Elucidation and Manipulation of the Hydantoin-Hydolysing Enzyme

Total Page:16

File Type:pdf, Size:1020Kb

Elucidation and Manipulation of the Hydantoin-Hydolysing Enzyme Elucidation and Manipulation of the Hydantoin- Hydrolysing Enzyme System of Agrobacterium tumefaciens RU-OR for the Biocatalytic Production of D-amino acids Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy of Rhodes University by Carol Janet Hartley July 2001 Abstract There is widespread interest in the biocatalytic production of enantiomerically pure D-amino acids for use in the synthesis of antibiotics, insecticides, herbicides, drug carriers and many other pharmaceuticals. Hydantoin-hydrolysing enzyme systems can be successfully utilised to stereoselectively convert racemic hydantoins into enantiomerically pure amino acid products. In fact, the use of microbial D-hydantoinase and D-stereoselective N-carbamoyl amino acid amidohydrolase activity to produce D-p-hydroxyphenylglycine from D,L-5-p- hydroxyphenylhydantoin has been described as one of the most successful biotechnological applications of enzyme technology developed to date. A need to utilise the novel biodiversity of South African microorganisms for the development of an indigenous process to produce enantiomerically pure amino acids was identified in 1995. Subsequently, the Rhodes Hydantoinase Group was established and several local hydantoin-hydrolysing microorganisms were isolated. The research in this study describes the isolation and selection of Agrobacterium tumefaciens RU-OR, which produced D-stereoselective hydantoin- hydrolysing activity. Characterisation of the hydantoin-hydrolysing enzyme system of RU-OR revealed novel biocatalytic properties, and potential for the application of this strain for the biocatalytic production of D-amino acids. A fundamental understanding of the regulation of hydantoin-hydrolysing enzyme activity in A. tumefaciens RU-OR was established, and utilised to produce mutant strains with altered regulation of hydantoin-hydrolysing activity. These strains were used to further elucidate the mechanisms regulating the production of hydantoins-hydrolysing activity in A. tumefaciens RU-OR cells. Overproduction of hydantoinase and N-carbamoyl-D-amino acid amidohydrolase activity in selected mutant strains resulted in efficient conversion of D,L-5-p-hydroxyphenylhydantoin to D-p-hydroxyphenylglycine. Thus the establishment of a primary understanding of the hydantoin-hydrolysing enzyme system in A. tumefaciens RU-OR could be used to manipulate the hydantoin-hydrolysing activity in RU-OR cells to produce an improved biocatalyst. The isolation of A. tumfecaiens RU-OR genes encoding for hydantoin-hydrolysing activity revealed two separate N-carbamoyl-D-amino acid amidohydrolase- encoding genes (ncaR1 and ncaR2) in this bacterium with distinct chromosomal locations, nucleotide coding sequence and predicted primary amino acid sequence. The novel biocatalytic properties of the hydantoin-hydrolysing enzyme system in A. tumefaciens RU-OR and mutant derivatives present fascinating opportunities for further elucidation of the natural function, regulation and biocatalytic potential of hydantoin-hydrolysing enzymes. Contents Table of Contents List of Figures vi List of Tables x List of Abbreviations xii Acknowledgements xiv Research Outputs xv Chapter 1: General Introduction 1.1 Introduction 2 1.2 Biocatalytic production of optically active amino acids 4 1.2.1 Biocatalytic production using L-selective hydantoin hydrolysis 8 1.2.2 Biocatalytic production using D-selective hydantoin hydrolysis 8 1.3 Properties of 5-monosubstituted hydantoin and hydantoin derivatives 9 1.4 Natural distribution of hydantoin-hydrolysing activity 10 1.4.1 L-selective hydantoin-hydrolysing enzyme systems 12 1.4.2 D-selective hydantoin-hydrolysing enzyme systems 13 1.5 Hydantoinase enzymes 15 1.5.1 L-selective and non-selective hydantoinase enzymes 17 1.5.2 O-selective hydantoinase enzymes 21 1.6 N-carbamoyl amino acid amidohydrolase enzymes 27 1.6.1 L- selective N-carbamoyl amino acid amidohydrolase enzymes 28 1.6.2 D-selective N-carbamoyl amino acid amidohydrolase enzymes 32 1.7 Hydantoinase-N-carbamoyl amino acid amidohydrolase gene fusions 39 1.8 Hydantoin racemase enzymes 40 1.9 Regulation of hydantoin-hydrolysing enzyme production 43 1.9.1 Induction 43 1.9.2 Catabolite repression 45 1.10 Evolution of hydantoin-hydrolysing enzyme systems 46 1.11 Heterologous expression of hydantoin-hydrolysing enzymes 47 1.12 Research Proposal 52 Chapter 2: Isolation of Agrobacterium tumefaciens RU-OR and optimization of resting cell biocatalytic reactions 2.1 Introduction 55 2.2 Materials and Methods 2.2.1 Isolation of hydantoin-hydrolysing bacterial strains 57 2.2.2 Culture conditions 58 2.2.3 Optimization of resting cell biocatalytic reactions 58 2.2.4 Enantiomeric resolution 58 2.2.5 Statistical Analysis 59 2.2.6 Strain identification 59 2.3 Results 60 2.3.1 Isolation of hydantoin-hydrolysing bacterial strains 60 2.3.2 Optimization of resting cell biocatalytic reactions 62 2.3.3 Identification of strain RU-OR 72 2.4 Discussion 74 Chapter 3: Regulation of hydantoin-hydrolysing activity in Agrobacterium tumefaciens RU-OR 3.1 Introduction 81 3.2 Materials and Methods 83 3.2.1 Media and culture conditions 83 3.2.2 Ammonium shock assays 84 3.2.3 Ammonium shock recovery 84 3.2.4 Resting cell biocatalytic reactions 84 3.3 Results 85 3.3.1 Regulation of hydantoin-hydrolysing activity by carbon source 85 3.3.2 Regulation of hydantoin-hydrolysing activity by nitrogen source 85 3.3.3 Induction of hydantoin-hydrolysing activity in A. tumefaciens RU-OR 91 3.4 Discussion 93 ii Chapter 4: Mutational analysis of hydantoin-hydrolysing activity in Agrobacterium tumefaciens RU-OR 4.1 Introduction 97 4.2 Materials and Methods 102 4.2.1 Bacterial strains and culture conditions 102 4.2.2 Mutagenesis of A. tumefaciens RU-OR 102 4.2.3 Isolation of inducer-independent mutant strains 103 4.2.4 Isolation of mutant strains with altered nitrogen regulation 103 4.2.5 Isolation of glutamine-dependent mutant strains 103 4.2.6 Ammonia shock and glutamine shock assays 104 4.2.7 Ammonia shock recovery 104 4.2.8 Biocatalytic resting cell reactions 104 4.2.9 Enantiomeric resolution 104 4.2.10 Glutamine synthetase enzyme assays 105 4.3 Results 105 4.3.1 Mutagenesis of A. tumefaciens RU-OR 105 4.3.2 Selection and characterization of inducer-independent mutant 106 strains 4.3.3 Selection and characterization of inducer-independent mutant 110 strains with altered nitrogen regulation 4.3.4 Hydantoinase and NCAAH activity of glutamine auxotrophic 111 mutant strains 4.3.5 Biomass yield, specific hydantoinase and specific NCAAH 116 activity in regulatory mutants during growth in (NH4)2S04 121 4.4 Discussion Chapter 5: Screening and isolation of genes encoding hydantoin­ hydrolysing activity from a genomic DNA library of A. tumefaciens RU-OR 5.1 Introduction 129 5.2 Materials and Methods 132 5.2.1 Isolation and calibration of chromosomal DNA 132 5.2.2 Construction of A. tumefaciens RU-OR genomic DNA iii library 133 5.2.3 Genomic DNA library screening (agar plate method) 134 5.2.4 Genomic DNA library screening (microtitre plate method) 135 5.2.5 Plasmid isolation and restriction fragment analysis 136 5.2.6 PCR amplification of NCAAH gene from A. tumefaciens RU-OR 136 5.2.7 Resting cell and sonicated crude extract biocatalytic reactions 137 5.2.8 Analytical methods 137 5.3 Results 138 5.3.1 ConstrucUon of a genomic library of A. tumefaciens RU-OR 138 5.3.2 Screening for genes encoding hydantoin-hydrolysing activity with MM plates containing phenol red 139 5.3.3 Screening for genes encoding hydantoin-hydrolysing activity using growth on HMM or NCMM agar plates 140 5.3.4 Screening for genes encoding hydantoin-hydrolysing activity using microtitre-plate biocatalytic assays 142 5.3.5 PCR amplification and sub-cloning of NCAAH gene from A. tumefaciens RU-OR 144 5.3.6 Comparison of the biocatalytic activity expressed by recombinant NCAAH genes 145 5.4 Discussion 148 Chapter 6: Molecular analysis of isolated clones with hydantoin­ hydrolysing activity 5.5 Introduction 153 6.2 Materials and Methods 156 6.2.1 Culture conditions 156 6.2.2 Sonicated crude extract biocatalytic reactions 156 6.2.3 Analytical methods 156 6.2.4 Molecular techniques 156 6.2.5 DNA: DNA Hybridisation 157 6.2.6 Sequence analYSis 158 6.3 Results 159 iv 6.3.1 Deletion analysis of p683-1 a 159 6.3.2 Chromosomal mapping of the nca genes from A. fumefaciens RU-OR 162 6.3.3 Molecular analysis of nca genes from A. tumefaciens RU- OR 166 6.3.4 Molecular analysis of the promotor regions upstream of NCDAAH genes 178 6.4 Discussion 180 Chapter 7: General Conclusions 7.1 The biocatalyst: selection and characterization of the hydantoin- hydrolysing enzyme system of A. fumefaciens RU-OR 187 7.2 Regulation of hydantoin-hydrolysing activity in RU-OR 189 7.3 Mutational analysis of hydantoins-hydrolysing activity in RU-OR and overproduction of hydantoin-hydrolysing enzymes 191 7.4 NCA R1 and NCA R2: Implications and Applications 192 7.5 Future Research 193 Appendices Appendix 1: List of materials 197 Appendix 2: Media 199 Appendix 3: Standard procedure for growth, harvesting and resting cell biocatalytic reactions with A. tumefapiens RU-OR 201 Appendix 4: Analytical methods 202 Appendix 5:" Alignment of 168 rRNA gene sequences 209 Appendix 6: List of primers 210 Appendix 7: Plasmids used in this study 211 Appendix 8: Sequence analysis of pGEMH1 using nested deletions, and partial DNA sequence of 5'-3' strand of pGEMH1 215 Appendix 9: Alignment of ORF nucleotide sequences encoding NCDAAH enzymes 217 References 221 v List of Figures Figure 1.1: Reaction pathway for the hydrolysis of hydantoin to form enantiomerically pure amino acids. 5 Figure 1.2: Some examples of the wide range of enantiomerically pure amino acids that can be produced by hydrolysis of hydantoin derivatives, with different R groups altering the amino acid product.
Recommended publications
  • Peptide-Based Drug Discovery Tools for Protein Post-Translational Modifications
    ANNALES UNIVERSITATIS TURKUENSIS UNIVERSITATIS ANNALES AI 642 Ville Eskonen Ville PEPTIDE-BASED DRUG DISCOVERY TOOLS FOR PROTEIN POST-TRANSLATIONAL MODIFICATIONS Ville Eskonen Painosalama Oy, Turku, Finland 2021 Finland Turku, Oy, Painosalama ISBN 978-951-29-8356-8 (PRINT) – ISBN 978-951-29-8357-5 (PDF) TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS ISSN 0082-7002 (Painettu/Print) SARJA – SER. AI OSA – TOM. 642 | ASTRONOMICA – CHEMICA – PHYSICA – MATHEMATICA | TURKU 2021 ISSN 2343-3175 (Sähköinen/Online) PEPTIDE-BASED DRUG DISCOVERY TOOLS FOR PROTEIN POST-TRANSLATIONAL MODIFICATIONS Ville Eskonen TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS SARJA – SER. AI OSA – TOM. 642 | ASTRONOMICA - CHEMICA – PHYSICA – MATHEMATICA | TURKU 2021 University of Turku Faculty of Science Department of Chemistry Detection Technology Drug Research Doctoral programme Supervised by Docent Harri Härmä, Ph.D. Kari Kopra, Ph.D. Department of Chemistry Department of Chemistry University of Turku University of Turku Turku, Finland Turku, Finland Reviewed by Professor Michael Schäferling Erik Schaefer, Ph.D. Department of Chemical Engineering AssayQuant FH Münster Marlborough, MA, USA Münster, Germany Opponent Michael G. Weller, Ph.D. Federal Institute for Materials Research and Testing (BAM) Berlin, Germany The originality of this publication has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-8356-8 (PRINT) ISBN 978-951-29-8357-5 (PDF) ISSN 0082-7002 (Painettu/Print) ISSN 2343-3175 (Sähköinen/Online) Painosalama Oy, Turku, Finland 2021 UNIVERSITY OF TURKU Faculty of Sciences Department of Chemistry Ville Eskonen: Peptide-based Drug Discovery Tools for Protein Post- Translational Modifications Doctoral Dissertation, 121 pp. Drug Research Doctoral Programme (DRDP) February 2021 ABSTRACT Bringing a new drug to the market is an expensive and long process.
    [Show full text]
  • Transcriptomic Characterization of Bradyrhizobium Diazoefficiens
    International Journal of Molecular Sciences Article Transcriptomic Characterization of Bradyrhizobium diazoefficiens Bacteroids Reveals a Post-Symbiotic, Hemibiotrophic-Like Lifestyle of the Bacteria within Senescing Soybean Nodules Sooyoung Franck 1, Kent N. Strodtman 1 , Jing Qiu 2 and David W. Emerich 1,* 1 Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA; [email protected] (S.F.); [email protected] (K.N.S.) 2 Applied Economics and Statistics, University of Delaware, Newark, DE 19716, USA; [email protected] * Correspondence: [email protected]; Tel: +1-573-882-4252 Received: 8 October 2018; Accepted: 28 November 2018; Published: 7 December 2018 Abstract: The transcriptional activity of Bradyrhizobium diazoefficens isolated from soybean nodules was monitored over the period from symbiosis to late plant nodule senescence. The bacteria retained a near constant level of RNA throughout this period, and the variation in genes demonstrating increased, decreased, and/or patterned transcriptional activity indicates that the bacteria are responding to the changing environment within the nodule as the plant cells progress from an organized cellular structure to an unorganized state of internal decay. The transcriptional variation and persistence of the bacteria suggest that the bacteria are adapting to their environment and acting similar to hemibiotrophs, which survive both as saprophytes on live plant tissues and then as necrophytes on decaying plant tissues. The host plant restrictions of symbiosis make B. diazoefficiens a highly specialized, restricted hemibiotroph. Keywords: bradyrhizobium diazoefficiens; soybean; Glycine max; nitrogen fixation; senescence; transcriptomics; hemibiotroph 1. Introduction Soybean nodules are symbiotic organs that are formed on roots by the complex interaction between soybean plants and rhizobia, nitrogen-fixing bacteria, under nitrogen-limiting conditions.
    [Show full text]
  • General Physics
    GENERAL PHYSICS I. MOLECULE MICROSCOPY Academic and Research Staff Prof. John G. King Dr. Stanley R. Rosenthal Dr. John W. Peterson Dr. James C. Weaver Graduate Students H. Frederick Dylla Dusan G. Lysy Bruce R. Silver Joseph A. Jarrell Peter W. Stephens RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH JSEP Joint Services Electronics Program (Contract DAAB07-74-C-0630) National Institutes of Health (Grants 1 PO1 HL14322-03 and 5 SO5 RR07047-08) John G. King, James C. Weaver Two basic types of microscopy, light and electron microscopy (and related ion versions), are well established, and are of importance to a diversity of applied and basic research problems. We are continuing our development of a new, third type, molecule microscopy, in which neutral molecules carry image-generating information from the sample. Neutral molecules are uniquely suited for probing interactions based on the chemistry of a sample; thus, molecule micrographs obtain contrast based on spatial variations of the permeability, diffusion, and binding of neutral molecules. For this reason, spatial variation in the permeation of molecules through a thin sample, dif- fusion along grain boundaries, binding of applied neutral molecules to a sample surface, and the existence of constituent molecules can all be revealed directly by some type of molecule microscope. Molecule microscopy should be useful in many fields of science and engineering, particularly in materials science and biology, since molecules carrying information from the sample interact through the same weak forces that are significant in deter- mining surface properties, and because the interactions are highly surface-specific (in contrast to photons and electrons which penetrate many atomic layers).
    [Show full text]
  • Colletotrichum Graminicola</Em>
    University of Kentucky UKnowledge Plant Pathology Faculty Publications Plant Pathology 3-8-2016 A Colletotrichum graminicola Mutant Deficient in the Establishment of Biotrophy Reveals Early Transcriptional Events in the Maize Anthracnose Disease Interaction Maria F. Torres University of Kentucky, [email protected] Noushin Ghaffari Texas A&M University Ester A. S. Buiate University of Kentucky, [email protected] Neil Moore University of Kentucky, [email protected] Scott chS wartz Texas A&M University FSeoe nelloxtw pa thige fors aaddndition addal aitutionhorsal works at: https://uknowledge.uky.edu/plantpath_facpub Part of the Bioinformatics Commons, Genomics Commons, Integrative Biology Commons, and Right click to open a feedback form in a new tab to let us know how this document benefits oy u. the Plant Pathology Commons Repository Citation Torres, Maria F.; Ghaffari, Noushin; Buiate, Ester A. S.; Moore, Neil; Schwartz, Scott; Johnson, Charles D.; and Vaillancourt, Lisa J., "A Colletotrichum graminicola Mutant Deficient in the Establishment of Biotrophy Reveals Early Transcriptional Events in the Maize Anthracnose Disease Interaction" (2016). Plant Pathology Faculty Publications. 53. https://uknowledge.uky.edu/plantpath_facpub/53 This Article is brought to you for free and open access by the Plant Pathology at UKnowledge. It has been accepted for inclusion in Plant Pathology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Maria F. Torres, Noushin Ghaffari, Ester A. S. Buiate, Neil Moore, Scott chS wartz, Charles D. Johnson, and Lisa J. Vaillancourt A Colletotrichum graminicola Mutant Deficient in the Establishment of Biotrophy Reveals Early Transcriptional Events in the Maize Anthracnose Disease Interaction Notes/Citation Information Published in BMC Genomics, v.17, 202, p.
    [Show full text]
  • Uracil and Beta-Alanine Degradation in Saccharomyces Kluyveri - Discovery of a Novel Catabolic Pathway
    Downloaded from orbit.dtu.dk on: Sep 30, 2021 Uracil and beta-alanine degradation in Saccharomyces Kluyveri - discovery of a novel catabolic pathway Andersen, Gorm Publication date: 2006 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Andersen, G. (2006). Uracil and beta-alanine degradation in Saccharomyces Kluyveri - discovery of a novel catabolic pathway. Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Uracil and beta-alanine degradation in Saccharomyces kluyveri - Discovery of a novel catabolic pathway Ph.D. Thesis Gorm Andersen BioCentrum-DTU Technical University of Denmark May 2006 PREFACE The thesis presented here is a part of the requirements for the Ph.D. degree under the ”Chemistry and Biotechnology Programme” at the Technical University of Denmark (DTU). Since October 2002, I have been enrolled at BioCentrum-DTU. The study was financed by DTU and has been carried out under supervision of former Associate Professor at BioCentrum-DTU, (now Professor at Department of Cell and Organism Biology, Lund University, Sweden) Jure Piskur.
    [Show full text]
  • Study on Yeast Enzymes Urc1p and Urc4p in a Novel Uracil Catabolic Pathway (URC)
    Study on yeast enzymes Urc1p and Urc4p in a novel uracil catabolic pathway (URC) Dineshkumar Kandasamy Degree project in molecular biotechnology, 2012 Examensarbete i molekylär bioteknik 45 hp till masterexamen, 2012 Biology Education Centre, Uppsala University, and Department of Biology, Lund University Supervisors: Jure Piškur and Anna Rasmussen ABSTRACT Purine and pyrimidine bases are central precursors of DNA and RNA and their intracellular concentration is balanced by three pathways- de novo, salvage and catabolic pathways. Uracil catabolism pathway has been found in several bacteria and in some fungi (including yeast). Seven genes, URC1-7 have been found to be involved in this novel pathway. There are two “unknown genes” in the yeast Saccharomyces (Lachancea) kluyveri, namely URC1 and URC4, which play a central role in this pathway and their exact function remains a mystery. In this project, two S. kluyveri genes, URC1&URC4, were over-expressed in the bacterial system and successfully purified. Our preliminary functional assay showed that uridine monophosphate (UMP) is a likely substrate for Urc1p at pH 7, 25ºC. It was shown clearly that both uracil and uridine were not the substrate for Urc1p.We tried to phosphorylate chemically synthesized ribosylurea (RU) using Drosophila melanogaster deoxyribonucleoside kinase and compared the activity between phosphorylated and non- phosphorylated RU at different conditions. Phosphorylated ribosylurea seemed to be a likely substrate for Urc4p at pH 7, 37ºC. Keywords: Uridine monophosphate (UMP), ribosylurea (RU), uracil catabolism. Study on yeast enzymes Urc1p and Urc4p in a novel uracil catabolic pathway (URC) Popular science summary Dineshkumar Kandasamy Purines and pyrimidines are important constituent of nucleic acids and they are called building blocks of DNA and RNA.
    [Show full text]
  • University of London Thesis
    REFERENCE ONLY UNIVERSITY OF LONDON THESIS Degree Year^^0^ Name of Author C O P Y R IG H T This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOANS Theses may not be lent to individuals, but the Senate House Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: Inter-Library Loans, Senate House Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the Senate House Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962. Permission granted only upon the prior written consent of the author. (The Senate House Library will provide addresses where possible). B. 1962- 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration. D. 1989 onwards. Most theses may be copied.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
    USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol.
    [Show full text]
  • 257 Absolute Configuration 39, 75 – of L-(+)-Alanine 83
    257 Index a L-aminoacylase 246 absolute configuration 39, 75 amount of substance 12 –ofL-(+)-alanine 83 asymmetric atom 39 – by anomalous dispersion effect in X-ray asymmetric disequilibrating transformation crystallography 78 151 – by chemical correlation 79 asymmetric induction 143 – correlation strategies 80 – of second kind 151 – by direct methods 78 asymmetric synthesis 139 – extended sense of 77 asymmetric transformation –ofD-glyceraldehyde 39 – of second kind 151 –ofD-(+)-glyceraldehyde 77 asymmetric transformation of the second kind – by indirect methods 79 173 –ofD-(–)-lactic acid 81 atropisomer 44, 73 – methods of determination 78 atropisomerism 24, 71 – of natural glucose 78, 82 autocatalysis – by predictive calculation of chiroptical data – a special case of organocatalysis 234 79 autocatalytic effect –of(R,R)-(+)-tartaric acid 78, 82 – of a zinc complex 238 achiral bidentate reagent Avogadro constant 12 – purification of enantiomers with 149 axial chirality 39, 44 achiral stationary phase 95 achirality, achiral 24, 29 b aci form 113 Baeyer–Villiger oxidation acylase I 161 – enanatiotope selective 253 AD-mix- 229 – enzymatic 253 AD-mix- 229 – microbial 166 alcohol dehydrogenases – regio- and enanatiomer selective 253 – Prelog’s rule 252 baker’s yeast aldol reactions – regio-, enantiotope and diastereotope – catalyzed with chiral ionic liquid 238 selective reduction with 186 – catalytic, double enantiotope selective 238 bidentate achiral reagent 90 – completely syn diastereoselective 238 Bijvoet, J. M. 78 – stereoselctive 209 BINAL-H 212 allene 44 BINAP amide-imido acid tautomerism 112 – ruthenium complex of 214 amino acids biocatalysis 244 enantiopure, D-andL- 250 – advantages of 245 D-amino acid oxidase 100 – disadvantages of 245 Stereochemistry and Stereoselective Synthesis: An Introduction, First Edition.
    [Show full text]
  • SI Appendix Index 1
    SI Appendix Index Calculating chemical attributes using EC-BLAST ................................................................................ 2 Chemical attributes in isomerase reactions ............................................................................................ 3 Bond changes …..................................................................................................................................... 3 Reaction centres …................................................................................................................................. 5 Substrates and products …..................................................................................................................... 6 Comparative analysis …........................................................................................................................ 7 Racemases and epimerases (EC 5.1) ….................................................................................................. 7 Intramolecular oxidoreductases (EC 5.3) …........................................................................................... 8 Intramolecular transferases (EC 5.4) ….................................................................................................. 9 Supporting references …....................................................................................................................... 10 Fig. S1. Overview …............................................................................................................................
    [Show full text]
  • 01 Front.Pdf (761.4Kb)
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. I BARBITURIC ACID METABOLISM IN NOCARDIA CORALLINA A thesis presented in partial fulfilment of the requirements for the degree of M.Sc. in Biochemistry at Massey University. Philip David Pearce 1974 (ii) AC KNOWLEDGEMENTS I woul1 like to thank Professor R.D. Batt, my supervisor, for suggesting this topic and for the guidance he has given me during this investigation. Thanks are also extended to members of Chemistry, Biochemistry and Biophysics Department, Massey University, and to my fellow students. I am very grateful to the Department of Scientific and Industrial Research for the granting of full time study leave to follow this work. I should like to thank Dr. G.W. Butler and Dr. R.W. Bailey (former and present Directors of Applied Biochemistry Division, D.S.I.R. Palmerston North) for their interest and for the support they have given me. Thanks are also due to Dr. K.A.C. James (Applied Biochemistry Division), for his helpful advice during the writing of this thesis, and to Miss Cynthia Owen, D.S.I.R. librarian. Mrs. Lesley James is to be thanked for her excellent work in typing this thesis. Finally I should like to thank my wife Vonette for her assistance, patience and encouragement. (iii) ABSTRACT Barbituric acid utilisation in Nocardia corallina has been investigated. The enzyme barbiturase was induced using barbituric acid as the sole carbon and nitrogen source and a study of the optimum conditions for isolation of the enzyme was undertaken.
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Biocatalytic application of rare PLP- dependent aminotransferases for the synthesis of high value amino acids and amines Annabel Serpico A Thesis Submitted for the Degree of Doctor of Philosophy The University of Edinburgh 2018 Lay Summary Traditional chemical approaches for the production of compounds often rely on harsh conditions such as high temperature and pressure and create toxic waste and pollutants. Moreover, these reactions are often non efficient, creating unwanted side products that need to be disposed of. A very important branch of chemistry, called green chemistry, supports the design of products and processes that use the least amount of dangerous substances as they can. An important aspect of green chemistry is biocatalysis, which consists of the use of biological systems, either whole cells or enzymes for the production of compounds.
    [Show full text]