Bristlecone Pine Brochure

Total Page:16

File Type:pdf, Size:1020Kb

Bristlecone Pine Brochure Cedar Breaks National Monument National Park Service U.S. Department of the Interior Bristlecone Pines “On the roughest ledges of crumbling limestone are lowly old giants, five or six feet in diameter that have braved the storms of more than a thousand years. But whether old or young, sheltered or exposed to the wildest gales, this tree is ever found to be irrepressibly and extravagantly picturesque, offering a richer and more varied series of forms to the artist than any other species I have yet seen.” ~ John Muir One autumn day in the year Middle-age comes in a few has exposed its main roots. The living 336 AD a great basin bristlecone hundred years. This is the time roots move water up the trunk above pine seed lands in just the right when our tree is most productive. them, allowing sections of the tree to place to begin life. Seed and pollen cones are produced live. Unbelievably, our ancient tree on the many intertwined branches. continues to produce cones. As the years go by, our seedling Yet, this is when our tree begins to grows in height and its stem show its age. Limbs and trunks die Thriving at high elevations where thickens. Single needles are and become bleached and cracked. conditions are harsh and windy; replaced by those growing in Fire, lightning, beetles, ants, nutrients are sparse; and ultraviolet bunches of five. As our infant porcupines, and fungi take their toll. light is intense. In these conditions tree enters its youth, it struggles our tree grows old, even ancient. to find its place. Roots search out Over a thousand years later, our water and nutrients while the main tree has reached old age. It has So is the life of a bristlecone pine. stem rapidly reaches for the sun. withstood the ravages of wind, ice, These trees will die of something, Branches are flexible to withstand sun, and other insults. Most of our but it will not be old age. the strong winds and snow. tree is no longer alive. Soil erosion Bristlecones are part of the Bristlecone Pine Range group known as foxtail Needles and Cones pines. Three species are found in the western states at high elevations. The Foxtail Pine (Pinus balfouriana) grows in Oregon and California. The Great Basin Bristlecone (Pinus longaeva) can be seen in California, Nevada and Utah, including Cedar As the name suggests, there are small bristles Breaks. on the ends of each cone scale. Rocky Mountain Needles of the bristlecone pines are short (0.5- Bristlecone 1.5 in), sharp, deep green, and grow in bundles (Pinus aristata) is found in of five. Their needles attach all the way up central and south-central and around the limb, making them look like Colorado, northern New foxtails. Unlike most pines where needles are Mexico and Arizona. replaced every two to three years, Bristlecones retain their needles for thirty to forty years. • Bristlecones average On Borrowed Time? 45-60 feet in height. A Word From Our Trees • Young trees put out a main shoot, • Bristlecones grow For many, it is a humbling experience capturing what sunlight they can. Please respect me. Remember me with a where other trees cannot. • As the tree grows more stems are added to walk among these ancient trees. • High elevation, cold temperatures, photograph rather than a piece of my wood. and the crown widens. extreme winds, short growing seasons, and It is no wonder they have been given • In advanced age, wind and frost will have nutrient poor, dolomite biblical names such as “Methuselah”, and broken the tops. Lesser branches twine around The genes that have enabled me to live for soils kill most other the bare ragged snags, giving each tree a centuries are in each seed in every cone I “Prometheus”. Even a nearly 1,700 year old competing trees. unique, gnarled shape. • Energy goes into produce. Please do not take one. Maybe bristlecone pine at Cedar Breaks was given • Rot causing • Blowing soil, rocks, and surviving, fungus, grows one will have what it takes to survive the the name “Old Patriarch” by early settlers. ice age and burnish the instead more slowly changing climate. Rather, take in the rich dead wood to varying of growing in this harsh aroma of my foliage. golden hues. large. Fossil evidence suggests the ancestors to • Growth is slow environment. today’s trees have been living on western with as little as one Beetles have scarred my trunk and mountains for more than 40 million inch being added to its girth in a branches; leaving your initials may be the hundred years. final insult I can withstand. If you stay on years. As the glaciers retreated the trees • Slow growth produces denser, resin-rich followed and are now found only in higher wood which makes the tree less susceptible the trails you will lessen the erosive forces elevations. The slow passage of time has to insect invasion, disease, and rot. around my roots. allowed these trees to evolve and thrive in • There is no taproot so lateral roots spread out, seeking Leave me as I am, so perhaps your harsh environments. moisture and children’s children can also admire me. nutrients in the Roots serve as With the rise in temperature these trees soil and in cracks lifelines in another way... of rocks. Faster growth • Boulders serve as anchors that are facing new challenges. the roots wrap themselves around. due to higher temperatures could make • The death of a major root does not bristlecones more susceptible to fungal and cause the death of the entire tree. insect damage. Bark beetles and rust fungi, Rather, roots feed only the section of the trunk and branches above. which are not normally a problem at cool, • This growth pattern is called sectored high elevations, could begin to affect these • The oldest Bristlecones architecture. It is not unusual to see are often widely spaced pines. The risk of fire may also increase. a twisted old bristlecone with only a in areas with little ground narrow section of living bark bearing cover, reducing the branches and masses Because bristlecones already occupy the threat from of needles. wildfires. highest elevation, will the seeds they shed in autumn find a favorable place to call home? The details in this brochure and more can be found in "The Bristlecone Book: A Natural History of the World's Oldest Trees" by Ronald M. Lanner Cedar Breaks: Spectra Point Overlook is Bristlecone Walking Trail: One mile Twisted Forest: A one mile round trip home to the park’s oldest trees; younger west of the intersection of Highway 148 with trail in the Ashdown Gorge Wilderness. Where to bristlecone pines can be seen along the Highway 14. Operated by the Forest Service, The trailhead is located four miles down the Find Them? Alpine Pond Trail, near the Chessman Ridge this 0.75 mile loop trail will take you to Bear Flat/Sugarloaf Mountain road (204 > Overlook. several Bristlecones and a viewing platform. 265 > 964) Off of State Route 143..
Recommended publications
  • Stuart, Trees & Shrubs
    Excerpted from ©2001 by the Regents of the University of California. All rights reserved. May not be copied or reused without express written permission of the publisher. click here to BUY THIS BOOK INTRODUCTION HOW THE BOOK IS ORGANIZED Conifers and broadleaved trees and shrubs are treated separately in this book. Each group has its own set of keys to genera and species, as well as plant descriptions. Plant descriptions are or- ganized alphabetically by genus and then by species. In a few cases, we have included separate subspecies or varieties. Gen- era in which we include more than one species have short generic descriptions and species keys. Detailed species descrip- tions follow the generic descriptions. A species description in- cludes growth habit, distinctive characteristics, habitat, range (including a map), and remarks. Most species descriptions have an illustration showing leaves and either cones, flowers, or fruits. Illustrations were drawn from fresh specimens with the intent of showing diagnostic characteristics. Plant rarity is based on rankings derived from the California Native Plant Society and federal and state lists (Skinner and Pavlik 1994). Two lists are presented in the appendixes. The first is a list of species grouped by distinctive morphological features. The second is a checklist of trees and shrubs indexed alphabetically by family, genus, species, and common name. CLASSIFICATION To classify is a natural human trait. It is our nature to place ob- jects into similar groups and to place those groups into a hier- 1 TABLE 1 CLASSIFICATION HIERARCHY OF A CONIFER AND A BROADLEAVED TREE Taxonomic rank Conifer Broadleaved tree Kingdom Plantae Plantae Division Pinophyta Magnoliophyta Class Pinopsida Magnoliopsida Order Pinales Sapindales Family Pinaceae Aceraceae Genus Abies Acer Species epithet magnifica glabrum Variety shastensis torreyi Common name Shasta red fir mountain maple archy.
    [Show full text]
  • Species Interactions and Abiotic Effects on Stand Structure of Bristlecone Pine (Pinus Longaeva) and Limber Pine (Pinus Flexilis)
    Species interactions and abiotic effects on stand structure of bristlecone pine (Pinus longaeva) and limber pine (Pinus flexilis) Selene Arellano1, Anna Douglas2, Neira Ibrahimovic3 , Janette Jin1 1University of California, Berkeley; 2University of California, Santa Cruz; 3University of California, Los Angeles ABSTRACT Plants experience a wide range of biotic and abiotic stresses based on their environmental conditions. Demographic stages—recruits, saplings, and adults—may react differently under stress. In this study, we examine how the factors of aspect, substrate, and competition affect the stand structure of Great Basin bristlecone pine (Pinus longaeva) and limber pine (Pinus flexilis), which are among the few trees that can withstand the stressful subalpine environment. We surveyed an even distribution of north and south- facing slopes with both dolomite and granite substrate in the White Mountains of Inyo National Forest, California. We recorded the density of different demographic stages of both tree species and tested how neighboring trees affected the cone production of bristlecones. We found that the effect of aspect and substrate depended on the demographic stage. We also found no evidence of competition between bristlecone and limber. Taken together, our results suggest that abiotic factors are more important than biotic factors in determining bristlecone and limber establishment. Overall, we suggest that abiotic factors are more influential in shaping subalpine plant communities. Keywords: bristlecone pine, limber pine, competition, abiotic stress, stand structure INTRODUCTION and have low levels of phosphorus, which is an essential element for plant development Plants may experience extreme stress (Wright and Mooney 1965, Malhotra et al. when they are growing in environments with 2018).
    [Show full text]
  • Trashing Our Treasures
    Trashing our Treasures: Congressional Assault on the Best of America 2 Trashing our Treasures: Congressional Assault on the Best of America Kate Dylewsky and Nancy Pyne Environment America July 2012 3 Acknowledgments: Contents: The authors would like to thank Anna Aurilio for her guidance in this project. Introduction…………………………….……………….…...….. 5 Also thank you to Mary Rafferty, Ruth Musgrave, and Bentley Johnson for their support. California: 10 What’s at Stake………….…..……………………………..……. 11 Photographs in this report come from a variety of public domain and creative Legislative Threats……..………..………………..………..…. 13 commons sources, including contributors to Wikipedia and Flickr. Colorado: 14 What’s at Stake……..………..……………………..……..…… 15 Legislative Threats………………..………………………..…. 17 Minnesota: 18 What’s at Stake……………..………...……………….….……. 19 Legislative Threats……………..…………………...……..…. 20 Montana: 22 What’s at Stake………………..…………………….…….…... 23 Legislative Threats………………..………………...……..…. 24 Nevada: 26 What’s at Stake…………………..………………..……….…… 27 Legislative Threats…..……………..………………….…..…. 28 New Mexico: What’s at Stake…………..…………………….…………..…... 30 Legislative Threats………………………….....…………...…. 33 Oregon: 34 What’s at Stake………………....……………..…..……..……. 35 Legislative Threats………….……..……………..………..…. 37 Pennsylvania: 38 What’s at Stake………...…………..……………….…………. 39 Legislative Threats………....…….…………….…………..… 41 Virginia: 42 What’s at Stake………………...…………...…………….……. 43 Legislative Threats………..……………………..………...…. 45 Conclusion……………………….……………………………..… 46 References…………………..……………….…………………..
    [Show full text]
  • San Francisco Mountains Forest Heserve, Arizona
    Professional Paper No. 22 Series H, Forestry, 7 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR \ FOREST CONDITIONS lN 'fHE- SAN FRANCISCO MOUNTAINS FOREST HESERVE, ARIZONA BY JOHN B. LEIBERG, THEODORE F. RIXON, AND ARTHUR DODWELL WITH AN INTRODUCTION BY F. G. PLUMMER ·wASHINGTON G 0 Y E R N 1\I E N T I' HI N T IN G 0 ];' F I C E 1904 CONT .. ENTS. Page.. Letter of transmittaL_. __._._. ____-_._._._ .. _._ .. _.. _. ______ . __ _._._._- __._. ________ ._· __________ .~ __ . ____ . __ .___ 9 Introdnetion.·.-_-_. ______________ ._._._._._._._. ___ .. _______ .___ -_._. __ . ___________ . ____ . _. _________ ---- _ ___ 11 Boundaries·. ___ .----- ___ .·.·-·-·-·-·-·-·-_._. __ . __________ ._ .. _.._._. ______ . _______________ . _____ .___ 11 Surface features ___ . _ _- ..·: ______ ._._._ ..·.- ___ .· _ _. _ _. __ . _ _. ___________ .: ___________ . ________ ._______ 13 Soil·. _. _: _. _.. __ _. .. _ . _. __ .. __. .· ..· .... _. _. _..: ____ _. __. __ _. .· __.. __ . ___ .. __ . __ . __ . __ .. _____ . ___ .. 15 Drainage_._. _ _. ___ . _____________________ . __________ _.:. _ _. ________ . ____ . ___ ------_________ 15 Forest and womllan<.l .· __ . __ . __ . __ . __ . _____ ·- : _.. ·_____ . ___________ . ____ .· __ . _____ . _....... _ _ 17 Zones or types of arborescent growth_ . _.·. _. __.: _. __ . _: __. ... ____ . _______ . __ . __ . _.. _.. ___ . _ 18 Aspect and character of timber belts ____ .
    [Show full text]
  • List of Plants for Great Sand Dunes National Park and Preserve
    Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present
    [Show full text]
  • Genesee Tree Walk
    S S S W W W S W G A D E N A A N D K L E O O A S V S T E A K E E R A S S T T S S S T T W S S 50TH AVE SW 50TH AVE S S SW S W 50TH AVE W W SW 50TH AVE SW C W W H O A G A A D N R E R L A E N D L G A K G E E S O O S O S K V T T E A N A E O E R S W S S S E T T T S T N T S S S S T S 4 9TH AVE SW S N 49TH AVE SW 49TH AVE SW 49TH AVE SW W 49TH AVE SW W W W W A O G A D N L E R A D A N E K E S O G E O K S V O T A E ! A E ! N 1 E R S S S 4 T S S T S T T S T ! W ! ! ! ! ! ! ! 1 ! ! ! ! 1 1 ! S ! 1 ! E ! 2 ! ! ! 2 S S ! S 1 2 S ! 2 3 1 W ! 48TH AVE S 48TH AVE SW 48TH AVE SW C W 48TH AVE SW 5 48TH AVE S W W 6 ! W 2 3 W ! 4 W 8 2 1 1 9 H 0 7 A A G O A D N E R E R L A D L A N E K E O S G E O S K S V O T T A E A E O N E R S W T S ! ! ! ! S ! ! T S 1 1 1 T S T T N T 0 1 2 ! S ! S S S T R S 47TH AVE S W S 9 47 TH AVE SW 47TH AVE S W W W W 47TH AVE SW 47TH AVE SW W W A G O A D N E R L A E N D A E K G E O S O S K O V T E A E N A E E R S ! ! ! ! S S S T 5 3 S T T T T ! ! ! ! ! ! ! S S ! S ! ! S 46TH AVE SW 46TH AVE SW7 46 S TH AV W W E 4 SW W 46TH AVE SW 2 8 46TH AVE SW 6 W W W G L E A G O N A D N N E R L W A N D E A A Y K G E S O S W O S K O V T A E A E N A E R S S S S T S T T T S T W L S S S S S C 45TH AVE SW 45TH AVE SW 45TH AVE SW W W 45TH AVE SW W 45TH AVE SW W W H G K L A A E G O A N D N R N E R L W A L D N A E A E Y K O E G S S S O W S K V O T T E O A E A N E R W S S ! S S ! T S T T T N T S S T S S S W S I B W L T F S 44TH AVE SW 44TH AVE SW 44TH AVE SW 44TH AVE SW 44TH AVE SW W m W a r o t W u W e r a w c p i e e A l t u G d e O n e e D A s N C r i t r E n R v A a T L D o F g N i E n r A o e K r e O o G E u a O S P e p s S t V K O a u T y S E r E A A r N k u E e R i r S n S f S S a S T g T T T c T e 1 Trees for Seattle, a program of the City of Seattle, is dedicated to growing and maintaining healthy, awe- inspiring trees in Seattle.
    [Show full text]
  • State of the World's Forest Genetic Resources Part 1
    Forests and trees enhance and protect landscapes, ecosystems and production systems. They provide goods and services which are essential to the survival and well-being of all humanity. Forest genetic resources – the heritable materials maintained within and among tree and other woody plant species that are of actual or potential economic, environmental, scientific or societal value – are essential for the continued productivity, services, adaptation and evolutionary processes of forests and trees. This first volume of The State of the World’s Forest Genetic Resources constitutes a major step in building the information and knowledge base required for action towards better conservation and sustainable management of forest genetic resources at the national, regional and international levels. The publication was prepared based on information provided by 86 countries, outcomes from regional and subregional consultations and commissioned thematic studies. It presents definitions and concepts related to forest genetic resources and a FOREST GENETIC RESOURCES review of their value; the main drivers of changes and the trends affecting these vital resources; and key emerging technologies. The central section analyses the current status of conservation and use of forest genetic resources on the basis of reports provided by the countries. The book concludes with recommendations for ensuring that present and future generations continue to benefit from forests and trees, both through innovations in practices and technologies and through enhanced attention
    [Show full text]
  • Conservation Genetics of High Elevation Five-Needle White Pines
    Conservation Genetics of High Elevation Five-Needle White Pines Conservation Genetics of High Elevation Five-Needle White Pines Andrew D. Bower, USDA Forest Service, Olympic National Forest, Olympia, WA; Sierra C. McLane, University of British Columbia, Dept. of Forest Sciences, Vancouver, BC; Andrew Eckert, University of California Davis, Section of Plenary Paper Evolution and Ecology, Davis, CA; Stacy Jorgensen, University of Hawaii at Manoa, Department of Geography, Manoa, HI; Anna Schoettle, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO; Sally Aitken, University of British Columbia, Dept. of Forest Sciences, Vancouver, BC Abstract—Conservation genetics examines the biophysical factors population structure using molecular markers and quanti- influencing genetic processes and uses that information to conserve tative traits and assessing how these measures are affected and maintain the evolutionary potential of species and popula- by ecological changes. Genetic diversity is influenced by the tions. Here we review published and unpublished literature on the evolutionary forces of mutation, selection, migration, and conservation genetics of seven North American high-elevation drift, which impact within- and among-population genetic five-needle pines. Although these species are widely distributed across much of western North America, many face considerable diversity in differing ways. Discussions of how these forces conservation challenges: they are not valued for timber, yet they impact genetic diversity can be found in many genetics texts have high ecological value; they are susceptible to the introduced (for example Frankham and others 2002; Hartl and Clark disease white pine blister rust (caused by the fungus Cronartium 1989) and will not be discussed here. ribicola) and endemic-turned-epidemic pests; and some are affect- ed by habitat fragmentation and successional replacement by other Why Is Genetic Diversity Important? species.
    [Show full text]
  • Download PDF
    How to See into the Past Look up at the night sky The light you see emerged many years, even millennia, ago and has just traveled close enough to Earth to be visible with the naked eye or a telescope. The nearest optical supernova in two decades, SN 2014J was discovered on January 21, 2014. SN 2014J occurred in the Cigar Galaxy and lies about 12 million light-years away. When this blast oc- curred, geologically speaking Earth was in the Miocene Epoch. Count the rings on a tree Dendrochronology is the study of growth rings, which scientists can use to date temperate zone trees. In contrast, tropical trees lack the dramat- ic seasonal changes that produces periods of rapid growth and dor- mancy that result in growth rings. In 1964 Donald Currey, a graduate student in the geography department at the University of North Caro- lina, unintentionally cut down the oldest living organism on the planet. In what became known as the “Prometheus Story,” Currey’s core sample tool became lodged in bristlecone pine and the park officials advised him to simply cut down the tree, rather than lose the tool and waste this research opportunity. The tree Currey cut down became known as Prometheus, which was estimated to be 4,900 years old. Currently the old- est known living tree, about 4,600 years old, is in the White Mountains of California; there are likely even older bristlecones that have not been dated. Look at the desert landscape Movement and changes in the earth’s geology are apparent in the striated layers of rock and dirt, especially visible in the desert’s barren landscape.
    [Show full text]
  • High-Elevation Five Needle Pine Cone Collections in California and Nevada
    High-elevation white pine cone collections from the Great Basin of Nevada, California, & Utah on National Forest, Bureau of Land Management, National Park, and State lands, 2009 – 2013. Collected 40-50 cones/tree. 2009 (all on NFS land): 3 sites # trees Schell Creek Range, Cave Mtn., NV Pinus longaeva 100 Spring Mtns., Lee Canyon, NV Pinus longaeva 100 White Mtns., Boundary Peak, NV Pinus longaeva 100 2010 (all on NFS land except as noted): 7 sites Carson Range, Mt. Rose, NV Pinus albicaulis 23 Hawkins Peak, CA Pinus albicaulis 26 Luther Creek, CA Pinus lambertiana 15 Monitor Pass, CA Pinus lambertiana 25 Pine Forest Range, NV [BLM] Pinus albicaulis 20 Sweetwater Mtns., NV Pinus albicaulis 20 Wassuk Range, Corey Pk., NV [BLM] Pinus albicaulis 25 2011 (all on NFS land except as noted): 13 sites Fish Creek Range, NV [BLM] Pinus flexilis 25 Fish Creek Range, NV [BLM] Pinus longaeva 25 Grant Range, NV Pinus flexilis 25 Highland Range, NV [BLM] Pinus longaeva 25 Independence Mtns., NV Pinus albicaulis 17 Jarbidge Mtns., NV Pinus albicaulis 25 Pequop Mtns., NV [BLM] Pinus longaeva 25 Ruby Mtns., Lamoille Canyon, NV Pinus albicaulis 25 Ruby Mtns., Lamoille Canyon, NV Pinus flexilis 20 Schell Creek Range, Cave Mtn., NV Pinus flexilis 25 Sweetwater Mtns., NV Pinus flexilis 25 White Pine Range, Mt. Hamilton, NV Pinus flexilis 25 White Pine Range, Mt. Hamilton, NV Pinus longaeva 25 2012 (all on NFS land except as noted): 9 sites Black Mountain, Inyo NF, CA Pinus longaeva 23 Carson Range, LTBMU, NV Pinus albicaulis 25 Egan Range, Toiyabe NF, NV Pinus longaeva 25 Emma Lake, Toiyabe NF, CA Pinus albicaulis 25 Happy Valley, Fishlake NF, UT Pinus longaeva 25 Inyo Mtns., Tamarack Canyon, CA Pinus longaeva 25 Leavitt Lake, Toiyabe NF, CA Pinus albicaulis 25 Mt.
    [Show full text]
  • Impact of Climate Variability on the Frequency and Severity of Ecological Disturbances in Great Basin Bristlecone Pine Sky Island Ecosystems
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2017 Impact of Climate Variability on the Frequency and Severity of Ecological Disturbances in Great Basin Bristlecone Pine Sky Island Ecosystems Curtis A. Gray Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Forest Sciences Commons Recommended Citation Gray, Curtis A., "Impact of Climate Variability on the Frequency and Severity of Ecological Disturbances in Great Basin Bristlecone Pine Sky Island Ecosystems" (2017). All Graduate Theses and Dissertations. 6529. https://digitalcommons.usu.edu/etd/6529 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. IMPACT OF CLIMATE VARIABILITY ON THE FREQUENCY AND SEVERITY OF ECOLOGICAL DISTURBANCES IN GREAT BASIN BRISTLECONE PINE SKY ISLAND ECOSYSTEMS by Curtis A. Gray A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: __________________________ __________________________ Michael Jenkins, Ph.D. Thomas C. Edwards, Jr., Ph.D. Major Professor Committee Member __________________________ __________________________ Peter Howe, Ph.D. R. Douglas Ramsey, Ph.D. Committee Member Committee Member __________________________ __________________________ Justin Runyon, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, UT 2017 ii Copyright © Curtis A. Gray 2017 All Rights Reserved iii ABSTRACT Impact of Climate Variability on the Frequency and Severity of Ecological Disturbances in Great Basin Bristlecone Pine Sky Island Ecosystems by Curtis A.
    [Show full text]
  • Bristlecone Pine and Clark's Nutcracker: Probable Interaction in the White Mountains, California
    Great Basin Naturalist Volume 44 Number 2 Article 19 4-30-1984 Bristlecone pine and Clark's Nutcracker: probable interaction in the White Mountains, California Ronald M. Lanner Utah State University Harry E. Hutchins Utah State University Harriette A. Lanner Utah State University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Lanner, Ronald M.; Hutchins, Harry E.; and Lanner, Harriette A. (1984) "Bristlecone pine and Clark's Nutcracker: probable interaction in the White Mountains, California," Great Basin Naturalist: Vol. 44 : No. 2 , Article 19. Available at: https://scholarsarchive.byu.edu/gbn/vol44/iss2/19 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. BRISTLECONE PINE AND CLARK'S NUTCRACKER: PROBABLE INTERACTION IN THE WHITE MOUNTAINS, CALIFORNIA Ronald M. Lanner', Harry E. Hutchins', and Harriette A. Lanner' -Abstract.— Many bristlecone pines in the White Moinitains, CaHfornia, are members of multistem climips. We propose that these clumps have arisen by multiple germinations from seed caches of Clark's Nutcracker, as occurs in several other pine species. The commonness of nutcrackers and their caching of singleleaf pinyon seeds in the study area provide supporting evidence. Other vertebrates appear unlikely to be responsible for the stem clumps. Seed burial ma\ be reejuired to establish regeneration on these adverse sites where bristlecone pine attains great loiiLrevitN'. Clark's Nutcracker (Corvidae: Nucifraga it is the most effective disperser and estab- Columbiana Wilson) disperses seeds and es- lisher of limber pine as well.
    [Show full text]