Health and Safety in the Science Classroom: Kindergarten to Grade 12

Total Page:16

File Type:pdf, Size:1020Kb

Health and Safety in the Science Classroom: Kindergarten to Grade 12 Health and Safety in the Science Classroom: Kindergarten to Grade 12 ISBN 978-1-4601-3398-9 This document is available on the Alberta Education website at https://education.alberta.ca/science-k- 6/program-supports/, https://education.alberta.ca/science-7-9/program-supports/, and https://education.alberta.ca/science-10-12/program-supports/. The document is released under the Open Government Licence – Alberta and is also available through the Open Government Portal at http://open.alberta.ca/publications/9781460133989. Please note that the terms of the Open Government Licence – Alberta do not apply to any third-party materials included in this document. Questions or concerns regarding this document can be addressed to the Director, Mathematics and Sciences Branch, Alberta Education. Telephone 780-427-0010. To be connected toll-free inside Alberta, dial 310-0000 first. Several websites are listed in this document. These sites are listed as a service only to identify potentially useful ideas for teaching and learning. Alberta Education is not responsible for maintaining these external sites, nor does the listing of these sites constitute or imply endorsement of their content. The responsibility to evaluate these sites rests with the user. Note: All website addresses were confirmed as accurate at the time of publication but are subject to change. The primary intended audience for this document is: Administrators Counsellors General Audience Parents Students Teachers Copyright © 2019, the Crown in Right of Alberta, as represented by the Minister of Education. Every effort has been made to provide proper acknowledgement of original sources. If cases are identified where this has not been done, please notify Alberta Education so appropriate corrective action can be taken. Permission is given by the copyright owner to reproduce this document for educational purposes and on a non-profit basis, with the exception of materials cited for which Alberta Education does not own copyright. TABLE OF CONTENTS Introduction ................................................................................................................. 2 Part A: General Safety Management Chapter 1: Starting Points for Planning and Policy Setting ........................................... 3 Chapter 2: Emergency Preparedness and Response .................................................. 24 Chapter 3: Facility Design and Safety Equipment ....................................................... 36 Chapter 4: Risk Management ...................................................................................... 50 Part B: Specific Hazards Chapter 5: Biological Hazards ..................................................................................... 61 Chapter 6: Physical Hazards ....................................................................................... 70 Chapter 7: Chemical Hazards ..................................................................................... 84 Chapter 8: Chemical Hazard Control .......................................................................... 98 Chapter 9: Chemical Hazard Information .................................................................. 120 Appendices Appendix A: Example Science Safety Rules and Procedures .................................. 256 Appendix B: Sample Student Safety Contract/Agreement—Elementary .................. 257 Appendix C: Sample Student Safety Contract/Agreement—Secondary .................. 258 Appendix D: Chemical Laboratory Safety Inspection Checklist ................................ 260 Appendix E: Incident Report Form ........................................................................... 262 Appendix F: Chemical Inventory Template .............................................................. 265 Appendix G: Suggested Science Department Safety Policies and Procedures ........ 266 Appendix H: Basic Laboratory Techniques .............................................................. 268 Appendix I: Websites for Acts, Regulations, Codes, and Bylaws ............................ 274 Appendix J: Category D Chemicals .......................................................................... 275 References .............................................................................................................. 277 Health and Safety in the Science Classroom (K–12) 1 © Alberta Education, Alberta, Canada Table of Contents 2019 INTRODUCTION Hands-on activities are a fundamental part of science learning. In early grades, student’s exploratory activities with materials provide the starting point for their concept and skill development. In later grades, students learn the techniques of controlled investigation and experimentation and, through practice, develop the skills of science inquiry and problem solving. Laboratory activities provide the starting point for understanding the nature of science and the interplay of evidence and theory. The challenge for schools is to offer science activities that are both educationally rewarding and safe. This result can only be achieved through a team effort, involving all of those who set and administer school policies, design and maintain the learning environment, plan and deliver science programs, and select and prepare the materials used. The goal of this K–12 science health and safety resource is to bring together information needed by administrators, planners, teachers, and support staff to help them make sound decisions regarding science safety. The document identifies areas for decision making and action at a variety of levels. It supports planning and action by providing information on safety legislation and standards, health and safety hazards, and example procedures for eliminating or minimizing hazards. The materials in this health and safety resource have been compiled from sources believed to be reliable and accurate and to represent the best of current thinking on the subject. This resource is intended to serve as a starting point for planning good practices, but does not purport to specify the level of technical detail that some users may require or to have anticipated every circumstance where health and safety may be a factor. Alberta Education thus cannot assume responsibility for the validity or completeness of the information provided or for the consequences of its use. It can neither be assured that all necessary warnings and precautionary measures are contained herein, nor that additional information or measures may not be required due to particular exceptional circumstances. Health and Safety in the Science Classroom (K–12) 2 © Alberta Education, Alberta, Canada Introduction 2019 PART A: GENERAL SAFETY MANAGEMENT Chapter 1: Starting Points for Planning and Policy Setting Overview This chapter sets the stage for safety planning for science classrooms. The chapter outlines the roles of key stakeholders and lists sample actions that are appropriate to these roles. It also summarizes legislated requirements that have an impact on planning for science safety. Finally, it provides general guidelines for promoting safety. Due Diligence: An Approach to Science Safety A first step in planning for science safety is to become aware of the potential hazards that science activities may present. Further steps focus on minimizing risks by taking reasonable safety precautions—in other words, by acting with due diligence. In a legal context, due diligence means taking all reasonable steps to prevent incidents and injuries, thus avoiding the assumption of legal liability. However, due diligence is more than just a legal concept; it is a positive approach to avoiding incidents and injuries by identifying possible hazards, planning precautionary actions, and fulfilling one’s responsibilities. This more general definition provides a common sense starting point for safety planning. Principals, administrators, teachers, and other staff can demonstrate due diligence by taking action in the following three key areas: • ensuring awareness of potential risks and the related safety regulations; • ensuring staff competency in meeting legislated requirements, thereby avoiding unnecessary risk; and • implementing monitoring and compliance strategies to ensure that regulations are met. Health and Safety in the Science Classroom (K–12) 3 © Alberta Education, Alberta, Canada Chapter 1 2019 Awareness of Legislated Safety Requirements Principals, administrators, teachers, and other personnel need to know about the legislated requirements that apply to science programs offered in their schools. It is important to know about these regulations not only because they are legal obligations, but also because they help educators to better understand potential risks and the preventative measures that can be taken. Relevant legislation and requirements are summarized in this chapter inasmuch as they relate to safe practices in the science classroom. For access to the actual legislation, regulation, code, or bylaw itself, see Appendix I for the website addresses. Staff Competency As outlined in Section 8 of the Alberta Teachers’ Association Code of Professional Conduct and Section 13(1) of the Occupational Health and Safety Regulation, Alberta Regulation 62/2003 (with amendments up to and including Alberta Regulation 51/2018), it is essential that teachers and other staff who perform potentially dangerous tasks are competent to handle these tasks. Competency means being aware of risks and being properly trained in relevant procedures to safely perform the task
Recommended publications
  • United States Patent Office Patented Aug
    3,202,556 United States Patent Office Patented Aug. 24, 1965 2 mannan. As a consequence, crosslinking agents are used METHOD FOR GELiNGWATER-BEARNG3,282,555 EX to hasten the formation of gels, or they may be employed PLGSIVE COMPOSTIONS CONTAINNG GAYLAC to form gels which have desired physical properties at rel TOMANNAN (GUAS atively low gum concentrations, or even have properties Joseph D. Chrisp, Caymorf, Dai, assig or to E. I. du not obtainable by the use of the gum alone. An effective Poit de Neno Ers and Company, Wilmington, De., a and Well known crosslinking agent for the hydrated galac corporation of Delaware tomannans, especially for guar gum, is the borate ion No iPrawing. Fied July 23, 1963, Ser. No. 296,932 which acts as a crosslinking agent with hydrated guar gum 14 (Claims. (C. 49-20) to form cohesive structural gels. The process of cross 10 linking guar-containing compositions by adding borate This invention relates to a process for gelling aqueous ions has been employed in the manufacture of ammonium solutions of water-dispersible, non-ionic hydroxyl poly nitrate-based blasting agent compositions, as disclosed and mers. More particularly, this invention relates to a proc claimed in U.S. Patent No. 3,072,509. Such blasting ess for making water-bearing gels containing galactoman agents have a desirable body which resists dispersion of nans and to certain products obtained thereby including 5 the compositions by water and facilitates their handling explosives. and loading. Also, such crosslinked blasting agents are Water-soluble gums have been articles of commerce economical and safe to use, and have better storage prop for hundreds of years.
    [Show full text]
  • Laboratory Safety Manual
    LABORATORY SAFETY MANUAL Environment, Health & Safety 1120 Estes Drive Extension CB# 1650 TABLE OF CONTENTS Section or Chapter Page Introduction i Emergency Telephone Numbers ii EHS – Scope of Service iii Condensed Laboratory Safety Information for New Research Personnel v Chapter 1 – Laboratory Safety at the University of North Carolina at Chapel Hill 1-1 Chapter 2 – Laboratory Safety Plan 2-1 Chapter 3 – General Safety Principles and Practices 3-1 Chapter 4 – Proper Storage of Chemicals in Laboratories 4-1 Chapter 5 – Protective Clothing and Equipment 5-1 Chapter 6 – Safe Handling of Chemicals 6-1 Chapter 7 – Highly Toxic Chemicals and Select Carcinogens 7-1 Chapter 8 – Reproductive Health 8-1 Chapter 9 – Controlled Substances 9-1 Chapter 10 – Fire Safety 10-1 Chapter 11 – Explosive and Reactive Chemical Hazards 11-1 Chapter 12 – Management of Laboratory Wastes 12-1 Chapter 13 – Safe Handling of Peroxidizable Compounds 13-1 Chapter 14 – Safe Handling of Laboratory Animals 14-1 Chapter 15 – Safe Handling of Biological Hazards 15-1 Chapter 16 – Biological Safety Cabinets 16-1 Chapter 17 – Laboratory Hoods 17-1 Chapter 18 – Safe Use of Nanomaterials 18-1 Revisions to Laboratory Safety Manual REV-1 Laboratory Safety Manual – the University of North Carolina at Chapel Hill INTRODUCTION This manual is a safety reference document for laboratory personnel at the University of North Carolina at Chapel Hill. The University’s Department of Environment, Health & Safety prepared this manual, followed by review and approval from both the University’s Laboratory and Chemical Safety Committee (LCSC) and the University Safety and Security Committee (USSC).
    [Show full text]
  • Recycling of Hazardous Waste from Tertiary Aluminium Industry in A
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSIC 1 Recycling of hazardous waste from tertiary aluminium 2 industry in a value-added material 3 4 Laura Gonzalo-Delgado1, Aurora López-Delgado1*, Félix Antonio López1, Francisco 5 José Alguacil1 and Sol López-Andrés2 6 7 1Nacional Centre for Metallurgical Research, CSIC. Avda. Gregorio del Amo, 8. 28040. 8 Madrid. Spain. 9 2Dpt. Crystallography and Mineralogy. Fac. of Geology. University Complutense of 10 Madrid. Spain. 11 *Corresponding author e-mail: [email protected] 12 13 Abstract 14 15 The recent European Directive on waste, 2008/98/EC seeks to reduce the 16 exploitation of natural resources through the use of secondary resource management. 17 Thus the main objective of this paper is to explore how a waste could cease to be 18 considered as waste and could be utilized for a specific purpose. In this way, a 19 hazardous waste from the tertiary aluminium industry was studied for its use as a raw 20 material in the synthesis of an added value product, boehmite. This waste is classified as 21 a hazardous residue, principally because in the presence of water or humidity, it releases 22 toxic gases such as hydrogen, ammonia, methane and hydrogen sulphide. The low 23 temperature hydrothermal method developed permits the recovery of 90% of the 24 aluminium content in the residue in the form of a high purity (96%) AlOOH (boehmite). 25 The method of synthesis consists of an initial HCl digestion followed by a gel 26 precipitation. In the first stage a 10% HCl solution is used to yield a 12.63 g.l-1 Al3+ 27 solution.
    [Show full text]
  • Food, Food Chemistry and Gustatory Sense
    Food, Food Chemistry and Gustatory Sense COOH N H María González Esguevillas MacMillan Group Meeting May 12th, 2020 Food and Food Chemistry Introduction Concepts Food any nourishing substance eaten or drunk to sustain life, provide energy and promote growth any substance containing nutrients that can be ingested by a living organism and metabolized into energy and body tissue country social act culture age pleasure election It is fundamental for our life Food and Food Chemistry Introduction Concepts Food any nourishing substance eaten or drunk to sustain life, provide energy and promote growth any substance containing nutrients that can be ingested by a living organism and metabolized into energy and body tissue OH O HO O O HO OH O O O limonin OH O O orange taste HO O O O 5-caffeoylquinic acid Coffee taste OH H iPr N O Me O O 2-decanal Capsaicinoids Coriander taste Chilli burning sensation Astray, G. EJEAFChe. 2007, 6, 1742-1763 Food and Food Chemistry Introduction Concepts Food Chemistry the study of chemical processes and interactions of all biological and non-biological components of foods biological substances areas food processing techniques de Man, J. M. Principles of Food Chemistry 1999, Springer Science Fennema, O. R. Food Chemistry. 1985, 2nd edition New York: Marcel Dekker, Inc Food and Food Chemistry Introduction Concepts Food Chemistry the study of chemical processes and interactions of all biological and non-biological components of foods biological substances areas food processing techniques carbo- hydrates water minerals lipids flavors vitamins protein food enzymes colors additive Fennema, O. R. Food Chemistry.
    [Show full text]
  • Chemistry Workbook
    Bridging the gap 2020 Ripon Grammar School 1 2 Introduction Advanced level Chemistry is a demanding and exciting course. In order to be prepared for your start in September a number of areas from GCSE chemistry are needed to be ‘known’ thoroughly. To help you make the transition as smoothly as possible we have put together this series of exercises. When you start in September you will be expected to have completed the exercises within this booklet and know the material within. It is by no means ALL you need to know but the very foundations of the exciting journey you are about to start. If you have difficulties or confusions there are a number of suggested online resources you could try. There will be opportunities to discuss concerns with staff at the beginning of the year but you should have made significant headway independently. This booklet contains some notes to act as a reminder. If you struggle with a particular area you should investigate the suggested support resources including your GCSE notes. There are exercises for you to complete, the answers are at the end. Contents Periodic Table 2 Topics Writing formulae 4 Equations 7 Moles 10 Atomic Structure 15 Identifying Bonding and Structure types 19 Answers to exercises 20 3 Writing formulae Objectives: • Know the common ions • Be able to construct formulae for common ionic substances • Know the formulae of some common covalent substances Common Ions (you need to know these): Putting together an ionic formula: The charges must balance. Molecular ions will need to be contained in brackets.
    [Show full text]
  • Association of Three Biomarkers of Nicotine As Pharmacogenomic Indices of Cigarette Consumption in Military Populations DISSERTA
    Association of Three Biomarkers of Nicotine as Pharmacogenomic Indices of Cigarette Consumption in Military Populations DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By William Arthur Matcham Graduate Program in Nursing The Ohio State University 2014 Dissertation Committee: Professor Karen L. Ahijevych, PhD, Advisor Professor Donna L. McCarthy, PhD Professor Kristine Browning, PhD Professor Yvette Conley, PhD Copyright by William Arthur Matcham 2014 ABSTRACT Tobacco-related diseases have reached epidemic proportions. There is no risk-free level of tobacco exposure. In the United States, tobacco use is the single largest preventable cause of death and disease in both men and women. Cigarette smoking alone accounts for approximately 443,000 deaths per year (one fifth of total US deaths) costing a staggering $193 billion per year in avoidable healthcare expenses and lost productivity. Literature shows military populations have rates of tobacco use two to three times higher than the civilian population. Military personnel returning from deployment in conflict areas can exceed 50% smoking prevalence. Research shows that genetic factors account for 40-70% of variation in smoking initiation and 50-60% of variance in cessation success. In the U.S., tobacco is responsible for more deaths than alcohol, AIDS, car accidents, illegal drugs, murders and suicides combined. This descriptive, cross-sectional study examined three of the biological markers used in tobacco research: the α4β2 brain nicotinic receptors (nAChR) that contribute to genetic risk for nicotine dependence, nicotine metabolite ratio (NMR) as a phenotypic marker for CYP2A6 activity, and bitter taste phenotype (BTP) to determine their impact on cigarette consumption in military populations.
    [Show full text]
  • Taste Sensibility to Phenylthiocarbamide and Its Relationship to Food Preferences
    127 ORIGINAL ARTICLE Taste sensibility to phenylthiocarbamide and its relationship to food preferences Sensibilidade à feniltiocarbamida e sua relação com a preferência alimentar Marcela Maria Pandolfi1. Charles Yea Zen Chow2. Luciana Sayumi Fugimoto Higashi2. Ana Thamilla Fonseca2. Myllena de Andrade Cunha2. Carolina Nunes França1,3. Patrícia Colombo-Souza1. 1 Post Graduation Program on Health Sciences, Santo Amaro University (UNISA). 2 Medicine Students, Santo Amaro University (UNISA). 3 Cardiology Division, Federal University of São Paulo (UNIFESP). ABSTRACT Introduction: Foods like cabbage, broccoli, pepper and wine, containing proteins such as phenylthiocarbamide (PTC), cause a bitter taste in some people. Studies showed the relation between tasting profile and the development of obesity, and consequently leading to cardiovascular disease. Objective: Compare the differences in the taste sensibility to PTC present in some foods in individuals classified according to the nutritional status. Methods: One hundred fifty-three patients classified as eutrophic, overweight or obese received one drop of each PTC solution in the tongue, since the most diluted to the individual perception to bitter taste, in a total of 15 increasing grades. Results: Participants were predominantly middle-aged females, eutrophics and supertasters. It was found a correlation between PTC solution and red wine in the three groups evaluated (eutrophic, obese and overweight). Besides, eutrophic and obese that disliked wine had more sensibility to PTC. Conclusion: Our main finding showed that eutrophic and obese that disliked red wine had more sensibility to PTC. We did not find differences in the sensitivity to PTC for the other foods analyzed (fried foods, fruit and vegetables). Keywords: Taste sensibility.
    [Show full text]
  • Public Health Goal for ANTIMONY in Drinking Water
    Public Health Goal for ANTIMONY in Drinking Water Prepared by Pesticide and Environmental Toxicology Section Office of Environmental Health Hazard Assessment California Environmental Protection Agency December 1997 LIST OF CONTRIBUTORS PHG PROJECT MANAGEMENT REPORT PREPARATION SUPPORT Project Officer Author Administrative Support Anna Fan, Ph.D. Lubow Jowa, Ph.D. Edna Hernandez Coordinator Chemical Prioritization Primary Reviewer Laurie Bliss Report Outline Robert Brodberg, Ph.D. Sharon Davis Joseph Brown, Ph.D. Kathy Elliott Coordinator Secondary Reviewer Vickie Grayson David Morry, Ph.D. Michael DiBartolomeis, Ph.D. Michelle Johnson Yi Wang, Ph.D. Juliet Rafol Final Reviewers Genevieve Shafer Document Development Anna Fan, Ph.D. Tonya Turner Michael DiBartolomeis, Ph.D. William Vance, Ph.D. Coordinator Library Support George Alexeeff, Ph.D. Editor Mary Ann Mahoney Hanafi Russell, M.S. Michael DiBartolomeis, Ph.D. Valerie Walter Yi Wang, Ph.D. Website Posting Public Workshop Robert Brodberg, Ph.D. Michael DiBartolomeis, Ph.D. Edna Hernandez Coordinator Laurie Monserrat, M.S. Judy Polakoff, M.S. Judy Polakoff, M.S. Organizer Hanafi Russell, M.S. Methodology/Approaches/ Review Comments Joseph Brown, Ph.D. Robert Howd, Ph.D. Coordinators Lubow Jowa, Ph.D. David Morry, Ph.D. Rajpal Tomar, Ph.D. Yi Wang, Ph.D. We thank the U.S. EPA’s Office of Water, Office of Pollution Prevention and Toxic Substances, and National Center for Environmental Assessment for their peer review of the PHG documents, and the comments received from all interested parties. ANTIMONY in Drinking Water ii December 1997 California Public Health Goal (PHG) PREFACE Drinking Water Public Health Goal of the Office of Environmental Health Hazard Assessment This Public Health Goal (PHG) technical support document provides information on health effects from contaminants in drinking water.
    [Show full text]
  • Chemical Formula of Binary Ionic Compounds – Sheet 1 the Combining Power Or Valency of Silver Is Always 1
    Chemical Formula of Binary Ionic Compounds – Sheet 1 The combining power or valency of silver is always 1. All other transition metals are 2 unless otherwise indicated. No. Binary compound Formula No. Binary compound Formula 1 potassium fluoride 26 calcium sulfide 2 calcium chloride 27 lithium bromide 3 barium bromide 28 nickel sulfide 4 silver sulfide 29 zinc phosphide 5 aluminium iodide 30 barium iodide 6 potassium iodide 31 caesium chloride 7 lead(IV) oxide 32 copper bromide 8 zinc nitride 33 sodium nitride 9 silver iodide 34 silver chloride 10 barium fluoride 35 sodium hydride 11 lead(II) iodide 36 potassium nitride 12 silver fluoride 37 cobalt chloride 13 sodium sulfide 38 magnesium sulfide 14 sodium bromide 39 potassium chloride 15 calcium oxide 40 calcium bromide 16 zinc fluoride 41 iron(III) oxide 17 strontium phosphide 42 aluminium fluoride 18 barium sulfide 43 magnesium bromide 19 aluminium oxide 44 iron(III) chloride 20 aluminium chloride 45 barium nitride 21 aluminium sulfide 46 sodium fluoride 22 lead(II) oxide 47 lithium fluoride 23 barium chloride 48 lithium iodide 24 copper chloride 49 lithium hydride 25 barium phosphide 50 potassium oxide “Aluminum” and “cesium” are commonly used alternative spellings for "aluminium" and "caesium that are used in the US. May be freely copied for educational use. ©www.chemicalformula.org Chemical Formula of Binary Ionic Compounds – Sheet 2 The combining power or valency of silver is always 1. All other transition metals are 2 unless otherwise indicated. No. Binary compound Formula No.
    [Show full text]
  • Table of Contents
    UNIVERSITY OF MISSOURI-KANSAS CITY CHEMICAL MANAGEMENT PLAN Revised May 2016 UMKC CHEMICAL MANAGEMENT PLAN This document constitutes the Chemical Management Plan (CMP) for the University of Missouri-Kansas City (UMKC). It was developed by the Environmental Health and Safety Department (EHS), to ensure the safe and proper use of hazardous and non- hazardous chemicals and to comply with applicable governmental regulations addressing the disposal of these chemicals. In addition, it was developed to foster waste minimization, and to provide the faculty and the staff with a management program to reduce the potential for accidents involving hazardous chemicals and/or wastes. Elements of the CMP include: a. a procedure for identifying potential or actual hazardous chemicals or wastes b. a procedure for periodic reexamination of those hazardous chemicals or wastes identified by the procedure in (a.) above as well as a systematic method for identification and evaluation of any new potential or actual hazardous chemicals or wastes c. procedures for labeling, and inventorying hazardous chemicals or wastes d. a procedure for identification and training of personnel directly responsible for ensuring that (a.), (b.), and (c.) are implemented e. a procedure for monitoring, recording, and reporting compliance with the CMP f. a procedure by which information generated by the CMP is provided to the persons performing waste analyses Each element is addressed as part of the complete CMP in the following paragraphs. 4 Table of Contents 1 Definitions 7 2 Identification
    [Show full text]
  • PHENYLTHIOCARBAMIDE NON-TASTING AMONG CONGENITAL ATHYROTIC CRETINS: FURTHER STUDIES in an ATTEMPT to EXPLAIN the INCREASED INCIDENCE * by THOMAS H
    PHENYLTHIOCARBAMIDE NON-TASTING AMONG CONGENITAL ATHYROTIC CRETINS: FURTHER STUDIES IN AN ATTEMPT TO EXPLAIN THE INCREASED INCIDENCE * By THOMAS H. SHEPARD, IIt (From the Department of Pediatrics, University of Washinigton, Seattle, Wash.) (Submitted for publication March 17, 1961; accepted May 18, 1961) Phenylthiocarbamide (PTC) is a chemical com- quently numbered solution is one-half the strength of pound which is bitter-tasting to approximately 70 the preceding concentration. If a subject is able to taste (1). The only one of the concentrated solutions (1 through 4), he per cent of white North Americans is designated a non-taster, whereas if his threshold is at remaining 30 per cent has a discrete reduction in dilution 5 through 14, he is a taster. Plastic squirt bottles taste threshold. This non-tasting trait is inherited facilitated the procedure. By testing the parents first, as a probable mendelian autosomal recessive the interest and cooperation of the child was often stimu- (2-4). A common thiionamide group structurally lated. For the adults, the taste threshold was deter- relates phenylthiocarbamide to thiourea, propyl- mined by finding the weakest concentration at which they could differentiate 4 beakers of water from 4 beakers of thiouracil and goitrin (see Figure 1). These four substances are also similar in their ability to in- Thiourea terfere with the synthesis of thyroid hormone, an H2N-C -NH2 action which leads to thyroid hypertrophy. PTC non-tasting has been shown to be more Propylthiouracil S common in adult euthyroid patients with goiters CH3-CH2-CH2- CH-CH2--C=O I I (5, 6).
    [Show full text]
  • ANTIMONY by James F
    ANTIMONY By James F. Carlin, Jr. Domestic survey data and tables were prepared by Mahbood Mahdavi, statistical assistant, and the world production table was prepared by Regina R. Coleman, international data coordinator. More than one-half of the primary antimony used in the merging operations with Laurel, the unified operation would United States during 2004 went into flame-retardants; most of increase its competitive position. manufacturing for the joint the remainder was used by the ceramic, chemical, glass, and venture will be consolidated into the existing Great Lakes transportation industries. Secondary antimony, which was antimony production facility in Reynosa, mexico. the Laurel derived almost entirely from recycled lead-acid batteries, was production facility in La Porte, tX, which employed 4 people, used in the manufacture of new batteries. in 2004, the average ceased production by yearend 2004; production of raw materials price of antimony was 20% higher than that of 2003. for flame-retardants and catalyst grades of antimony oxide was There was no domestic antimony mine production during the transferred to the Great Lakes facility in mexico (Great Lakes year. most primary antimony metal and oxide were produced Chemical Corp., 2004). domestically from imported raw material. most domestic At yearend 2004, the United States had only one antimony smelting consisted of upgrading imported antimony trioxide to a smelter, the United States Antimony Corp. (USAC), based in higher purity. Primary antimony metal and oxide were produced Montana. USAC produced antimony metal for bearings, lead by two companies operating two plants––one in montana and alloys, and ordnance; antimony oxide as a raw material for one in texas.
    [Show full text]