Biomimetic Surfaces for Cell Engineering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Altered Integrin Alpha 6 Expression As a Rescue for Muscle Fiber Detachment in Zebrafish (Danio Rerio)
The University of Maine DigitalCommons@UMaine Honors College Spring 2014 Altered Integrin Alpha 6 Expression As A Rescue For Muscle Fiber Detachment In Zebrafish (Danio Rerio) Rose E. McGlauflin Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Animal Diseases Commons, and the Musculoskeletal Diseases Commons Recommended Citation McGlauflin, Rose E., Alter" ed Integrin Alpha 6 Expression As A Rescue For Muscle Fiber Detachment In Zebrafish (Danio Rerio)" (2014). Honors College. 140. https://digitalcommons.library.umaine.edu/honors/140 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ALTERED INTEGRIN ALPHA 6 EXPRESSION AS A RESCUE FOR MUSCLE FIBER DETACHMENT IN ZEBRAFISH (DANIO RERIO) by Rose E. McGlauflin A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Biology) The Honors College University of Maine May 2014 Advisory Committee: Clarissa A. Henry, Ph.D., Associate Professor of Biological Sciences, Advisor Mary S. Tyler, Ph.D., Professor of Zoology Mary Astumian, Henry Lab Manager Michelle Smith, Ph.D., Assistant Professor of Biological Sciences Mark Haggerty, Ph.D., Honors Preceptor for Civic Engagement Abstract Cells adhere to their extracellular matrix by way of integrins, transmembrane molecules that attach the cytoskeleton to the extracellular basement membrane (one kind of extracellular matrix). In some muscular dystrophies, specific integrins are disrupted and muscle fibers detach from the myotendenous junction and degenerate. This integrin disruption causes a constant cycle of regeneration and degeneration, which greatly harms the tissue over time. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Impaired Axonal Regeneration in Α7 Integrin-Deficient Mice
The Journal of Neuroscience, March 1, 2000, 20(5):1822–1830 Impaired Axonal Regeneration in ␣7 Integrin-Deficient Mice Alexander Werner,1 Michael Willem,2 Leonard L. Jones,1 Georg W. Kreutzberg,1 Ulrike Mayer,2 and Gennadij Raivich1 1Department of Neuromorphology, Max-Planck-Institute of Neurobiology, and 2Department of Protein Chemistry, Max- Planck-Institute of Biochemistry, 82152 Martinsried, Germany The interplay between growing axons and the extracellular the regenerating facial nerve. Transgenic deletion of the ␣7 substrate is pivotal for directing axonal outgrowth during de- subunit caused a significant reduction of axonal elongation. velopment and regeneration. Here we show an important role The associated delay in the reinnervation of the whiskerpad, a for the neuronal cell adhesion molecule ␣71 integrin during peripheral target of the facial motor neurons, points to an peripheral nerve regeneration. Axotomy led to a strong increase important role for this integrin in the successful execution of of this integrin on regenerating motor and sensory neurons, but axonal regeneration. not on the normally nonregenerating CNS neurons. ␣7 and 1 Key words: axonal regeneration; reinnervation; facial nerve; subunits were present on the axons and their growth cones in growth cone; motoneuron; integrin; knock-out mice Changes in adhesion properties of transected axons and their Flier et al., 1995; Kil and Bronner-Fraser, 1996; Velling et al., environment are essential for regeneration. In the proximal part, 1996). In the adult nervous system, we now show that ␣7is the tips of the transected axons transform into growth cones that strongly upregulated in axotomized neurons in various injury home onto the distal part of the nerve and enter the endoneurial models during peripheral nerve regeneration, but not after CNS tubes on their way toward the denervated tissue (Fawcett, 1992; injury. -
Supplementary Table 2
Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942 -
Cell Adhesion Molecules in Normal Skin and Melanoma
biomolecules Review Cell Adhesion Molecules in Normal Skin and Melanoma Cian D’Arcy and Christina Kiel * Systems Biology Ireland & UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +353-1-716-6344 Abstract: Cell adhesion molecules (CAMs) of the cadherin, integrin, immunoglobulin, and selectin protein families are indispensable for the formation and maintenance of multicellular tissues, espe- cially epithelia. In the epidermis, they are involved in cell–cell contacts and in cellular interactions with the extracellular matrix (ECM), thereby contributing to the structural integrity and barrier for- mation of the skin. Bulk and single cell RNA sequencing data show that >170 CAMs are expressed in the healthy human skin, with high expression levels in melanocytes, keratinocytes, endothelial, and smooth muscle cells. Alterations in expression levels of CAMs are involved in melanoma propagation, interaction with the microenvironment, and metastasis. Recent mechanistic analyses together with protein and gene expression data provide a better picture of the role of CAMs in the context of skin physiology and melanoma. Here, we review progress in the field and discuss molecular mechanisms in light of gene expression profiles, including recent single cell RNA expression information. We highlight key adhesion molecules in melanoma, which can guide the identification of pathways and Citation: D’Arcy, C.; Kiel, C. Cell strategies for novel anti-melanoma therapies. Adhesion Molecules in Normal Skin and Melanoma. Biomolecules 2021, 11, Keywords: cadherins; GTEx consortium; Human Protein Atlas; integrins; melanocytes; single cell 1213. https://doi.org/10.3390/ RNA sequencing; selectins; tumour microenvironment biom11081213 Academic Editor: Sang-Han Lee 1. -
Product Datasheet Integrin Beta 4/CD104 Antibody NB100
Product Datasheet Integrin beta 4/CD104 Antibody NB100-65599 Unit Size: 0.1 mg Store at 4C short term. Aliquot and store at -20C long term. Avoid freeze-thaw cycles. www.novusbio.com [email protected] Publications: 1 Protocols, Publications, Related Products, Reviews, Research Tools and Images at: www.novusbio.com/NB100-65599 Updated 6/15/2014 v.20.1 Page 1 of 3 v.20.1 Updated 6/15/2014 NB100-65599 Integrin beta 4/CD104 Antibody (450-9D) Product Information Unit Size 0.1 mg Concentration 1.0 mg/ml Storage Store at 4C short term. Aliquot and store at -20C long term. Avoid freeze-thaw cycles. Clonality Monoclonal Clone 450-9D Preservative 0.09% Sodium Azide Isotype IgG1 Purity Protein G purified Buffer PBS Product Description Host Mouse Gene ID 3691 Gene Symbol ITGB4 Species Human, Ferret, Mustelid Species Reactivity Cross reacts with Mustelid and Ferret. Specificity/Sensitivity NB100-65599 recognizes the human beta4 integrin (also known as CD104), a 205kD glycoprotein which associates with the alpha6 integrin to form the alpha6/beta4 complex. CD104 is expressed on epithelial cells, Schwann cells and various tumour cell lines. NB100-65599 recognizes an extracellular epitope on the CD104 molecule. Immunogen Purified alpha6 beta4 integrin from A431 cells Product Application Details Applications Western Blot, Flow Cytometry, Immunocytochemistry/Immunofluorescence, Immunohistochemistry, Immunohistochemistry-Frozen, Immunoprecipitation Recommended Dilutions Immunoprecipitation 1:10-1:500, Western Blot 1:100-1:2000, Immunohistochemistry-Frozen 1:500-1:1000, Flow Cytometry 1:25-1:100, Immunocytochemistry/Immunofluorescence 1:10-1:500, Immunohistochemistry 1:10-1:500 Application Notes For Flow Cytometry: Use 10 ul of the suggested working dilution to label 10^6 cells in 100 ul. -
(ITGA7) Gene Integrin; ITGA7; PCR; Myopathy Keywords: Species: Homo Sapiens Change Is: Polymorphism
HUMAN MUTATION Mutation and Polymorphism Report #141 (2000) Online Mutation and Polymorphism Report Authors: Doroti Pirulli 1, Silvia Zezlina 1 , Laura Vatta 1, Paola Di Stefano 2 , Michele Boniotto 1, Guido Tarone 2, Tiziana Mongini 3, Isabella Ugo 3, Laura Palmucci 3, Antonio Amoroso 1, and Sergio Crovella 1 Affiliations 1 Medical Genetic Service, IRCCS Burlo Garofolo, Chair of Genetics, University of Trieste, Italy; 2 Department of Genetics, Biology and Biochemistry, University of Turin, Italy; 3 Department of Neuroscience, University of Turin, Italy Corresponding Author Address and E-mail: Sergio Crovella, Chair of Genetics, University of Trieste, Medical Genetic Service, IRCCS Burlo Garofolo,Via dell'Istria 65/1,34137 Trieste, Italy; E-mail: [email protected] Title : A new polymorphism, g119A>G, in the integrin alpha 7 (ITGA7) gene integrin; ITGA7; PCR; myopathy Keywords: Species: Homo sapiens Change is: Polymorphism Gene/Locus Name: integrin, alpha 7 Symbol: ITGA7 Genbank accession number: AJ228850 exon 15 OMIM accession number: 600536 Locus specific database: Chromosomal location: 12q13 Inheritance: Unknown Mutation / polymorphism name Nucleotide change–Systematic name: g119A>G Amino acid change–Trivial name: H651R Mutation / polymorphism type: Missense Polymorphism frequency: 44/56 G/A Detection method: RFLP-PCR, Direct sequencing Detection conditions: RT-PCR Primers F: 5'-TCAAGAGCTTCGGCTACTCC-3' R: 5'-AGTCAGGAAGCATGACCAGG-3' Genomic PCR-Primers F: 5'-GCCCCCTGCCTTGCC-3' R: 5'-AGGGCTTTCTCTCAATCCTTGA-3' RT-PCR conditions RT-PCR was performed on total mRNA of 3 unclassified myopathy patients with the RNA-PCR Core Kit (PE Biosystems, Foster City, CA) HUMAN MUTATION Mutation and Polymorphism Report #141 (2000) Online using the reverse primer as antisense. -
Development of Novel Strategies to Improve Skeletal Muscle Repair and Adaptation Following Eccentric Exercise
DEVELOPMENT OF NOVEL STRATEGIES TO IMPROVE SKELETAL MUSCLE REPAIR AND ADAPTATION FOLLOWING ECCENTRIC EXERCISE BY KAI ZOU DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Kinesiology in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Assistant Professor Marni D. Boppart, Chair Associate Professor Kenneth R. Wilund Professor Jeffrey A. Woods Professor Jie Chen ABSTRACT Eccentric contractions, often required for participation in resistance training, as well as daily activities, can injure skeletal muscle. The repair of muscle damage is essential for effective remodeling, tissue maintenance, and initiation of beneficial adaptations post-exercise. We have previously demonstrated that transgenic overexpression of the α7BX2 integrin in skeletal muscle (MCK: α7BX2; α7Tg) enhances muscle repair and the adaptive response following eccentric exercise. Recent studies have provided evidence that mesenchymal stem cells residing in skeletal muscle (mMSCs) contribute to repair following injury by secreting a variety of factors that are important for progenitor cell (satellite cell) activation. Our lab has also previously established that mMSC proliferation and quantity is increased following eccentric exercise in a manner dependent on the presence of the α7BX2 integrin. Preliminary cell culture experiments conducted in our lab suggest that mMSC paracrine factor gene expression is enhanced in the presence of laminin, an important component of the basal lamina that provides the microenvironment for muscle stem cells. Thus, the purpose of this study was to determine the extent to which mMSC and laminin-111 (LM-111) supplementation can enhance muscle repair and/or the adaptive response associated with eccentric exercise. -
Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*□S
crossmark Research Author’s Choice © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*□S Rolf Turk‡§¶ʈ**, Jordy J. Hsiao¶, Melinda M. Smits¶, Brandon H. Ng¶, Tyler C. Pospisil‡§¶ʈ**, Kayla S. Jones‡§¶ʈ**, Kevin P. Campbell‡§¶ʈ**, and Michael E. Wright¶‡‡ Mutations in genes encoding components of the sar- The muscular dystrophies are hereditary diseases charac- colemmal dystrophin-glycoprotein complex (DGC) are re- terized primarily by the progressive degeneration and weak- sponsible for a large number of muscular dystrophies. As ness of skeletal muscle. Most are caused by deficiencies in such, molecular dissection of the DGC is expected to both proteins associated with the cell membrane (i.e. the sarco- reveal pathological mechanisms, and provides a biologi- lemma in skeletal muscle), and typical features include insta- cal framework for validating new DGC components. Es- bility of the sarcolemma and consequent death of the myofi- tablishment of the molecular composition of plasma- ber (1). membrane protein complexes has been hampered by a One class of muscular dystrophies is caused by mutations lack of suitable biochemical approaches. Here we present in genes that encode components of the sarcolemmal dys- an analytical workflow based upon the principles of pro- tein correlation profiling that has enabled us to model the trophin-glycoprotein complex (DGC). In differentiated skeletal molecular composition of the DGC in mouse skeletal mus- muscle, this structure links the extracellular matrix to the cle. We also report our analysis of protein complexes in intracellular cytoskeleton. -
Blueprint Genetics Comprehensive Muscular Dystrophy / Myopathy Panel
Comprehensive Muscular Dystrophy / Myopathy Panel Test code: NE0701 Is a 125 gene panel that includes assessment of non-coding variants. In addition, it also includes the maternally inherited mitochondrial genome. Is ideal for patients with distal myopathy or a clinical suspicion of muscular dystrophy. Includes the smaller Nemaline Myopathy Panel, LGMD and Congenital Muscular Dystrophy Panel, Emery-Dreifuss Muscular Dystrophy Panel and Collagen Type VI-Related Disorders Panel. About Comprehensive Muscular Dystrophy / Myopathy Muscular dystrophies and myopathies are a complex group of neuromuscular or musculoskeletal disorders that typically result in progressive muscle weakness. The age of onset, affected muscle groups and additional symptoms depend on the type of the disease. Limb girdle muscular dystrophy (LGMD) is a group of disorders with atrophy and weakness of proximal limb girdle muscles, typically sparing the heart and bulbar muscles. However, cardiac and respiratory impairment may be observed in certain forms of LGMD. In congenital muscular dystrophy (CMD), the onset of muscle weakness typically presents in the newborn period or early infancy. Clinical severity, age of onset, and disease progression are highly variable among the different forms of LGMD/CMD. Phenotypes overlap both within CMD subtypes and among the congenital muscular dystrophies, congenital myopathies, and LGMDs. Emery-Dreifuss muscular dystrophy (EDMD) is a condition that affects mainly skeletal muscle and heart. Usually it presents in early childhood with contractures, which restrict the movement of certain joints – most often elbows, ankles, and neck. Most patients also experience slowly progressive muscle weakness and wasting, beginning with the upper arm and lower leg muscles and progressing to shoulders and hips. -
Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are
cells Article Fibroblasts from the Human Skin Dermo-Hypodermal Junction are Distinct from Dermal Papillary and Reticular Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular Matrix Organization and Modeling Valérie Haydont 1,*, Véronique Neiveyans 1, Philippe Perez 1, Élodie Busson 2, 2 1, 3,4,5,6, , Jean-Jacques Lataillade , Daniel Asselineau y and Nicolas O. Fortunel y * 1 Advanced Research, L’Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France; [email protected] (V.N.); [email protected] (P.P.); [email protected] (D.A.) 2 Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), 91223 CEDEX Brétigny sur Orge, France; [email protected] (É.B.); [email protected] (J.-J.L.) 3 Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France 4 INSERM U967, 92260 Fontenay-aux-Roses, France 5 Université Paris-Diderot, 75013 Paris 7, France 6 Université Paris-Saclay, 78140 Paris 11, France * Correspondence: [email protected] (V.H.); [email protected] (N.O.F.); Tel.: +33-1-48-68-96-00 (V.H.); +33-1-60-87-34-92 or +33-1-60-87-34-98 (N.O.F.) These authors contributed equally to the work. y Received: 15 December 2019; Accepted: 24 January 2020; Published: 5 February 2020 Abstract: Human skin dermis contains fibroblast subpopulations in which characterization is crucial due to their roles in extracellular matrix (ECM) biology. -
Integrin and Gene Network Analysis Reveals That ITGA5 and ITGB1 Are Prognostic in Non-Small-Cell Lung Cancer
Journal name: OncoTargets and Therapy Article Designation: Original Research Year: 2016 Volume: 9 OncoTargets and Therapy Dovepress Running head verso: Zheng et al Running head recto: ITGA5 and ITGB1 are prognostic in NSCLC open access to scientific and medical research DOI: http://dx.doi.org/10.2147/OTT.S91796 Open Access Full Text Article ORIGINAL RESEARCH Integrin and gene network analysis reveals that ITGA5 and ITGB1 are prognostic in non-small-cell lung cancer Weiqi Zheng Background: Integrin expression has been identified as a prognostic factor in non-small-cell Caihui Jiang lung cancer (NSCLC). This study was aimed at determining the predictive ability of integrins Ruifeng Li and associated genes identified within the molecular network. Patients and methods: A total of 959 patients with NSCLC from The Cancer Genome Atlas Department of Radiation Oncology, Guangqian Hospital, Quanzhou, Fujian, cohorts were enrolled in this study. The expression profile of integrins and related genes were People’s Republic of China obtained from The Cancer Genome Atlas RNAseq database. Clinicopathological characteristics, including age, sex, smoking history, stage, histological subtype, neoadjuvant therapy, radiation therapy, and overall survival (OS), were collected. Cox proportional hazards regression models as well as Kaplan–Meier curves were used to assess the relative factors. Results: In the univariate Cox regression model, ITGA1, ITGA5, ITGA6, ITGB1, ITGB4, and ITGA11 were predictive of NSCLC prognosis. After adjusting for clinical factors, ITGA5 (odds ratio =1.17, 95% confidence interval: 1.05–1.31) andITGB1 (odds ratio =1.31, 95% confidence interval: 1.10–1.55) remained statistically significant. In the gene cluster network analysis, PLAUR, ILK, SPP1, PXN, and CD9, all associated with ITGA5 and ITGB1, were identified as independent predictive factors of OS in NSCLC.