Patterns & Methods for Corpus Linguistic Database Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Talk Bank: a Multimodal Database of Communicative InteractionTalk Bank: A Multimodal Database of Communicative Interaction 1. Overview The ongoing growth in computer power and connectivity has led to dramatic changes in the methodology of science and engineering. By stimulating fundamental theoretical discoveries in the analysis of semistructured data, we can to extend these methodological advances to the social and behavioral sciences. Specifically, we propose the construction of a major new tool for the social sciences, called TalkBank. The goal of TalkBank is the creation of a distributed, web- based data archiving system for transcribed video and audio data on communicative interactions. We will develop an XML-based annotation framework called Codon to serve as the formal specification for data in TalkBank. Tools will be created for the entry of new and existing data into the Codon format; transcriptions will be linked to speech and video; and there will be extensive support for collaborative commentary from competing perspectives. The TalkBank project will establish a framework that will facilitate the development of a distributed system of allied databases based on a common set of computational tools. Instead of attempting to impose a single uniform standard for coding and annotation, we will promote annotational pluralism within the framework of the abstraction layer provided by Codon. This representation will use labeled acyclic digraphs to support translation between the various annotation systems required for specific sub-disciplines. There will be no attempt to promote any single annotation scheme over others. Instead, by promoting comparison and translation between schemes, we will allow individual users to select the custom annotation scheme most appropriate for their purposes.
- 
												  Arabic Corpus and Word SketchesJournal of King Saud University – Computer and Information Sciences (2014) 26, 357–371 King Saud University Journal of King Saud University – Computer and Information Sciences www.ksu.edu.sa www.sciencedirect.com arTenTen: Arabic Corpus and Word Sketches Tressy Arts a, Yonatan Belinkov b, Nizar Habash c,*, Adam Kilgarriff d, Vit Suchomel e,d a Chief Editor Oxford Arabic Dictionary, UK b MIT, USA c New York University Abu Dhabi, United Arab Emirates d Lexical Computing Ltd, UK e Masaryk Univ., Czech Republic Available online 7 October 2014 KEYWORDS Abstract We present arTenTen, a web-crawled corpus of Arabic, gathered in 2012. arTenTen con- Corpora; sists of 5.8-billion words. A chunk of it has been lemmatized and part-of-speech (POS) tagged with Lexicography; the MADA tool and subsequently loaded into Sketch Engine, a leading corpus query tool, where it Morphology; is open for all to use. We have also created ‘word sketches’: one-page, automatic, corpus-derived Concordance; summaries of a word’s grammatical and collocational behavior. We use examples to demonstrate Arabic what the corpus can show us regarding Arabic words and phrases and how this can support lexi- cography and inform linguistic research. The article also presents the ‘sketch grammar’ (the basis for the word sketches) in detail, describes the process of building and processing the corpus, and considers the role of the corpus in additional research on Arabic. Ó 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University. 1. Introduction ber of the TenTen Corpus Family (Jakubı´cˇek et al., 2013).
- 
												  Collection of Usage Information for Language Resources from Academic ArticlesCollection of Usage Information for Language Resources from Academic Articles Shunsuke Kozaway, Hitomi Tohyamayy, Kiyotaka Uchimotoyyy, Shigeki Matsubaray yGraduate School of Information Science, Nagoya University yyInformation Technology Center, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan yyyNational Institute of Information and Communications Technology 4-2-1 Nukui-Kitamachi, Koganei, Tokyo, 184-8795, Japan fkozawa,[email protected], [email protected], [email protected] Abstract Recently, language resources (LRs) are becoming indispensable for linguistic researches. However, existing LRs are often not fully utilized because their variety of usage is not well known, indicating that their intrinsic value is not recognized very well either. Regarding this issue, lists of usage information might improve LR searches and lead to their efficient use. In this research, therefore, we collect a list of usage information for each LR from academic articles to promote the efficient utilization of LRs. This paper proposes to construct a text corpus annotated with usage information (UI corpus). In particular, we automatically extract sentences containing LR names from academic articles. Then, the extracted sentences are annotated with usage information by two annotators in a cascaded manner. We show that the UI corpus contributes to efficient LR searches by combining the UI corpus with a metadata database of LRs and comparing the number of LRs retrieved with and without the UI corpus. 1. Introduction Thesaurus1. In recent years, such language resources (LRs) as corpora • He also employed Roget’s Thesaurus in 100 words of and dictionaries are being widely used for research in the window to implement WSD.
- 
												  From CHILDES to TalkbankFrom CHILDES to TalkBank Brian MacWhinney Carnegie Mellon University MacWhinney, B. (2001). New developments in CHILDES. In A. Do, L. Domínguez & A. Johansen (Eds.), BUCLD 25: Proceedings of the 25th annual Boston University Conference on Language Development (pp. 458-468). Somerville, MA: Cascadilla. a similar article appeared as: MacWhinney, B. (2001). From CHILDES to TalkBank. In M. Almgren, A. Barreña, M. Ezeizaberrena, I. Idiazabal & B. MacWhinney (Eds.), Research on Child Language Acquisition (pp. 17-34). Somerville, MA: Cascadilla. Recent years have seen a phenomenal growth in computer power and connectivity. The computer on the desktop of the average academic researcher now has the power of room-size supercomputers of the 1980s. Using the Internet, we can connect in seconds to the other side of the world and transfer huge amounts of text, programs, audio and video. Our computers are equipped with programs that allow us to view, link, and modify this material without even having to think about programming. Nearly all of the major journals are now available in electronic form and the very nature of journals and publication is undergoing radical change. These new trends have led to dramatic advances in the methodology of science and engineering. However, the social and behavioral sciences have not shared fully in these advances. In large part, this is because the data used in the social sciences are not well- structured patterns of DNA sequences or atomic collisions in super colliders. Much of our data is based on the messy, ill-structured behaviors of humans as they participate in social interactions. Categorizing and coding these behaviors is an enormous task in itself.
- 
												  Jazykovedný Ústav Ľudovíta ŠtúraJAZYKOVEDNÝ ÚSTAV ĽUDOVÍTA ŠTÚRA SLOVENSKEJ AKADÉMIE VIED 2 ROČNÍK 70, 2019 JAZYKOVEDNÝ ČASOPIS ________________________________________________________________VEDEcKÝ ČASOPIS PRE OTáZKY TEóRIE JAZYKA JOURNAL Of LINGUISTIcS ScIENTIfIc JOURNAL fOR ThE Theory Of LANGUAGE ________________________________________________________________ hlavná redaktorka/Editor-in-chief: doc. Mgr. Gabriela Múcsková, PhD. Výkonní redaktori/Managing Editors: PhDr. Ingrid Hrubaničová, PhD., Mgr. Miroslav Zumrík, PhD. Redakčná rada/Editorial Board: PhDr. Klára Buzássyová, CSc. (Bratislava), prof. PhDr. Juraj Dolník, DrSc. (Bratislava), PhDr. Ingrid Hrubaničová, PhD. (Bra tislava), doc. Mgr. Martina Ivanová, PhD. (Prešov), Mgr. Nicol Janočková, PhD. (Bratislava), Mgr. Alexandra Jarošová, CSc. (Bratislava), prof. PaedDr. Jana Kesselová, CSc. (Prešov), PhDr. Ľubor Králik, CSc. (Bratislava), PhDr. Viktor Krupa, DrSc. (Bratislava), doc. Mgr. Gabriela Múcsková, PhD. (Bratislava), Univ. Prof. Mag. Dr. Stefan Michael Newerkla (Viedeň – Ra- kúsko), Associate Prof. Mark Richard Lauersdorf, Ph.D. (Kentucky – USA), prof. Mgr. Martin Ološtiak, PhD. (Prešov), prof. PhDr. Slavomír Ondrejovič, DrSc. (Bratislava), prof. PaedDr. Vladimír Patráš, CSc. (Banská Bystrica), prof. PhDr. Ján Sabol, DrSc. (Košice), prof. PhDr. Juraj Vaňko, CSc. (Nitra), Mgr. Miroslav Zumrík, PhD. (Bratislava), prof. PhDr. Pavol Žigo, CSc. (Bratislava). Technický_______________________________________________________________ redaktor/Technical editor: Mgr. Vladimír Radik Vydáva/Published by: Jazykovedný
- 
												  The British National Corpus Revisited: Developing Parameters for Written BNC2014 Abi Hawtin (Lancaster University, UK)The British National Corpus Revisited: Developing parameters for Written BNC2014 Abi Hawtin (Lancaster University, UK) 1. The British National Corpus 2014 project The ESRC Centre for Corpus Approaches to Social Science (CASS) at Lancaster University and Cambridge University Press are working together to create a new, publicly accessible corpus of contemporary British English. The corpus will be a successor to the British National Corpus, created in the early 1990s (BNC19941). The British National Corpus 2014 (BNC2014) will be of the same order of magnitude as BNC1994 (100 million words). It is currently projected that the corpus will reach completion in mid-2018. Creation of the spoken sub-section of BNC2014 is in its final stages; this paper focuses on the justification and development of the written sub- section of BNC2014. 2. Justification for BNC2014 There are now many web-crawled corpora of English, widely available to researchers, which contain far more data than will be included in Written BNC2014. For example, the English TenTen corpus (enTenTen) is a web-crawled corpus of Written English which currently contains approximately 19 billion words (Jakubíček et al., 2013). Web-crawling processes mean that this huge amount of data can be collected very quickly; Jakubíček et al. (2013: 125) note that “For a language where there is plenty of material available, we can gather, clean and de-duplicate a billion words a day.” So, with extremely large and quickly-created web-crawled corpora now becoming commonplace in corpus linguistics, the question might well be asked why a new, 100 million word corpus of Written British English is needed.
- 
												  Comprehensive and Consistent Propbank Light Verb Annotation Claire Bonial,1 Martha Palmer2 1U.SComprehensive and Consistent PropBank Light Verb Annotation Claire Bonial,1 Martha Palmer2 1U.S. Army Research Laboratory, 2University of Colorado, Boulder 12800 Powder Mill Rd., Adelphi, MD, USA E-mail: [email protected], [email protected] Abstract Recent efforts have focused on expanding the annotation coverage of PropBank from verb relations to adjective and noun relations, as well as light verb constructions (e.g., make an offer, take a bath). While each new relation type has presented unique annotation challenges, ensuring consistent and comprehensive annotation of light verb constructions has proved particularly challenging, given that light verb constructions are semi-productive, difficult to define, and there are often borderline cases. This research describes the iterative process of developing PropBank annotation guidelines for light verb constructions, the current guidelines, and a comparison to related resources. Keywords: light verb constructions, semantic role labeling, NLP resources 2. PropBank Background 1. Introduction PropBank annotation consists of two tasks: sense annotation and role annotation. The PropBank lexicon The goal of PropBank (Palmer et al., 2005) is to supply provides a listing of the coarse-grained senses of a verb, consistent, general-purpose labeling of semantic roles noun, or adjective relation, and the set of roles associated across different syntactic realizations. With over two with each sense (thus, called a “roleset”). The roles are million words from diverse genres, the benchmark listed as argument numbers (Arg0 – Arg6) and annotated corpus supports the training of automatic correspond to verb-specific roles. For example: semantic role labelers, which in turn support other Natural Language Processing (NLP) areas, such as Offer-01 (transaction, proposal): machine translation.
- 
												  3 Corpus Tools for LexicographersComp. by: pg0994 Stage : Proof ChapterID: 0001546186 Date:14/5/12 Time:16:20:14 Filepath:d:/womat-filecopy/0001546186.3D31 OUP UNCORRECTED PROOF – FIRST PROOF, 14/5/2012, SPi 3 Corpus tools for lexicographers ADAM KILGARRIFF AND IZTOK KOSEM 3.1 Introduction To analyse corpus data, lexicographers need software that allows them to search, manipulate and save data, a ‘corpus tool’. A good corpus tool is the key to a comprehensive lexicographic analysis—a corpus without a good tool to access it is of little use. Both corpus compilation and corpus tools have been swept along by general technological advances over the last three decades. Compiling and storing corpora has become far faster and easier, so corpora tend to be much larger than previous ones. Most of the first COBUILD dictionary was produced from a corpus of eight million words. Several of the leading English dictionaries of the 1990s were produced using the British National Corpus (BNC), of 100 million words. Current lexico- graphic projects we are involved in use corpora of around a billion words—though this is still less than one hundredth of one percent of the English language text available on the Web (see Rundell, this volume). The amount of data to analyse has thus increased significantly, and corpus tools have had to be improved to assist lexicographers in adapting to this change. Corpus tools have become faster, more multifunctional, and customizable. In the COBUILD project, getting concordance output took a long time and then the concordances were printed on paper and handed out to lexicographers (Clear 1987).
- 
												  Università Degli Studi Di MacerataUNIVERSITÀ DEGLI STUDI DI MACERATA Dipartimento di Studi Umanistici – Lingue, Mediazione, Storia, Lettere, Filosofia Corso di Laurea Magistrale in Lingue Moderne per la Comunicazione e la Cooperazione Internazionale (ClasseLM-38) Traduzione per laComunicazione Internazionale – inglese -mod. B STRUMENTI E TECNOLOGIE PER LA TRADUZIONESPECIALISTICA 1 What is a corpus? Some (authoritative) definitions • “a collection of naturally-occurring language text, chosen to characterize a state or variety of a language” (Sinclair, 1991:171) • “a collection of texts assumed to be representative of a given language, dialect, or other subset of a language, to be used for linguistic analysis” (Francis, 1992:7) • “a closed set of texts in machine-readable form established for general or specific purposes by previously defined criteria” (Engwall, 1992:167) • “a finite-sized body of machine-readable text, sampled in order to be maximally representative of the language variety under consideration” (McEnery & Wilson, 1996:23) • “a collection of (1) machine-readable (2) authentic texts […] which is (3) sampled to be (4) representative of a particular language or language variety” (McEnery et al., 2006:5) What is / is not a corpus…? • A newspaper archive on CD-ROM? The answer is • An online glossary? always “NO” • A digital library (e.g. Project (see Gutenberg)? definition) • All RAI 1 programmes (e.g. for spoken TV language) Corpora vs. web •Corpora: – Usually stable •searches can be replicated – Control over contents •we can select the texts to be included, or have control over selection strategies – Ad-hoc linguistically-aware software to investigate them •concordancers can sort / organise concordance lines • Web (as accessed via Google or other search engines): – Very unstable •results can change at any time for reasons beyond our control – No control over contents •what/how many texts are indexed by Google’s robots? – Limited control over search results •cannot sort or organise hits meaningfully; they are presented randomly Click here for another corpus vs.
- 
												  Korpusleksikograafia Uued Võimalused Eesti Keele Kollokatsioonisõnastiku Näiteldoi:10.5128/ERYa11.05 korpuSLekSikograafia uued võimaLuSed eeSti keeLe koLLokatSiooniSõnaStiku näiteL Jelena Kallas, Kristina Koppel, Maria Tuulik Ülevaade. Artiklis tutvustame korpusleksikograafia üldisi arengu- tendentse ja uusi meetodeid. Käsitleme korpuse kui leksikograafilise 11, 75–94 EESTI RAKENDUSLINGVISTIKA ÜHINGU AASTARAAMAT info allika potentsiaali ning analüüsime, kuidas saab leksikograafilisi andmebaase pool- ja täisautomaatselt genereerida. Vaatleme, mil määral on uusi tehnoloogilisi lahendusi võimalik rakendada Eesti õppe- leksikograafias, täpsemalt eesti keele kollokatsioonisõnastiku (KOLS) koostamisel. KOLS on esimene eestikeelne sõnastik, kus rakendatakse andmebaasi automaatset genereerimist nii märksõnastiku kui ka sõnaartikli sisu (kollokatiivse info ja näitelausete) tasandil. Tutvustame sõnastiku koostamise üldisi põhimõtteid ja esitame näidisartikli.* Võtmesõnad: korpusleksikograafia, kollokatsioonisõnastik, korpus- päringusüsteem, sõnastikusüsteem, eesti keel 1. Sõnastike korpuspõhine koostamine internetiajastul: vahendid ja meetodid Korpusleksikograafia eesmärk on luua meetodid, mis võimaldaksid leksikograafilisi üksusi automaatselt tuvastada ja valida. Korpusanalüüsi tulemusi rakendatakse tänapäeval märksõnastiku loomisel, tähendusjaotuste uurimisel, leksikaalsete üksuste erinevate omaduste tuvastamisel (süntaktiline käitumine, kollokatsioonid, semantiline prosoodia eri tüüpi tekstides, leksikaal-semantilised suhted), näitelau- sete valikul ja tõlkevastete leidmisel (Kilgarriff 2013: 77). Korpuspõhine koostamine
- 
												  Exploring Methods and Resources for Discriminating Similar LanguagesExploring Methods and Resources for Discriminating Similar Languages Marco Lui♥♣, Ned Letcher♥, Oliver Adams♥, Long Duong♥♣, Paul Cook♥ and Timothy Baldwin♥♣ ♥ Department of Computing and Information Systems The University of Melbourne ♣ NICTA Victoria [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract The Discriminating between Similar Languages (DSL) shared task at VarDial challenged partici- pants to build an automatic language identification system to discriminate between 13 languages in 6 groups of highly-similar languages (or national varieties of the same language). In this paper, we describe the submissions made by team UniMelb-NLP, which took part in both the closed and open categories. We present the text representations and modeling techniques used, including cross-lingual POS tagging as well as fine-grained tags extracted from a deep grammar of English, and discuss additional data we collected for the open submissions, utilizing custom- built web corpora based on top-level domains as well as existing corpora. 1 Introduction Language identification (LangID) is the problem of determining what natural language a document is written in. Studies in the area often report high accuracy (Cavnar and Trenkle, 1994; Dunning, 1994; Grefenstette, 1995; Prager, 1999; Teahan, 2000). However, recent work has shown that high accu- racy is only achieved under ideal conditions (Baldwin and Lui, 2010), and one area that needs further work is accurate discrimination between closely-related languages (Ljubesiˇ c´ et al., 2007; Tiedemann and Ljubesiˇ c,´ 2012). The problem has been explored for specific groups of confusable languages, such as Malay/Indonesian (Ranaivo-Malancon, 2006), South-Eastern European languages (Tiedemann and Ljubesiˇ c,´ 2012), as well as varieties of English (Lui and Cook, 2013), Portuguese (Zampieri and Gebre, 2012), and Spanish (Zampieri et al., 2013).
- 
												  FERSIWN GYMRAEG ISOD the National Corpus of ContemporaryFERSIWN GYMRAEG ISOD The National Corpus of Contemporary Welsh Project Report, October 2020 Authors: Dawn Knight1, Steve Morris2, Tess Fitzpatrick2, Paul Rayson3, Irena Spasić and Enlli Môn Thomas4. 1. Introduction 1.1. Purpose of this report This report provides an overview of the CorCenCC project and the online corpus resource that was developed as a result of work on the project. The report lays out the theoretical underpinnings of the research, demonstrating how the project has built on and extended this theory. We also raise and discuss some of the key operational questions that arose during the course of the project, outlining the ways in which they were answered, the impact of these decisions on the resource that has been produced and the longer-term contribution they will make to practices in corpus-building. Finally, we discuss some of the applications and the utility of the work, outlining the impact that CorCenCC is set to have on a range of different individuals and user groups. 1.2. Licence The CorCenCC corpus and associated software tools are licensed under Creative Commons CC-BY-SA v4 and thus are freely available for use by professional communities and individuals with an interest in language. Bespoke applications and instructions are provided for each tool (for links to all tools, refer to section 10 of this report). When reporting information derived by using the CorCenCC corpus data and/or tools, CorCenCC should be appropriately acknowledged (see 1.3). § To access the corpus visit: www.corcencc.org/explore § To access the GitHub site: https://github.com/CorCenCC o GitHub is a cloud-based service that enables developers to store, share and manage their code and datasets.