Earth System Analysis and Modeling Group, Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA 3Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164, USA Correspondence: Xuesong Zhang (
[email protected]) Received: 29 May 2018 – Discussion started: 12 July 2018 Revised: 25 October 2018 – Accepted: 1 December 2018 – Published: 3 January 2019 Abstract. Water management substantially alters natural 1 Introduction regimes of streamflow through modifying retention time and water exchanges among different components of the terres- Ever-intensifying human activities have profoundly affected trial water cycle. Accurate simulation of water cycling in terrestrial water cycling across the globe (Jackson et al., intensively managed watersheds, such as the Yakima River 2001), particularly at the watershed scale (Vörösmarty and basin (YRB) in the Pacific Northwest of the US, faces chal- Sahagian, 2000; Yang et al., 2014, 2015). Water management lenges in reliably characterizing influences of management substantially alters natural regimes of streamflow through practices (e.g., reservoir operation and cropland irrigation) modifying retention time and water exchanges among dif- on the watershed hydrology. Using the Soil and Water As- ferent components of the terrestrial water cycle (Haddeland sessment Tool (SWAT) model, we evaluated streamflow sim- et al., 2007).