Occultation Newsletter Volume 8, Number 4

Total Page:16

File Type:pdf, Size:1020Kb

Occultation Newsletter Volume 8, Number 4 Volume 11, Number 2 April 2004 $5.00 North Am./$6.25 Other Profile of (498) Tokio International Occultation Timing Association, Inc. (IOTA) In this Issue Articles Page Analysis of a Lysistrata "Blink". 4 The Probable Detection of a Moon of Asteroid 1024 Hale . 5 A Note About January 2005 Occultation Events in North America . .. 5 A Statistical Method To Differentiate An Occultation Blink From Atmospheric Scintillation When Recording On Videotape . 6 The Probable Detection of a Moon of Asteroid 98 Ianthe . .. 8 Publication Schedule of the Occultation Newsletter in 2005 . 8 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . 9 IOTA European Section (IOTA/ES) . 9 IOTA on the World Wide Web. Back Cover IOTA’s Telephone Network . Back Cover ON THE COVER: Profile of (498) Tokio Profile derived from data acquired during the 2004 February 17 (UT) occultation of 7.3-mag. SAO 119951 by (498) Tokio observed from 24 locations in Japan; it was the best-observed asteroidal occultation of 2004. This profile can be found on the WWW at: http://uchukan.satsumasendai.jp/data/occult/0402tokio.html. Data reduction by Tsutomu Hayamizu of Sendai-uchukan. Publication Date for this issue: December 2004 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date. The next issue, Volume 11, Number 3 will be published in mid January. Please send submissions for that issue to [email protected] no later than 12 January 2005. 2 Occultation Newsletter, Volume 11, Number 2, April 2004 International Occultation Timing Association, Inc. (IOTA) What to Send to Whom Membership and Subscription Information Send new and renewal memberships and subscriptions, back All payments made to IOTA must be in United States issue requests, address changes, email address changes, graze funds and drawn on a US bank, or by credit card charge to prediction requests, reimbursement requests, special requests, VISA or MasterCard. If you use VISA or MasterCard, and other IOTA business, but not observation reports, to: include your account number, expiration date, and signature. Art Lucas (Do not send credit card information through e-mail. It is Secretary & Treasurer neither secure nor safe to do so.) Make all payments to IOTA 5403 Bluebird Trail and send them to the Secretary & Treasurer at the address on Stillwater, OK 74074 USA the left. Memberships and subscriptions may be made for one Email: [email protected] or two years, only. Send ON articles and editorial matters (in electronic form) to: Occultation Newsletter subscriptions (1 year = 4 issues) John A. Graves, Editor for Occultation Newsletter, are US$20.00 per year for USA, Canada, and Mexico; and 3120 Hydes Ferry Road US$25.00 per year for all others. Single issues, including Nashville, TN 37218-3133 USA back issues, are 1/4 of the subscription price. Email: [email protected] Memberships include the Occultation Newsletter and annual Send Lunar Grazing Occultation reports to: predictions and supplements. Memberships are US$30.00 per Dr. Mitsuru Sôma year for USA, Canada, and Mexico; and US$35.00 per year V.P. for Grazing Occultation Services for all others. Observers from Europe and the British Isles National Astronomical Observatory should join the European Service (IOTA/ES). See the inside Osawa-2, Mitaka-shi back cover for more information. Tokyo 181-8588, Japan Email: [email protected] IOTA Publications Although the following are included in membership, Send interesting stories of lunar grazing occultations to: nonmembers will be charged for: Richard P. Wilds Local Circumstances for Appulses of Solar System 2541 SW Beverly Court Objects with Stars predictions US$1.00 Topeka, Kansas 66611-1114 USA Graze Limit and Profile predictions US$1.50 per graze. Email: [email protected] Papers explaining the use of the above predictions US$2.50 Send Total Occultation and copies of Lunar Grazing IOTA Observer’s Manual US$5.00 Occultation reports to: International Lunar Occultation Centre (ILOC) Asteroidal Occultation Supplements will be available for Geodesy and Geophysics Division US$2.50 from the following regional coordinators: Hydrographic Department South America--Orlando A. Naranjo; Universidad de los Tsukiji-5, Chuo-ku Andes; Dept. de Fisica; Mérida, Venezuela Tokyo, 104-0045 Japan Europe--Roland Boninsegna; Rue de Mariembourg, 33; Email: [email protected] B-6381 DOURBES; Belgium or IOTA/ES (see back cover) Send Asteroidal Appulse and Asteroidal Occultation Southern Africa--Brain Fraser - [email protected] reports to: Australia and New Zealand--Graham Blow; P.O. Box Jan Manek 2241; Wellington, New Zealand IOTA V.P. for Planetary Occultation Services Japan--Toshiro Hirose; 1-13 Shimomaruko 1-chome; Stefanik Observatory Ota-ku, Tokyo 146, Japan Petrin 205 All other areas-Jan Manek; (see address at left) 118 46 Praha 1 Czech Republic ON Publication Information Email: [email protected] Occultation Newsletter (ISSN 0737-6766) is published quarterly by the International Occultation Timing Send observations of occultations that indicate stellar Association, Inc. (IOTA), 5403 Bluebird Trail, Stillwater, duplicity to: OK 74074, USA. IOTA is a tax-exempt organization under Henk Bulder sections 501(c)(3) and 509(a)(2) of the Internal Revenue Noorderstraat 10E Code USA, and is incorporated in the state of Texas. First NL-9524 PD Buinerveen class postage paid at Stillwater, OK, USA. Printing by Tony The Netherlands Murray of Georgetown, GA, USA. Circulation: 400 Email: [email protected] Occultation Newsletter, Volume 11, Number 2, April 2004 3 International Occultation Timing Association, Inc. (IOTA) Analysis of a Lysistrata "Blink" Pixelsmart frame grabber. The several hundred images were titled and arranged for automatic analysis. An Robert L. Sandy analysis program was written in Microsoft QuickBasic 4.5. The advantage of operating in this mode was that it provided for flexible "what if" of the result. I was informed by e-mail on 11/17/03 about a possible The final analysis was done by placing a box around the occultation of the 6.6-mag, target star, SAO 144313 (Spectral star, finding its peak pixel in the box, shifting the box so Class K5--Orange) by the faint, and very fast-moving 15th-mag. that the peak pixel was in the center and summing the asteroid Lysistrata. The occultation was predicted to occur at pixels in the box. A ring of pixels around the box was about 2:20 on 11/19/03 UTC, or 8:20 p.m. CST on the evening used to subtract background signal. of the 18th. This was a very favorable time for my home location at 94d 20m 42.3s west longitude and 39d 01m 40.2s The value of the average brightness was recorded along north latitude. Also the predictions showed that the target with the peak brightness and the x,y location of the peak. star/asteroid would be at an altitude of 23-degrees at azimuth This provided some evaluation of the stability of the 240-degrees for my location. The 28% waning phase moon "seeing" as the peak moved about in the turbulent air. would not even have to be considered, since it would not rise till Typically, the peak pixel moved by as much as 5 pixels. 2:a.m. the next morning. The motion was relatively slow. It seemed to have a period of approximately one second which would seem to The predictions supplied by Steve Preston indicated that I would be explicable in terms of air turbulence. The motion in be near the extreme southern edge of the path. Also, very the x-direction was similar to that in the y-direction noteworthy, the Preston predictions showed that Lysistrata was indicating that the motion was not correlated with "really moving out" at a shadow speed of one second of time per electronic interference. degree of longitude across the earth's surface in the direction southwest to northeast. About a month before this event, I decided to purchase a twice used Celestron 8", f/10 GPS Nexstar SCT. I found that the target 50 star was on the Nexstar's menu of SAO numbered stars, --how 45 good could it get? s 40 s e 35 n t Now another noteworthy item is that I came very close to h 30 ig moving straight east to a high hill instead of staying here at home r 25 in a mobile home park, since I had thought that the target star e B 20 might be behind a tree to the southwest during the occultation ag 15 period. I'm very glad I did not, since, if I had, I most likely ver 10 A would have had a miss. 5 0 I observed using the 8-inch, f:10, Celestron Nexstar and recorded 28 29 30 31 32 33 with the PC23C camera. WWV was recorded on the audio Time, sec, after 0220 UT channel. I thought I saw a "blink" at one time and commented so on the audio recording. On replay and single step I observed what I thought was a single frame occultation. Figure 1: Brightness data during the blink On the same occasion Walt Robinson reported a 1.1 second occultation. Walt's location is about 2 miles north and 38 miles Figure 1 shows the data in a 5 second range about the west of mine. That seemed consistent with a path generally a bit identified "blink". A clear event is shown near 31 north of his location and the 24 km diameter of the asteroid. seconds. These several seconds of data provide assurance Intrigued by the "blink", Art Lucas volunteered to try to do a that the data are real and not just a statistical anomaly.
Recommended publications
  • 107 Minor Planet Bulletin 37(2010) LIGHTCURVE PHOTOMETRY of 112 IPHIGENIA Stefan Cikota Physik-Institut, Universität Zürich, W
    107 LIGHTCURVE PHOTOMETRY OF 112 IPHIGENIA Stefan Cikota Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, SWITZERLAND and Observatorio Astronomico de Mallorca 07144 Costitx, Mallorca, Illes Balears, SPAIN [email protected] Aleksandar Cikota Physik-Institut, Universität Zürich, CH-8057 Zürich, SWITZERLAND and Observatorio Astronomico de Mallorca MINOR PLANET LIGHTCURVE ANALYSIS OF 07144 Costitx, Mallorca, Illes Balears, SPAIN 347 PARIANA AND 6560 PRAVDO (Received: 19 March) Peter Caspari BDI Observatory PO Box 194 Regents Park The main-belt asteroid 112 Iphigenia was observed over NSW 2143, AUSTRALIA 6 nights between 2007 December 9 and December 14 at [email protected] the Observatorio Astronomico de Mallorca (620). From the resulting data, we determined a synodic rotation (Received: 15 January Revised: 22 February) period of 31.385 ± 0.006 h and lightcurve amplitude of 0.30 ± 0.02 mag. Minor planet 347 Pariana was observed in 2009 July and again in 2009 August and September resulting in two 122 Iphigenia was tracked over 6 nights between 2007 December complete lightcurves both with a rotational period 9 and December 14 with one, and sometimes two, identical estimate of 4.052 ± 0.002 h and amplitude of 0.5 mag. telescopes (0.30-m f/9 Schmidt-Cassegrain) located at the These data were combined with data from previous Observatorio Astronomico de Mallorca in Spain. Both were apparitions to produce estimates for a sidereal period, equipped with an SBIG STL-1001E CCD camera. Image spin axis, and shape model. Minor planet 6560 Pravdo acquisition and calibration were performed using Maxim DL. All was observed over nine nights in 2009 June and July 1593 images were unfiltered and had exposures of 60 seconds.
    [Show full text]
  • The British Astronomical Association Handbook 2017
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2017 2016 October ISSN 0068–130–X CONTENTS PREFACE . 2 HIGHLIGHTS FOR 2017 . 3 CALENDAR 2017 . 4 SKY DIARY . .. 5-6 SUN . 7-9 ECLIPSES . 10-15 APPEARANCE OF PLANETS . 16 VISIBILITY OF PLANETS . 17 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 18-19 PLANETS – EXPLANATION OF TABLES . 20 ELEMENTS OF PLANETARY ORBITS . 21 MERCURY . 22-23 VENUS . 24 EARTH . 25 MOON . 25 LUNAR LIBRATION . 26 MOONRISE AND MOONSET . 27-31 SUN’S SELENOGRAPHIC COLONGITUDE . 32 LUNAR OCCULTATIONS . 33-39 GRAZING LUNAR OCCULTATIONS . 40-41 MARS . 42-43 ASTEROIDS . 44 ASTEROID EPHEMERIDES . 45-50 ASTEROID OCCULTATIONS .. ... 51-53 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 54-56 NEO CLOSE APPROACHES TO EARTH . 57 JUPITER . .. 58-62 SATELLITES OF JUPITER . .. 62-66 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 67-76 SATURN . 77-80 SATELLITES OF SATURN . 81-84 URANUS . 85 NEPTUNE . 86 TRANS–NEPTUNIAN & SCATTERED-DISK OBJECTS . 87 DWARF PLANETS . 88-91 COMETS . 92-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (T Cassiopeiæ) . .. 103-105 EPHEMERIDES OF VISUAL BINARY STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 TIME . 110-111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 112-113 INTERNET RESOURCES . 114-115 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS / ERRATA . 116 Front Cover: Northern Lights - taken from Mount Storsteinen, near Tromsø, on 2007 February 14. A great effort taking a 13 second exposure in a wind chill of -21C (Pete Lawrence) British Astronomical Association HANDBOOK FOR 2017 NINETY–SIXTH YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 PREFACE Welcome to the 96th Handbook of the British Astronomical Association.
    [Show full text]
  • Appendix 1 1311 Discoverers in Alphabetical Order
    Appendix 1 1311 Discoverers in Alphabetical Order Abe, H. 28 (8) 1993-1999 Bernstein, G. 1 1998 Abe, M. 1 (1) 1994 Bettelheim, E. 1 (1) 2000 Abraham, M. 3 (3) 1999 Bickel, W. 443 1995-2010 Aikman, G. C. L. 4 1994-1998 Biggs, J. 1 2001 Akiyama, M. 16 (10) 1989-1999 Bigourdan, G. 1 1894 Albitskij, V. A. 10 1923-1925 Billings, G. W. 6 1999 Aldering, G. 4 1982 Binzel, R. P. 3 1987-1990 Alikoski, H. 13 1938-1953 Birkle, K. 8 (8) 1989-1993 Allen, E. J. 1 2004 Birtwhistle, P. 56 2003-2009 Allen, L. 2 2004 Blasco, M. 5 (1) 1996-2000 Alu, J. 24 (13) 1987-1993 Block, A. 1 2000 Amburgey, L. L. 2 1997-2000 Boattini, A. 237 (224) 1977-2006 Andrews, A. D. 1 1965 Boehnhardt, H. 1 (1) 1993 Antal, M. 17 1971-1988 Boeker, A. 1 (1) 2002 Antolini, P. 4 (3) 1994-1996 Boeuf, M. 12 1998-2000 Antonini, P. 35 1997-1999 Boffin, H. M. J. 10 (2) 1999-2001 Aoki, M. 2 1996-1997 Bohrmann, A. 9 1936-1938 Apitzsch, R. 43 2004-2009 Boles, T. 1 2002 Arai, M. 45 (45) 1988-1991 Bonomi, R. 1 (1) 1995 Araki, H. 2 (2) 1994 Borgman, D. 1 (1) 2004 Arend, S. 51 1929-1961 B¨orngen, F. 535 (231) 1961-1995 Armstrong, C. 1 (1) 1997 Borrelly, A. 19 1866-1894 Armstrong, M. 2 (1) 1997-1998 Bourban, G. 1 (1) 2005 Asami, A. 7 1997-1999 Bourgeois, P. 1 1929 Asher, D.
    [Show full text]
  • ABSTRACT Title of Dissertation: WATER in the EARLY SOLAR
    ABSTRACT Title of Dissertation: WATER IN THE EARLY SOLAR SYSTEM: INFRARED STUDIES OF AQUEOUSLY ALTERED AND MINIMALLY PROCESSED ASTEROIDS Margaret M. McAdam, Doctor of Philosophy, 2017. Dissertation directed by: Professor Jessica M. Sunshine, Department of Astronomy This thesis investigates connections between low albedo asteroids and carbonaceous chondrite meteorites using spectroscopy. Meteorites and asteroids preserve information about the early solar system including accretion processes and parent body processes active on asteroids at these early times. One process of interest is aqueous alteration. This is the chemical reaction between coaccreted water and silicates producing hydrated minerals. Some carbonaceous chondrites have experienced extensive interactions with water through this process. Since these meteorites and their parent bodies formed close to the beginning of the Solar System, these asteroids and meteorites may provide clues to the distribution, abundance and timing of water in the Solar nebula at these times. Chapter 2 of this thesis investigates the relationships between extensively aqueously altered meteorites and their visible, near and mid-infrared spectral features in a coordinated spectral-mineralogical study. Aqueous alteration is a parent body process where initially accreted anhydrous minerals are converted into hydrated minerals in the presence of coaccreted water. Using samples of meteorites with known bulk properties, it is possible to directly connect changes in mineralogy caused by aqueous alteration with spectral features. Spectral features in the mid-infrared are found to change continuously with increasing amount of hydrated minerals or degree of alteration. Building on this result, the degrees of alteration of asteroids are estimated in a survey of new asteroid data obtained from SOFIA and IRTF as well as archived the Spitzer Space Telescope data.
    [Show full text]
  • Index of Occultation Newsletter (ON) 1998-2009
    Index of Occultation Newsletter (ON) 1998-2009 http://www.iota-es.de/on_heritage.html Title Author Category Subject Object Volume No Page Aldebaran Graze 1998 Feb 5 Cover Profile, Chords Aldebaran, Moon 7 1 1 ESOP XVII Edwin Goffin Meeting 7 1 4 Attention Eclipse Enthusiasts Bryan Brewer Member Info Eclipse Sun 7 1 4 Good GPS Position Measurements in "Stand Alone" Mode Wolfgang Rothe Technical GPS 7 1 4 Preliminary Results of PHEMU97: A Joint Effort H. J. J. Bulder Results PHEMU, Mutual Events Jupiter, Ganymede, Io, Europa, 7 1 12 Callisto Disscussion of Timing Accuracies from TV and Other Sources Tom Harmon Technical Timing 7 1 15 Remote Video Stations Tom Campell Technical Remote Observing 7 1 16 Sun Moon Regulus 1998 August 22 Cover Sun, Moon, Regulus 7 2 1 IOTA 1998 Annual Meeting David Dunham Meeting Business Meeting 7 2 4 IOTA 1998 Annual Meeting Registration Form Meeting Business Meeting 7 2 5 IOTA Annual Meeting Lecture Proposal Form Meeting Business Meeting 7 2 6 Grazing Occultation Observations Mitsuru Soma Results Graze 7 2 7 Reports of Asteroidal Occultations in 1995 Jim Stamm Results Asteroids (654) Zelinda, (105) Artemis, 7 2 8 (106) Dione, (30) Urania, (7) Iris, (704) Interamnia, (85) Io Treasurer's Report Terri A. McManus Member Info Business Meeting 7 2 8 Tables Asteroid Occultations in 1995 Jim Stamm Results Asteroids (654) Zelinda, (30) Urania, (85) 7 2 9 Io Sad Nemws: Joaquim Soares Gracia Dies Nuno Gracias In Memoriam 7 2 10 Updates and Corrections Graze Aldebaran, Moon 7 2 10 IOTA Occultation Camera Production Scedule
    [Show full text]
  • The Minor Planet Bulletin 36, 188-190
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 37, NUMBER 3, A.D. 2010 JULY-SEPTEMBER 81. ROTATION PERIOD AND H-G PARAMETERS telescope (SCT) working at f/4 and an SBIG ST-8E CCD. Baker DETERMINATION FOR 1700 ZVEZDARA: A independently initiated observations on 2009 September 18 at COLLABORATIVE PHOTOMETRY PROJECT Indian Hill Observatory using a 0.3-m SCT reduced to f/6.2 coupled with an SBIG ST-402ME CCD and Johnson V filter. Ronald E. Baker Benishek from the Belgrade Astronomical Observatory joined the Indian Hill Observatory (H75) collaboration on 2009 September 24 employing a 0.4-m SCT PO Box 11, Chagrin Falls, OH 44022 USA operating at f/10 with an unguided SBIG ST-10 XME CCD. [email protected] Pilcher at Organ Mesa Observatory carried out observations on 2009 September 30 over more than seven hours using a 0.35-m Vladimir Benishek f/10 SCT and an unguided SBIG STL-1001E CCD. As a result of Belgrade Astronomical Observatory the collaborative effort, a total of 17 time series sessions was Volgina 7, 11060 Belgrade 38 SERBIA obtained from 2009 August 20 until October 19. All observations were unfiltered with the exception of those recorded on September Frederick Pilcher 18. MPO Canopus software (BDW Publishing, 2009a) employing 4438 Organ Mesa Loop differential aperture photometry, was used by all authors for Las Cruces, NM 88011 USA photometric data reduction. The period analysis was performed using the same program. David Higgins Hunter Hill Observatory The data were merged by adjusting instrumental magnitudes and 7 Mawalan Street, Ngunnawal ACT 2913 overlapping characteristic features of the individual lightcurves.
    [Show full text]
  • The Planetary and Lunar Ephemeris DE 421
    IPN Progress Report 42-178 • August 15, 2009 The Planetary and Lunar Ephemeris DE 421 William M. Folkner,* James G. Williams,† and Dale H. Boggs† The planetary and lunar ephemeris DE 421 represents updated estimates of the orbits of the Moon and planets. The lunar orbit is known to submeter accuracy through fitting lunar laser ranging data. The orbits of Venus, Earth, and Mars are known to subkilometer accu- racy. Because of perturbations of the orbit of Mars by asteroids, frequent updates are needed to maintain the current accuracy into the future decade. Mercury’s orbit is determined to an accuracy of several kilometers by radar ranging. The orbits of Jupiter and Saturn are determined to accuracies of tens of kilometers as a result of spacecraft tracking and modern ground-based astrometry. The orbits of Uranus, Neptune, and Pluto are not as well deter- mined. Reprocessing of historical observations is expected to lead to improvements in their orbits in the next several years. I. Introduction The planetary and lunar ephemeris DE 421 is a significant advance over earlier ephemeri- des. Compared with DE 418, released in July 2007,1 the DE 421 ephemeris includes addi- tional data, especially range and very long baseline interferometry (VLBI) measurements of Mars spacecraft; range measurements to the European Space Agency’s Venus Express space- craft; and use of current best estimates of planetary masses in the integration process. The lunar orbit is more robust due to an expanded set of lunar geophysical solution parameters, seven additional months of laser ranging data, and complete convergence.
    [Show full text]
  • Nature and Degree of Aqueous Alteration of Outer Main Belt Asteroids and CM and CI Carbonaceous Chondrites
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2013 Nature and Degree of Aqueous Alteration of Outer Main Belt Asteroids and CM and CI Carbonaceous Chondrites Driss Takir [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the The Sun and the Solar System Commons Recommended Citation Takir, Driss, "Nature and Degree of Aqueous Alteration of Outer Main Belt Asteroids and CM and CI Carbonaceous Chondrites. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/1783 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Driss Takir entitled "Nature and Degree of Aqueous Alteration of Outer Main Belt Asteroids and CM and CI Carbonaceous Chondrites." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Harry Y. McSween Jr., Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffery E. Moersch, Michael W. Guidry Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Nature and Degree of Aqueous Alteration of Outer Main Belt Asteroids and CM and CI Carbonaceous Chondrites A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Driss Takir May 2013 Copyright © 2013 by Driss Takir All rights reserved.
    [Show full text]
  • Astrometric Asteroid Masses: a Simultaneous Determination
    A&A 565, A56 (2014) Astronomy DOI: 10.1051/0004-6361/201322766 & c ESO 2014 Astrophysics Astrometric asteroid masses: a simultaneous determination Edwin Goffin Aartselaarstraat 14, 2660 Hoboken, Belgium e-mail: [email protected] Received 27 September 2013 / Accepted 18 March 2014 ABSTRACT Using over 89 million astrometric observations of 349 737 numbered minor planets, an attempt was made to determine the masses of 230 of them by simultaneously solving for corrections to all orbital elements and the masses. For 132 minor planets an acceptable result was obtained, 49 of which appear to be new. Key words. astrometry – celestial mechanics – minor planets, asteroids: general 1. Introduction substantial number of test asteroids (349 737). Section 2 explains the basic principles and problems of simultaneous asteroid mass The astrometric determination of asteroid masses is the tech- determination and in Sect. 3 the details of the actual calculations nique of calculating the mass of asteroids (hereafter called “per- are given. Section 4 briefly deals with the observations used and turbing asteroids” or “perturbers”) from the gravitational pertur- explains the statistical analysis of the residuals that was used to bations they exert on the motion of other asteroids (called “test assign weights to, or reject observations. In Sect. 5 the results asteroids”). are presented and Sect. 6 discusses them. The usual procedure to calculate the mass of one aster- Throughout this paper, asteroid masses are expressed in units oid is, first, to identify potential test asteroids by searching −10 of 10 solar masses (M) and generally given to 3 decimal for close approaches with the perturbing asteroids and then places.
    [Show full text]
  • Biographical Memoir of Asaph Hall*
    BIOGRAPHICAL MEMOIR ASAPH HALL 1829-1907 GEORGE WILLIAM HILL READ HEI-OIIK THE NATION.\I, ACADEMY OF SCIENCES AI-KH> 2:>, loos (25) 241 BIOGRAPHICAL MEMOIR OF ASAPH HALL* Tn commencing the story of a remarkable man of science, it is necessary to say something of his lineage, in spite of the gener- ally held opinion that the details of genealogy make dry read- ing, f ASAPH HALL undoubtedly descended from John Hall, called of New Haven and Wallingford to distinguish him from the other numerous John Halls of early New England (Savage makes no less than seven before 1660), and who arrived at New Haven shortly after June 4, 1639, as he is one of the after-signers of tlie New Haven Planters' Covenant. His movements before his arrival are in some obscurity. From his son Thomas of Wal- lingford receiving a grant of fifty acres of land from the General Court of the Colony at the session of October, 1698, "In consid- eration of his father's services in the Pequot war," it is inferred that he was a dweller in the colony in 1637. At this date there were only four settlements in Connecticut, and it is supposed that the John Hall of New Haven is identical with a John Hall who appears as the holder of lots in Hartford about 1635. The genealogists arc in dispute in the matter. Mr. Shepard sums up thus: John Hall came with the advance Hooker party, in 1632, or perhaps on the Griffin or the Bird (two vessels whose arrival at Massachusetts Bay is mentioned by Winthrop), September 4, 1633.
    [Show full text]
  • Cumulative Index to Volumes 1-45
    The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) ..................
    [Show full text]
  • The Minor Planet Bulletin (Warner Et Al
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 4, A.D. 2008 OCTOBER-DECEMBER 143. THE LIGHTCURVE OF ASTEROID 5331 ERIMOMISAKI 05 and Jan 09, respectively. The Vincent data were taken under poor conditions, which is reflected by the large error bars. Caleb Boe, Russell I. Durkee However, the data support the proposed period and were crucial in Shed of Science Observatory completing the curve. Analysis was performed using MPO 5213 Washburn Ave S. Minneapolis, MN 55410, USA Canopus. Silvano Casulli Acknowledgments Vallemare Di Borbona Observatory, Vallemare di Borbona, ITALY Thanks to Raoul Behrend for posting Casulli’s results on his website and for coordinating the exchange of data. Dr. Fiona Vincent School of Physics & Astronomy Special thanks to the Tzec Maun Foundation and its founder, University of St. Andrews Michael K. Wilson, for providing free access to telescopes for North Haugh, St. Andrews KY16 9SS, Scotland, UK students and researchers. David Higgins References Hunters Hill Observatory Ngunnawal, Canberra 2913 Behrend, R. (2007). Observatoire de Geneve web site, AUSTRALIA http://obswww.unige.ch/~behrend/page1cou.html (Received: 2008 June 1) Warner, B.D., Harris A.W. , Pravec, P. Kaasalainen, M., and Benner, L.A.M. (2007). Lightcurve Photometry Opportunities October-December 2007 Asteroid 5331 Erimomisaki was observed between 2007 http://minorplanetobserver.com/astlc/default.htm Nov. 30 and 2008 Jan. 9. A synodic period of 24.26 ± 0.02 h with a mean amplitude of 0.27 ± 0.02 mag was derived. Observations of 5331 Erimomisaki were carried out over ten nights between 2007 November and 2008 January.
    [Show full text]