The Cost of Metamorphosis in Flatfishes ⁎ A.J

Total Page:16

File Type:pdf, Size:1020Kb

The Cost of Metamorphosis in Flatfishes ⁎ A.J Journal of Sea Research 58 (2007) 35–45 www.elsevier.com/locate/seares The cost of metamorphosis in flatfishes ⁎ A.J. Geffen a, , H.W. van der Veer b, R.D.M. Nash c a Department of Biology, University of Bergen, PO Box 7800, 5020 Bergen, Norway b Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, 1790 AB Den Burg Texel, The Netherlands c Institute of Marine Research, PO Box 1870 Nordnes, 5817 Bergen, Norway Received 14 July 2006; accepted 16 February 2007 Available online 7 March 2007 Abstract Flatfish development includes a unique physical metamorphosis with morphological and physiological changes associated with eye migration, a 90° rotation in posture and asymmetrical pigmentation. Flatfish larvae also undergo settlement, a behavioural and ecological change associated with a transition from a pelagic to a benthic existence. These processes are often assumed to be critical in determining recruitment in flatfish, through their impact on feeding, growth and survival. The timing of metamorphosis in relation to settlement varies between different flatfish species and this suggests that growth and development are not closely coupled. Existing information on feeding, growth and survival during metamorphosis and settlement is reviewed. Growth during metamorphosis is reduced in some but not all species. Despite the profound internal and external changes, there are no indications that the process of metamorphosis results in an increased mortality or that it might affect recruitment in flatfishes. © 2007 Elsevier B.V. All rights reserved. Keywords: Metamorphosis; Settlement; Feeding; Growth; Survival; Flatfish 1. Introduction Pleuronectidae and Soleidae have more variation in larval types. The unique characteristics of flatfish appear Flatfishes (Pleuronectiformes) are widespread glob- during metamorphosis, at the end of the larval period. ally and occur in a wide range of habitats: in fresh- The profound morphological changes have attracted waters, estuarine habitats and all major oceans out to the considerable research interest, and many aspects of the edge of the continental slopes (Munroe, 2005b). Flatfish developmental changes have been reviewed (Chambers juveniles and adults are readily identified by their and Leggett, 1987, 1992; Fuiman, 1997; Gibson, 1997). unique anatomy. However, as larvae they have a similar Information about distributions in time and space, range in shapes, sizes and anatomical variability as the diet, and growth of flatfish larvae is abundant, reaching rest of the teleosts (see e.g. Russell, 1976). In fact there back to the early 1900s. However, because these are are few fundamental differences between the early life field studies, they offer only a low level of resolution in stages of flatfish and other teleosts with pelagic larvae. space, time, and over individual variations. In addition, There are clear familial traits within flatfish, although the coverage of species is mostly restricted to commer- cially exploited species in the North Atlantic and North ⁎ Corresponding author. Pacific, leaving the bulk of flatfishes with little data E-mail address: [email protected] (A.J. Geffen). about their biology in the wild (Munroe, 2005a). In 1385-1101/$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.seares.2007.02.004 36 A.J. Geffen et al. / Journal of Sea Research 58 (2007) 35–45 contrast, there is abundant information from laboratory organ system’. Though many authors likewise use a studies about larval development, growth, physiology, very general definition of metamorphosis, more practi- behaviour and responses to environmental conditions cal definitions restrict the process to the visible changes (see Gibson, 2005a). Larval nutrition, digestive physi- in morphology that begin with eye migration and end ology and morphological development have been stud- with the completion of squamation and full pigmenta- ied in detail for aquaculture purposes (Pittman et al., tion. Other authors have defined metamorphosis only by 1990; Bisbal and Bengtson, 1995; Rønnestad et al., stages of eye migration with the completion of 2000; Morais et al., 2004). These studies provide metamorphosis coinciding with the completion of eye information with a high level of resolution in time and migration (Hotta et al., 2001 cited in Wada et al., 2004). over individuals. Laboratory studies also focus on a In this review we consider metamorphosis as both the limited number of commercially important species, and process and the time period between the first morpho- in many cases the experimental conditions preclude logical asymmetry to the completion of juvenile insight into larvae in their natural environment. features. We use the term metamorphosis to define Synthesis of the existing information about the early morphological and physiological development, and the life history of flatfish for generalisation of the ecological term settlement to define behavioural and ecological significance of metamorphosis is difficult. Fuiman changes associated with the transition of larvae from the (1997) discussed the morphological characteristics, 3-dimentional planktonic environment to the 2-dimen- development, behaviour and performance of flatfish tional demersal way of life. larvae and suggested that the ontogenetic patterns held During metamorphosis and settlement flatfish larvae important clues about the adaptations of flatfish to spend varying amounts of time in the water column and benthic life. Larval development patterns differed on the bottom (Fig. 1). Metamorphosing larvae that are somewhat between flatfish and pelagic species, espe- pelagic (Fig. 1b) are ecologically part of the planktonic cially in later stages approaching settlement. Flatfish larval development is characterised by the transition to benthic habits, but these larvae must pass successfully through pelagic life in order to reach that point. The evolutionary aspects and functional demands of size at transformation were discussed by Osse and Van den Boogaart (1997), who linked species-specific size ranges to juvenile habitats and feeding. Metamorphosis might be a key process in overall population dynamics since it occurs in the early stages of recruitment (Leggett and DeBlois, 1994; Van der Veer et al., 2000). Here we consider the physiological and anatomical changes associated with metamorphosis in relation to the behavioural and ecological changes involved in settlement. We ask to what extent these two processes may be temporally or spatially un- coupled, and examine their ecological consequences through their impact on feeding, growth and mortality. Numerous terms have been used for the developmental stages and the process of development from flatfish larvae to juveniles. Since many of the processes are different in mechanism (being physiological, behavioural, or ana- tomical in basis), it is critical to define the terms for each application. The process of metamorphosis may begin with physiological changes well before any outward sign of morphological change (Schreiber, 2001). Sæle et al. Fig. 1. Flatfish (Pleuronectes platessa) during metamorphosis, ‘ illustrating the definitions adopted in this review: (a) Larva at the (2004) defined metamorphosis as the post-embryonic beginning of metamorphosis, (b) pelagic larva, during metamorphosis morphological change from the larval to the sexually and start of settlement, (c) demersal larva at end of metamorphosis and immature juvenile’, encompassing ‘changes in every settlement. Scale bar=1 mm. A.J. Geffen et al. / Journal of Sea Research 58 (2007) 35–45 37 community as is illustrated by the fact that they consume a small volume aids survival due to its lower main- primarily pelagic prey. Metamorphosing larvae that are tenance costs. Fluctuating food densities at high lati- demersal (or benthic, Fig. 1c) are associated with the tudes select for larger larvae, because a large volume epi-benthic or benthic community and their diet is com- gives better survival over patchy prey availability posed of benthic or epi-benthic prey items. (Gross et al., 1988). Towards the end of the pelagic stage, larvae which 2. Pre-metamorphosis stage are smaller at the start of metamorphosis will have a lower food demand than larger larvae, but contain Size and timing of metamorphosis may logically be relatively lower energy reserves (Kooijman, 2000). The considered to be adaptations to juvenile habitats. How- general latitudinal gradient in size at metamorphosis fits ever, there may be some influence of larval character- the pattern of more constant food densities at lower istics and pelagic conditions. latitudes and more fluctuating food densities at high Body size scaling relationships and a general theory latitudes. However, because temperature in tropical and of energy allocation (Kooijman, 2000) accurately subtropical waters is higher, small larvae in these waters predict that maximum adult body size increases with will have a much higher energy turn-over rate. latitude both within and among flatfish species (Van der During metamorphosis there are changes in swim- Veer et al., 2003). This latitudinal trend also influences ming posture that may serve to maintain binocular other correlates of maximum body size, such as egg vision while late stage larvae are still pelagic (Schreiber, sizes, incubation times, larval size at hatching and size at 2006). Demersal larvae continue to consume pelagic metamorphosis (Miller et al., 1991; Van der Veer et al., plankton prey until settlement is complete
Recommended publications
  • Disease List for Aquaculture Health Certificate
    Quarantine Standard for Designated Species of Imported/Exported Aquatic Animals [Attached Table] 4. Listed Diseases & Quarantine Standard for Designated Species Listed disease designated species standard Common name Disease Pathogen 1. Epizootic haematopoietic Epizootic Perca fluviatilis Redfin perch necrosis(EHN) haematopoietic Oncorhynchus mykiss Rainbow trout necrosis virus(EHNV) Macquaria australasica Macquarie perch Bidyanus bidyanus Silver perch Gambusia affinis Mosquito fish Galaxias olidus Mountain galaxias Negative Maccullochella peelii Murray cod Salmo salar Atlantic salmon Ameirus melas Black bullhead Esox lucius Pike 2. Spring viraemia of Spring viraemia of Cyprinus carpio Common carp carp, (SVC) carp virus(SVCV) Grass carp, Ctenopharyngodon idella white amur Hypophthalmichthys molitrix Silver carp Hypophthalmichthys nobilis Bighead carp Carassius carassius Crucian carp Carassius auratus Goldfish Tinca tinca Tench Sheatfish, Silurus glanis European catfish, wels Negative Leuciscus idus Orfe Rutilus rutilus Roach Danio rerio Zebrafish Esox lucius Northern pike Poecilia reticulata Guppy Lepomis gibbosus Pumpkinseed Oncorhynchus mykiss Rainbow trout Abramis brama Freshwater bream Notemigonus cysoleucas Golden shiner 3.Viral haemorrhagic Viral haemorrhagic Oncorhynchus spp. Pacific salmon septicaemia(VHS) septicaemia Oncorhynchus mykiss Rainbow trout virus(VHSV) Gadus macrocephalus Pacific cod Aulorhynchus flavidus Tubesnout Cymatogaster aggregata Shiner perch Ammodytes hexapterus Pacific sandlance Merluccius productus Pacific
    [Show full text]
  • Schedule Onlinepdf
    Detailed schedule 8:30 Opening session 9:00 Keynote lecture: Impacts of climate change on flatfish populations - patterns of change 100 days to 100 years: Short and long-term responses of flatfish to sea temperature change David Sims 9:30 Nine decades of North Sea sole and plaice distributions Georg H. Engelhard (Engelhard GH, Pinnegar JK, Kell LT, Rijnsdorp AD) 9:50 Climatic effects on recruitment variability in Platichthys flesus and Solea solea: defining perspectives for management. Filipe Martinho (Martinho F, Viegas I, Dolbeth M, Sousa H, Cabral HN, Pardal MA) 10:10 Are flatfish species with southern biogeographic affinities increasing in the Celtic Sea? Christopher Lynam (Lynam C, Harlay X, Gerritsen H, Stokes D) 10:30 Coffee break 11:00 Climate related changes in abundance of non-commercial flatfish species in the North Sea Ralf van Hal (van Hal R, Smits K, Rijnsdorp AD) 11:20 Inter-annual variability of potential spawning habitat of North Sea plaice Christophe Loots (Loots C, Vaz S, Koubii P, Planque B, Coppin F, Verin Y) 11:40 Annual variation in simulated drift patterns of egg/larvae from spawning areas to nursery and its implication for the abundance of age-0 turbot (Psetta maxima) Claus R. Sparrevohn (Sparrevohn CR, Hinrichsen H-H, Rijnsdorp AD) 12:00 Broadscale patterns in population dynamics of juvenile plaice: W Scotland 2001-2008 Michael T. Burrows (Burrows MT, Robb L, Harvey R, Batty RS) 12:20 Impact of global warming on abundance and occurrence of flatfish populations in the Bay of Biscay (France) Olivier Le Pape (Hermant
    [Show full text]
  • Feeding Habits of Juvenile Slime Flounder Microstomus Achne in the Coastal Area of Southern Hokkaido
    Title Feeding habits of juvenile slime flounder Microstomus achne in the coastal area of southern Hokkaido Author(s) Nakaya, Mitsuhiro; Abe, Takuzo Ichthyological Research, 58(4), 377-381 Citation https://doi.org/10.1007/s10228-011-0231-5 Issue Date 2011-11 Doc URL http://hdl.handle.net/2115/74191 Rights The final publication is available at link.springer.com Type article (author version) File Information 9_IR58 Nakaya&Abe.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Feeding habits of juvenile slime flounder Microstomus achne in the coastal area of southern Hokkaido Mitsuhiro Nakaya · Takuzo Abe M. Nakaya Kakikin Corporation, Akkeshi, Hokkaido 088-1111, Japan T. Abe Faculty of Fisheries, Hokkaido University, Minato, Hakodate, Hokkaido 041-8611, Japan Present address: M. Nakaya (*) Fisheries Research Agency, National Research Institute of Aquaculture, Komame Laboratory, Kochi 788-0302, Japan e-mail: [email protected] Corresponding author: M. Nakaya (*) Fisheries Research Agency, National Research Institute of Aquaculture, Komame Laboratory, Kochi 788-0302, Japan; Tel: +81-880-72-1207; Fax: +81-880-72-1111; e-mail: [email protected] Running title: Feeding habits and growth of juvenile slime flounder Short report 10 text pages, 4 figures, and 1 table 1 Abstract A total of 45 juvenile [30.0–57.4 mm total Length (TL)] slime flounder Microstomus achne were collected in the coastal area of southern Hokkaido from April to July in 2001, and April to June in 2002. Their diets were analyzed. Slime flounder juveniles of 30.0–39.9 mm TL fed predominantly on small crustaceans (gammarid amphipods, harpacticoids and cumaceans), and 40.0–57.4 mm TL on gammarid amphipods, cumaceans and polychaetes.
    [Show full text]
  • The Osmoregulatory Metabolism Op the Starry Flounder, Platichthys Stellatus
    THE OSMOREGULATORY METABOLISM OP THE STARRY FLOUNDER, PLATICHTHYS STELLATUS by CLEVELAND PENDLETON HICKMAN, JR. B.A., DePauw University, 1950 M.S., University of New Hampshire, 1953 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Zoology We accept this thesis as conforming to the required standard. THE UNIVERSITY OF BRITISH COLUMBIA June, 1958 Faculty of Graduate Studies PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY of CLEVELAND PENDLETON HICKMAN JR. B.A. DePauw University, 1950 M.S. University of New Hampshire, 1953 IN ROOM 187A, BIOLOGICAL SCIENCES BUILDING MONDAY, JUNE 30, 1958 at 10:30 a.m. COMMITTEE IN CHARGE DEAN F. H. SOWARD, Chairman H. ADASKIN W. S. HOAR W. A. CLEMENS W. N. HOLMES I. McT. COWAN C. C. LINDSEY P. A. DEHNEL H. McLENNAN R. F. SCAGEL External Examiner: F. E. J. FRY University of Toronto THE OSMOREGULATORY METABOLISM OF THE STARRY FLOUNDER, PLATICHTYS STELLATUS ABSTRACT Energy demands for osmotic regulation and the possible osmoregulatory role of the thyroid gland were investigated in the euryhaline starry flounder, Platichthys stellatus. Using a melt• ing-point technique, it was established that flounder could regulate body fluid concentration independent of widely divergent environ• mental salinities. Small flounder experienced more rapid disturb• ances of body fluid concentration than large flounder after abrupt salinity alterations. The standard metabolic rate of flounder adapted to fresh water was consistently and significantly less than that of marine flounder. In supernormal salinities standard metabolic rate was significantly greater than in normal sea water.
    [Show full text]
  • Age, Growth and Population Dynamics of Lemon Sole Microstomus Kitt(Walbaum 1792)
    Age, growth and population dynamics of lemon sole Microstomus kitt (Walbaum 1792) sampled off the west coast of Ireland By Joan F. Hannan Masters Thesis in Fish Biology Galway-Mayo Institute of Technology Supervisors of Research Dr. Pauline King and Dr. David McGrath Submitted to the Higher Education and Training Awards Council July 2002 Age, growth and population dynamics of lemon sole Microstomus kitt (Walbaum 1792) sampled off the west coast of Ireland Joan F. Hannan ABSTRACT The age, growth, maturity and population dynamics o f lemon sole (Microstomus kitt), captured off the west coast o f Ireland (ICES division Vllb), were determined for the period November 2000 to February 2002. The maximum age recorded was 14 years. Males o f the population were dominated by 4 year olds, while females were dominated by 5 year olds. Females dominated the sex ratio in the overall sample, each month sampled, at each age and from 22cm in total length onwards (when N > 20). Possible reasons for the dominance o f females in the sex ratio are discussed. Three models were used to obtain the parameters o f the von Bertalanfly growth equation. These were the Ford-Walford plot (Beverton and Holt 1957), the Gulland and Holt plot (1959) and the Rafail (1973) method. Results o f the fitted von Bertalanffy growth curves showed that female lemon sole o ff the west coast o f Ireland grew faster than males and attained a greater size. Male and female lemon sole mature from 2 years o f age onwards. There is evidence in the population o f a smaller asymptotic length (L«, = 34.47cm), faster growth rate (K = 0.1955) and younger age at first maturity, all o f which are indicative o f a decrease in population size, when present results are compared to data collected in the same area 22 years earlier.
    [Show full text]
  • Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
    NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D.
    [Show full text]
  • Pleuronectidae
    FAMILY Pleuronectidae Rafinesque, 1815 - righteye flounders [=Heterosomes, Pleronetti, Pleuronectia, Diplochiria, Poissons plats, Leptosomata, Diprosopa, Asymmetrici, Platessoideae, Hippoglossoidinae, Psettichthyini, Isopsettini] Notes: Hétérosomes Duméril, 1805:132 [ref. 1151] (family) ? Pleuronectes [latinized to Heterosomi by Jarocki 1822:133, 284 [ref. 4984]; no stem of the type genus, not available, Article 11.7.1.1] Pleronetti Rafinesque, 1810b:14 [ref. 3595] (ordine) ? Pleuronectes [published not in latinized form before 1900; not available, Article 11.7.2] Pleuronectia Rafinesque, 1815:83 [ref. 3584] (family) Pleuronectes [senior objective synonym of Platessoideae Richardson, 1836; family name sometimes seen as Pleuronectiidae] Diplochiria Rafinesque, 1815:83 [ref. 3584] (subfamily) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Poissons plats Cuvier, 1816:218 [ref. 993] (family) Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Leptosomata Goldfuss, 1820:VIII, 72 [ref. 1829] (family) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Diprosopa Latreille, 1825:126 [ref. 31889] (family) Platessa [no stem of the type genus, not available, Article 11.7.1.1] Asymmetrici Minding, 1832:VI, 89 [ref. 3022] (family) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Platessoideae Richardson, 1836:255 [ref. 3731] (family) Platessa [junior objective synonym of Pleuronectia Rafinesque, 1815, invalid, Article 61.3.2 Hippoglossoidinae Cooper & Chapleau, 1998:696, 706 [ref. 26711] (subfamily) Hippoglossoides Psettichthyini Cooper & Chapleau, 1998:708 [ref. 26711] (tribe) Psettichthys Isopsettini Cooper & Chapleau, 1998:709 [ref. 26711] (tribe) Isopsetta SUBFAMILY Atheresthinae Vinnikov et al., 2018 - righteye flounders GENUS Atheresthes Jordan & Gilbert, 1880 - righteye flounders [=Atheresthes Jordan [D.
    [Show full text]
  • Yellowfin Trawling Fish Images 2013 09 16
    Fishes captured aboard the RV Yellowfin in otter trawls: September 2013 Order: Aulopiformes Family: Synodontidae Species: Synodus lucioceps common name: California lizardfish Order: Gadiformes Family: Merlucciidae Species: Merluccius productus common name: Pacific hake Order: Ophidiiformes Family: Ophidiidae Species: Chilara taylori common name: spotted cusk-eel plainfin specklefin Order: Batrachoidiformes Family: Batrachoididae Species: Porichthys notatus & P. myriaster common name: plainfin & specklefin midshipman plainfin specklefin Order: Batrachoidiformes Family: Batrachoididae Species: Porichthys notatus & P. myriaster common name: plainfin & specklefin midshipman plainfin specklefin Order: Batrachoidiformes Family: Batrachoididae Species: Porichthys notatus & P. myriaster common name: plainfin & specklefin midshipman Order: Gasterosteiformes Family: Syngnathidae Species: Syngnathus leptorynchus common name: bay pipefish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes semicinctus common name: halfbanded rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes dalli common name: calico rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes saxicola common name: stripetail rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes diploproa common name: splitnose rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes rosenblatti common name: greenblotched rockfish juvenile Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes levis common name: cowcod Order:
    [Show full text]
  • Atlantic Halibut of the Gulf of St. Lawrence (Divisions 4RST)
    Fisheries and Oceans Pêches et Océans Canada Canada Science Sciences DFO Science Laurentian Region Stock Status Report A4-02 (2000) 52 3K Québec 50 4S 4R Terre-Neuve Québec 48 4T 3L Nouveau-Brunswick 3Pn 4Vn 3Ps Atlantic Halibut of the Gulf of 46 St. Lawrence (Divisions 4RST) 44 Background The Atlantic halibut of divisions 4RST can be found 4X 4W 4Vs 3O 42 throughout the Estuary and Gulf of St. Lawrence. In the 70 68 66 64 62 60 58 56 54 52 northern Gulf, they are more abundant in the Esquiman, Laurentian and Anticosti channels, at depths of 200 m and over. In the southern Gulf, the highest concentrations are Figure 1. Map of the Gulf of St. Lawrence and found in shallower water (less than 100 m) near the Miscou adjacent regions showing NAFO divisions 4RST. Bank, north of Prince Edward Island, northwest of Cape Breton Island and around the Magdalen Islands. This species grows fast and continuously, at a mean rate of Summary about 7.5–8.5 cm per year (Figure 2). The growth rate for • Since 1995, mean annual landings of males and females is comparable, although female halibut reach a larger maximum size than males. Based on Atlantic halibut have been around 275 t, observations made during scientific trawl surveys twice the mean annual landings for conducted in January and May, it appears that the Gulf 1992–95 (135 t), but comparable to those halibut is able to spawn during those periods. of the late 1980s. They are still well The high landings of Atlantic halibut made during the first below the values of 1000 t and over half of the 20th century indicate that the Gulf stock was regularly recorded during the first half of under very strong fishing pressure at the time.
    [Show full text]
  • Fixed Gear Recommendations for the Cumberland Sound Greenland Halibut Fishery
    Canadian Science Advisory Secretariat Central and Arctic Region Science Response 2008/011 FIXED GEAR RECOMMENDATIONS FOR THE CUMBERLAND SOUND GREENLAND HALIBUT FISHERY Context In a letter dated March 14, 2008, the Nunavut Wildlife Management Board (NWMB) requested Fisheries and Oceans Canada (DFO) Science advice on ways Greenland halibut fishing could be conducted in Cumberland Sound such that conservation concerns with non-directed by- catch of marine mammals and Greenland sharks are minimized or alleviated. On March 31, 2008, Fisheries and Aquaculture Management (FAM) submitted a request to Science for advice to address this request. Given the response was needed prior to the open-water fishing season (July 2008) and since the NWMB is the final advisory body for this request, DFO Central and Arctic Science determined that a Special Science Response Process would be used. Background The Cumberland Sound Greenland halibut (turbot) fishery began in 1986 and has been traditionally exploited during the winter months using longline gear set on the bottom through holes cut in the ice. Fishing typically takes place along a deep trench (>500 m) that extends toward Imigen Island and Drum Islands (Fig. 1). In 2005, a new management zone was established in Cumberland Sound with a Total Allowable Catch (TAC) of 500 t separate from the Northwest Atlantic Fisheries Organization (NAFO) Division 0B TAC. Catches in the winter fishery peaked in 1992 at 430 t then declined to levels below 100 t through the late 1990s and peaked again at 245 t in 2003. However, in recent years catches have declined significantly with harvests of 9 t, 70 t and 3 t for 2005, 2006 and 2007 respectively.
    [Show full text]
  • Analysis of the Effects of Marine Stewardship Council Fishery Certification on Seabird Conservation
    Analysis of the Effects of Marine Stewardship Council Fishery Certification on Seabird Conservation Fisheries Certified February 2012 – April 2013 Black-footed Albatross: George Wallace, ABC White-faced Storm-petrel: Luke Seitz Sooty Shearwater: Greg Lavaty Scripps’s Murrelets: Peter LaTourrette David A. Wiedenfeld, Ph.D. American Bird Conservancy 646;"Nqwfqwp"Cxg0"̋"R0Q0"Dqz"46; The Plains, VA 20198 USA Vgn<"762/475/79:2"̋"Hcz<"762/475/79:4 www.abcbirds.org 25 April 2013 Table of Contents INTRODUCTION......................................................................................................................... 5 METHODS .................................................................................................................................... 5 CONCLUSIONS ........................................................................................................................... 7 RECOMMENDATIONS .............................................................................................................. 8 ACKNOWLEDGMENTS ............................................................................................................ 9 POTENTIALLY HIGH RISK FISHERIES ............................................................................ 11 British Columbia Chum Salmon Fisheries ......................................................................... 13 FIUN Barents and Norwegian Seas Cod and Haddock Fishery ......................................... 17 POTENTIALLY MEDIUM RISK FISHERIES .....................................................................
    [Show full text]
  • Fishery Circular
    ' VK^^^'^^^O NOAA Technical Report NMFS CIRC -392 '•i.'.v.7,a';.'',-:sa". ..'/',//•. Fishery Publications, V. Calendar Year 1974: Lists and Indexes LEE C. THORSON and MARY ELLEN ENGETT SEATTLE, WA June 1975 NATIONAL OCEANIC AND National Marine noaa ATMOSPHERIC ADMINISTRATION Fisheries Service NOAA TECHNICAL REPORTS National Marine Fisheries Service, Circulars The major responsibilities of the National Marine Fisheries Service (NMFSI are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United Slates coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS CIRC series continues a series that has been in existence since 1941. The Circulars are technical publications of general interest intended to aid conservation and management. Publications thai review in considerable detail and at a hi^h technical level certain broad areas of research appear in this series. Technical papers originating in cci. nnmirs studies and from management investigations appear in the Circular series. NOAA Technical Reports NMF.S CIRC are available free in limited numbers to governmental agencies, both Federal and State.
    [Show full text]