Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation Dissertation Titel der Dissertation Quantification of tectonic movement in the Vienna Basin Verfasserin Mag. Monika Hölzel Angestrebter akademischer Grad Doktorin der Naturwissenschaften (Dr. rer. nat.) Wien, Juni 2009 Studienkennzahl lt. Studienblatt A 091 431 Dissertationsgebiet lt. Studienblatt Geologie Betreuer Ao. Prof. Michael Wagreich Content Abstract _____________________________________________________________ iii Zusammenfassung _____________________________________________________ v Acknowledgement _____________________________________________________ vii 1 Introduction _______________________________________________________ 1 1.1 Aims and Approaches___________________________________________________ 2 1.2 Outline of scientific and economic oriented investigations through history _______ 2 1.3 Short geological overview of the Vienna Basin_______________________________ 4 1.4 Definition of (normal) faults and their evolution _____________________________ 4 1.5 Methods and Data ______________________________________________________ 6 1.6 Outlook and unsolved questions __________________________________________ 7 2 Subsidence Analysis ________________________________________________ 9 2.1 Abstract _____________________________________________________________ 10 2.2 Kurzfassung__________________________________________________________ 10 2.3 Introduction__________________________________________________________ 11 2.4 Geological Outline of the Vienna Basin ___________________________________ 12 2.5 Principles of Subsidence Calculations_____________________________________ 13 2.6 Data Base ____________________________________________________________ 15 2.7 Generation of Subsidence Maps _________________________________________ 16 2.8 Results and Interpretation ______________________________________________ 17 2.9 Regional Trends of Subsidence __________________________________________ 17 2.10 Subsidence Maps _____________________________________________________ 22 2.11 General Subsidence Trends ____________________________________________ 23 2.12 Conclusions _________________________________________________________ 27 3 Error Quantification for Subsidence Analysis___________________________ 29 3.1 Abstract _____________________________________________________________ 31 3.2 Introduction__________________________________________________________ 32 3.3 Subsidence calculations ________________________________________________ 32 3.4 Programme description and work flow____________________________________ 33 3.5 Method of error calculation _____________________________________________ 34 3.6 Error sources _________________________________________________________ 37 3.7 Application___________________________________________________________ 37 3.8 Discussion and Conclusion ______________________________________________ 40 4 Sedimentary Fault Backstripping_____________________________________ 41 4.1 Abstract _____________________________________________________________ 43 4.2 Introduction __________________________________________________________ 44 4.3 Sedimentary fault backstripping _________________________________________ 44 4.4 Application in the southern Vienna Basin__________________________________ 46 4.5 Results ______________________________________________________________ 54 4.6 Discussion____________________________________________________________ 56 4.7 Errors, limitations, and requirements for sedimentary fault backstripping ______ 57 4.8 Conclusion ___________________________________________________________ 58 5 Synthesis I - Wedge Top Phase_______________________________________ 61 5.1 Abstract _____________________________________________________________ 63 5.2 Introduction __________________________________________________________ 64 5.3 Techniques and working area ___________________________________________ 65 5.4 Stratigraphy, marker horizons and time constraints_________________________ 68 5.5 Tectonic structures in the subcrop________________________________________ 72 5.6 Early Miocene fault kinematics derived from outcrop data ___________________ 79 5.7 Evolution of the Lower Miocene wedge-top zone____________________________ 81 6 Synthesis II - Pull-Apart Phase ______________________________________ 85 7 References _______________________________________________________ 89 8 Appendix 1______________________________________________________ 101 8.1 Seismic sections ___________________________________________________ 103 8.2 Displacement Plots ________________________________________________ 107 8.3 Input Data for Subsidence Analysis___________________________________ 113 9 Appendix 2______________________________________________________ 131 Curriculum Vitae _______________________________________________________ 132 List of Publications ______________________________________________________ 135 ii Monika Hölzel, 2009 Abstract This cumulative Ph.D. consists of four publications published in or submitted to international peer-reviewed scientific journals. The publications are all related to the structural development of the Vienna Basin. The main focus was on the quantification of fault movement, based on subsidence analysis. Chapter 2 (based on Hölzel, M., Wagreich, M., Faber R., Strauss, P. (2008). Regional subsidence analysis in the Vienna Basin (Austria). Austrian Journal of Earth Sciences, 101, 88 – 98) summarises the results of subsidence analysis with data from 50 wells in the southern and the central area of the Austrian part of the Vienna Basin. The subsidence analysis is based on the decompaction of the sedimentary record at the time of interest, with the results displayed as total basement and tectonic subsidence curves and tectonic subsidence rates for the pull-apart phase of the Vienna Basin. Three types of subsidence curves have been distinguished, representing combinations of three main subsidence phases; in the early Badenian (~16.1 – 14.2 Ma), the Sarmatian (~12.7 – 11.5 Ma), and the middle Pannonian (~10.2 – 9.8 Ma). To be sure errors are minimised during generation of the base data, software for the calculation of subsidence data with error quantification has been established. Chapter 3 (based on Hölzel, M., Faber, R., Wagreich, M. (2008). DeCompactionTool: Software for subsidence analysis including statistical error quantification. Computers and Geosciences, 34, 1454-1460) presents the applied programme in detail. Input data consists of factors like strata thickness, lithology, age constraints, lithological properties, porosity, palaeobathymetry, sea-level changes and heat flux, amongst others. Uncertainties of these input parameters are not independent, so within the subsidence calculation a Monte Carlo Simulation routine was implemented. In this, the range of possible input values (minimum, maximum, most likely number) is assigned to each of the parameters used. A random number generator chooses values within the defined intervals and calculates results for every combination. The probability that a number is selected by the generator may follow a uniform distribution, a power distribution, a symmetric normal distribution or an asymmetric normal distribution. The results are mean values with two extreme values quantifying the error range. Sedimentary fault backstripping is a rather new method for the quantification of vertical fault displacement to assess the fault movement behaviour of fault surfaces. Chapter 4 (based on Hölzel, M., Wagreich, M. (submitted 2009). Sedimentary fault backstripping of a complex fault system – Results and limitations of a case study in the southern Vienna Basin. Marine and Petroleum Geology) describes the workflow in detail. The method has been applied to the southern Vienna Basin. Major normal faults as the Leopoldsdorf Fault with an overall offset of 4000 m are compared to more complex fault arrays forming a negative flower structure and relay ramps. All faults have in common that they were synsedimentary active. The thickness of the sediments overtops the thickness of the footwall strata. So displacement has been conserved during ongoing sedimentation. After discriminating the structural build-up by seismic data and 3D modelling, basement subsidence data from the different fault blocks are compared. Results are very inhomogeneous. The more isolated huge fault surface of the Leopoldsdorf Fault Monika Hölzel, 2009 iii shows normal slip through time. The more complex faults of the negative flower structure are kinematically linked and display normal as well as reverse slip periods. Data indicate alternating activity on converging fault surfaces. The first part of the Synthesis (Chapter 5) is based on the publication Hölzel, M., Decker, K., Zamolyi, A., Strauss, P., Wagreich, M. (submitted 2008): Lower Miocene structural evolution of the central Vienna Basin (Austria). Marine and Petroleum Geology, which deals with the structural evolution of the basin during the Lower Miocene wedge top phase. These investigations are based on stratigraphic and structural seismic mapping and 3D visualisation. It gives an overview about the evolution of the basin prior to the pull-apart phase. The second part of the Synthesis (Chapter 6) summarises the results of subsidence analysis in the southern and central and the results of Sedimentary Fault Backstripping in the southern part during the pull-apart phase. iv Monika Hölzel, 2009 Zusammenfassung Diese kumulative Dissertation besteht aus 4 Publikationen, die in peer-reviewten wissenschaftlichen Journalen publiziert oder
Recommended publications
  • Aufteilung Gemeinden Niederösterreich
    Gemeinde Förderbetrag Krems an der Donau 499.005 St. Pölten 1.192.215 Waidhofen an der Ybbs 232.626 Wiener Neustadt 898.459 Allhartsberg 38.965 Amstetten 480.555 Ardagger 64.011 Aschbach-Markt 69.268 Behamberg 60.494 Biberbach 41.613 Ennsdorf 54.996 Ernsthofen 39.780 Ertl 23.342 Euratsfeld 48.110 Ferschnitz 31.765 Haag 101.903 Haidershofen 66.584 Hollenstein an der Ybbs 31.061 Kematen an der Ybbs 47.906 Neuhofen an der Ybbs 53.959 Neustadtl an der Donau 39.761 Oed-Oehling 35.097 Opponitz 18.048 St. Georgen am Reith 10.958 St. Georgen am Ybbsfelde 51.812 St. Pantaleon-Erla 47.703 St. Peter in der Au 94.276 St. Valentin 171.373 Seitenstetten 61.882 Sonntagberg 71.063 Strengberg 37.540 Viehdorf 25.230 Wallsee-Sindelburg 40.446 Weistrach 40.557 Winklarn 29.488 Wolfsbach 36.226 Ybbsitz 64.862 Zeillern 33.838 Alland 47.740 Altenmarkt an der Triesting 41.057 Bad Vöslau 219.013 Baden 525.579 Berndorf 167.262 Ebreichsdorf 199.686 Enzesfeld-Lindabrunn 78.579 Furth an der Triesting 15.660 Günselsdorf 32.320 Heiligenkreuz 28.766 Hernstein 28.192 Hirtenberg 47.036 Klausen-Leopoldsdorf 30.525 Kottingbrunn 137.092 Leobersdorf 91.055 Mitterndorf an der Fischa 45.259 Oberwaltersdorf 79.449 Pfaffstätten 64.825 Pottendorf 125.152 Pottenstein 54.330 Reisenberg 30.525 Schönau an der Triesting 38.799 Seibersdorf 26.619 Sooß 19.511 Tattendorf 26.674 Teesdorf 32.727 Traiskirchen 392.653 Trumau 67.509 Weissenbach an der Triesting 32.005 Blumau-Neurißhof 33.690 Au am Leithaberge 17.474 Bad Deutsch-Altenburg 29.599 Berg 15.938 Bruck an der Leitha 145.163 Enzersdorf an der Fischa 57.236 Göttlesbrunn-Arbesthal 25.915 Götzendorf an der Leitha 39.040 Hainburg a.d.
    [Show full text]
  • NÖ Statistisches Handbuch 2017
    NÖ Landesstatistik Statistisches Handbuch Eine Servicestelle des Landes Niederösterreich des Landes Niederösterreich 41 Auskunfts- und Servicestelle Informationen nach Verfügbarkeit für alle Interessierten 41. Jahrgang 2017 Projektarbeit Beratung, Mitarbeit und Durchführung Datenauswertung Auf Anfrage und projektbezogen Statistische Erhebungen Im Interesse des Landes Niederösterreich Kontakt Amt der NÖ Landesregierung Gruppe Raumordnung, Umwelt und Verkehr Abteilung Raumordnung und Regionalpolitik – Statistik Landhausplatz 1 3109 St. Pölten E-Mail: [email protected] Tel.: 02742 9005-14241 2 1 5 NÖ Statistisches Handbuch 2017 Statistisches Handbuch des Landes Niederösterreich 41. Jahrgang 2017 1| 215 2 Bezirkstabellen und -grafiken ohne Wien-Umgebung beziehen sich auf den ab 1. 1. 2017 gültigen Gebietsstand (LGBl. Nr. 4/2016), jene mit Werten für Wien-Umgebung auf den bis 31. 12. 2016 gültigen. Datenstände vor 2017 wurden nach Möglichkeit umgerechnet, Sonderfälle sind gekennzeichnet. Falls nicht ausdrücklich anders angegeben, beziehen sich die Tabellen in diesem Handbuch ausschließlich auf das Bundesland Niederösterreich. Die enthaltenen Daten, Tabellen und Grafiken sind urheberrechtlich geschützt. Trotz sorgfältiger Prüfung des Inhalts kann für Richtigkeit, Vollständigkeit, Aktualität und Qualität der in dieser Publikation enthaltenen Informationen keine Gewähr übernommen werden. NÖ Schriften 215 – Information Amt der Niederösterreichischen Landesregierung Für den Inhalt verantwortlich: Mag. Markus Hemetsberger Abteilung Raumordung und Regionalpolitik – Statistik Datenkonvertierung: Laudenbach, 1070 Wien Druck: Druckerei Haider Manuel e. U., 4274 Schönau i. M. Erschienen im Oktober 2017 ISBN 978-3-85006-215-2 3 Vorwort Dynamische Entwicklung und Mut zu Innovation sind zwei wesentliche Eck- pfeiler einer erfolgreichen Landesentwicklung. Um diesen Erfolg auch stetig weiterführen zu können, braucht es eine Art Kontrollinstanz, die in regelmäßigen Abständen die Entwicklung des Bundeslandes aus unterschiedlichen Blick- winkeln beleuchtet.
    [Show full text]
  • Gz. Bmvit-312.408/0016-Iv/St-Alg/2013
    BMVIT – IV/ST3 (Rechtsbereich Bundesstraßen) Postanschrift: Postfach 201, 1000 Wien Büroanschrift: Radetzkystraße 2 , 1030 Wien DVR 0000175 E-Mail: [email protected] GZ. BMVIT-312.408/0016-IV/ST-ALG/2013 E D I K T Kundmachung der verfahrensgegenständlichen Anträge im Großverfahren betreffend das Bundesstraßenbauvorhaben S 8 Marchfeld Schnellstraße, Abschnitt Knoten S 1/S 8 – Anschlussstelle Gänserndorf/Obersiebenbrunn (L 9) (Abschnitt West), im Bereich der Gemeinden Aderklaa, Raasdorf, Deutsch-Wagram, Parbasdorf, Markgrafneusiedl, Gänserndorf und Obersiebenbrunn und der öffentlichen Auflage der Projektunterlagen Mit Schreiben vom 19. Juli 2011 hat die ASFINAG Bau Management GmbH als Bevollmäch- tigte der Autobahnen- und Schnellstraßen-Finanzierungs-Aktiengesellschaft (ASFINAG) beim Bundesministerium für Verkehr, Innovation und Technologie den Antrag auf Durchfüh- rung der Umweltverträglichkeitsprüfung und auf Erlassung eines teilkonzentrierten Genehmi- gungsbescheides gemäß § 24 Abs. 1 Umweltverträglichkeitsprüfungsgesetz 2000 (UVP-G 2000) insbesondere in Verbindung mit § 24f Abs. 1 UVP-G 2000, § 4 Abs. 1 Bundesstraßen- gesetz 1971 (BStG 1971) und § 17 Forstgesetz 1975 (ForstG 1975) für das Bundesstraßen- bauvorhaben S 8 Marchfeld Schnellstraße, Abschnitt Knoten S 1/S 8 – ASt. Gänsern- dorf/Obersiebenbrunn (L 9) (Abschnitt West), im Bereich der Gemeinden Aderklaa, Raas- dorf, Deutsch-Wagram, Parbasdorf, Markgrafneusiedl, Gänserndorf und Obersiebenbrunn eingebracht. Mit den Schreiben vom 30. Juli 2012 und 18. September 2013 wurde das Vor- haben geändert. Mit Schreiben vom 3. April 2014 ist das Land Niederösterreich dem Ge- nehmigungsverfahren gemäß § 24 Abs. 1 UVP-G 2000 und dem Antrag der ASFINAG hin- sichtlich bestimmter Vorhabensteile (Landesstraßen) als Mitantragsteller beigetreten. Die Anträge enthalten die nach den Verwaltungsvorschriften für die Genehmigung des Vor- habens erforderlichen Unterlagen einschließlich der Umweltverträglichkeitserklärung.
    [Show full text]
  • Chapter 1 -- the Place of Faults in Petroleum Traps
    Sorkhabi, R.,and Y. Tsuji, 2005, The place of faults in petroleum traps, in R. Sorkhabi and Y. Tsuji, eds., Faults, fluid flow, and petroleum traps: AAPG Memoir 85, 1 p. 1 – 31. The Place of Faults in Petroleum Traps Rasoul Sorkhabi1 Technology Research Center, Japan National Oil Corporation, Chiba, Japan Yoshihiro Tsuji2 Technology Research Center, Japan National Oil Corporation, Chiba, Japan ‘‘The incompleteness of available data in most geological studies traps some geologists.’’ Orlo E. Childs in Place of tectonic concepts in geological thinking (AAPG Memoir 2, 1963, p. 1) ‘‘Although the precise role of faults has never been systematically defined, much has been written that touches on the subject. One thing is certain: we need not try to avoid them.’’ Frederick G. Clapp in The role of geologic structure in the accu mulation of petroleum (Structure of typical American oil fields II, 1929, p. 686) ABSTRACT ver since Frederick Clapp included fault structures as significant petroleum traps in his landmark paper in 1910, the myriad function of faults in petroleum E migration and accumulation in sedimentary basins has drawn increasing atten- tion. Fault analyses in petroleum traps have grown along two distinct and successive lines of thought: (1) fault closures and (2) fault-rock seals. Through most of the last century, geometric closure of fault traps and reservoir seal juxtaposition by faults were the focus of research and industrial application. These research and applications were made as structural geology developed quantitative methods for geometric and kine- matic analyses of sedimentary basins, and plate tectonics offered a unified tool to correlate faults and basins on the basis of the nature of plate boundaries to produce stress.
    [Show full text]
  • F Ahrplanscheck
    Zeitkarten VOR Info & Services 14.02.18 19:29 Mobil rund um St. Pölten EinfachDas VOR von-Tar iAfs ynachstem B NeuordnungDie VOR-Preisauskunft berec hdernet eine n Ticketpreis Änderungen und Mit 1. Juli 2018 werden Fahrpläne und Linienführungen Mit dem Tarifsystem des Verkehrsverbund Ost-Region für die gewählte Strecke und zeigt zudem das dazu- Anpassungen der Zeitkarten Damit Sie Ihre Reise mit Bus und Bahn optimal planen Regionalbusse 14.02.18 19:29 www.vor.at dMer Roegbioinla lbruussen rudnd umm St. PSöltten. aPngöepalstset und (DVOR)a ssind V SieO immerR- Tbeasserr iunftserywegs.stem RegionalbussegDeieh öVrOigRe- „PPrerisaöunliskcuhnef tN beetzre“ cahnn. eDt a esi nTicenk Ticket bertepcrhei-s Änderungen und verbessert. können, gibt es zahlreiche Möglichkeiten, sich über tigt zur Nutzung aller Verbundl inien in diesem Gel- Hier finden Sie alle Infos zu unseren Tickets Mit 1. Juli 2018 werden Fahrpläne und Linienführungen PMitreisbe dem Tarifrechnungsystem des undVerkehr persönlichessverbund Ost-R egionNetz für die gewählte Strecke und zeigt zudem das dazu- Anpassungen der Fahrpläne, Routen und Verbindungen zu informieren. Mittu n29.gs bMärzereic 2021h. werden die Fahrpläne und Linien- und Fahrplänen – die Fahrpläne gibt es auch Regionalbusse Dieder wichtigRegionsatlenbu Neuerungen:sse rund um St. Pölten angepasst und (VOR) sind Sie immer besser unterwegs. gehörige „Persönliche Netz“ an. Das Ticket berech- Die Berechnung der Preise erfolgt automatisch nach führungen der Regionalbusse im östlichen Weinviertel zum kostenlosen Download. •v Sercbehriststewret.ise Umstellung auf moderne Busse im Der VOR AnachB Routenplaner Ftiügrt Sztrecur Nkuetznu nnagc hal/levro Vn/eürbuenr dWl inieienn wäh in dlieens eSmie Geeinl-e EingabePreisbe vonrechnung Start und Ziel und durch persönliches die Verkaufsg Netzeräte angepasst und verbessert.
    [Show full text]
  • Master Thesis Erich Strasser
    Erich Strasser Master Thesis Applicability of Ultra-Deep Vienna Basin Drilling Experience for Future Exploration Requirements Supervised by: Univ.-Prof. Dipl.-Ing. Dr.mont. Gerhard Thonhauser, MU Leoben Approval date: November 2015 Date: 27/11/2015 Affidavit (Eidesstattliche Erklärung) I declare in lieu of oath, that I wrote this thesis and performed the associated research myself, using only literature cited in this volume. Leoben, _______________ _____________________ Erich Strasser Acknowledgement First of all I want to thank OMV Exploration & Production GmbH for giving me the opportunity to write this master thesis and for sponsoring me during this period of time. Special thanks to my advisor at OMV DI Markus Doschek for the assistance and support during the development of this master thesis. Furthermore, I want to thank DI Hermann Spörker – former OMV Head of Well Engineering – who made this work possible, too. Last, but definitely not least, I want to thank my family for supporting me during my time in Leoben. Table of Contents Kurzfassung .......................................................................................................................................... 9 Abstract ................................................................................................................................................ 10 1 Introduction ...................................................................................................................................... 11 2 History in Deep Drilling .................................................................................................................
    [Show full text]
  • Fact Sheet OMV Austria Exploration & Production Gmbh
    Fact Sheet OMV Austria Exploration & Production GmbH May 2020 OMV Upstream Energy Supply from State-of-the-art Technology Austria OMV is one of the most efficient opera- ► Austria as a base for tors of mature fields in the world with worldwide growth the highest recovery rates and produc- es 30 to 60% of the available oil de- ► Center for worldwide pending on the reservoir and up to 90% research and development from gas reservoirs. These outstanding activities figures are achieved through state-of- OMV, the international, integrated oil the-art technologies like saltwater man- and gas company, produced around agement, directional drilling technology, 487.000 boe (barrels of oil equiva- and optimization of production pump lent) per day in 2019. Exploration run life. and production activities in Austria make a considerable contribution: The saltwater treatment process using OMV produced more than 24,300 boe parallel plate separators, pressure relief per day in 2019 in Austria over an flotation, and nutshell filters at our wa- area of more than 3,800 km2, which ter treatment plant in Schönkirchen covers roughly 10% of the domestic achieves the best possible degree of oil and gas demand. purification far below 15 ppm - an inno- vation for the environment. Through OMV has been active in the Weinviertel directional and horizontal drilling tech- region for more than 60 years, nology, several separate reservoirs are maintaining a positive relationship with intersected at the same time with one the residents, the communities, and single well. Accessing reservoirs hori- farmers. Currently OMV has about 570 zontally can greatly increase produc- employees in Austrian exploration and tion.
    [Show full text]
  • Evolution of Extensional Basins and Basin and Range Topography West of Death Valley, California K.V
    TECTONICS, VOL. 8, NO. 3, PAGES453-467, JUNE 1989 EVOLUTION OF EXTENSIONAL BASINS AND BASIN AND RANGE TOPOGRAPHY WEST OF DEATH VALLEY, CALIFORNIA K.V. Hodges,L.W. McKenna,J. Stock •, J. Knapp, L. Page,K. Sternlof, D. Silverberg,G. Wrist2, and J. D. Walker 3 Department of Earth, Atmospheric,and Planetary Sciences,Massachusetts Institute of Technology, Cambridge Abstract. Neogeneextension in the Death Valley system remained active during development of region, SE California, has produced a variety of PanamintValley and, thus, during developmentof sedimentarybasins. Diachronousmovements on an modernBasin and Rangetopography as well. These array of strike-slip and normal fault systemshave results indicate that large-scale extension in the resultedin the uplift andpreservation of olderbasins Death Valley region,accommodated by movementon in modernranges. One of the bestexposed of these low- to moderate-angle normal fault systemsand is the Nova basin on the western flank of the high-angle strike-slipfault systems,is a continuing Panamint Mountains. The Nova basin includes over process. Basin and Range topography in the 2000 m of sedimentaryand volcanicrocks deposited PanamintValley- Death Valley areawas generatedat during denudation of the Panamint Mountains least in part by displacements on low-angle metamorphiccore complex in late Miocene(?)- early detachmentsrather than high-angle normal faults. Pliocenetime. The principalgrowth structure for the basinwas the Emigrant detachment,which initiated andmoved at a low angle. Modern PanamintValley, INTRODUCTION west of the range, developedas a consequenceof Late Pliocene- Recent,kinematically linked move- The fact that topographyin the Basin and Range ment on the right-slip, high-angleHunter Mountain Province of the western United States is controlled fault zone and the low-angle Panamint Valley by normal faulting has been recognizedfor over a detachment.
    [Show full text]
  • Moving Wachau, © Robert Herbst
    REFRESHINGLY moving Road map of Lower Austria, with tips for visitors WWW.LOWER-AUSTRIA.INFO Mostviertel, © Robert Herbst Mostviertel, Welcome! “With this map, we want to direct you to the most beautiful corners of Lower Austria. As you will see, Austria‘s largest federal state presents itself as a land of diversity, with a wide variety of landscapes for refreshing outdoor adventures, great cultural heritage, world-class wines and regional specialities. All that’s left to say is: I wish you a lovely stay, and hope that your time in Lower Austria will be unforgettable!” JOHANNA MIKL-LEITNER Lower Austrian Governor © NLK/Filzwieser “Here you will find inspiration for your next visit to, or stay in, Lower Austria. Exciting excursion destinations, varied cycling and mountain biking routes, and countless hiking trails await you. This map also includes lots of tips for that perfect stay in Lower Austria. Have fun exploring!” JOCHEN DANNINGER Lower Austrian Minister of Economics, Tourism and Sports © Philipp Monihart Wachau, © Robert Herbst Wachau, LOWER AUSTRIA 2 national parks in numbers Donau-Auen and Thaya Valley. 1 20 Vienna Woods nature parks years old is the age of the Biosphere Reserve. in all regions. Venus of Willendorf, the 29,500 world’s most famous figurine. fortresses, castles 70 and ruins are open to visitors. 93 centers for alpine abbeys and monasteries have “Natur im Garten” show gardens 9 adventure featuring 15 shaped the province and ranging from castle and monastic summer and winter its culture for centuries, gardens steeped in history sports. Melk Abbey being one to sweeping landscape gardens.
    [Show full text]
  • Mechanical Stratigraphy Controls Normal Fault Growth and Dimensions, Outer
    1 Mechanical Stratigraphy Controls Normal Fault Growth and Dimensions, Outer 2 Kwanza Basin, Offshore Angola 3 4 David Redpath1*, Christopher A.-L Jackson1, Rebecca E. Bell1 5 Basins Research Group (BRG), Department of Earth Science & Engineering, Imperial 6 College, Prince Consort Road, London, SW7 2BP, UK 7 *Corresponding author: David Redpath ([email protected]) 8 This paper is a non-peer reviewed preprint submitted to EarthArXiv. This preprint has been 9 submitted to AGU Tectonics for consideration for publication. 10 11 12 Key Points: 13 Mechanical stratigraphy and fault interaction control the extent to which faults adhere 14 to displacement-length scaling relationships. 15 Fault growth and displacement-length relationships must be considered in context of 16 local controls to be adequately described. 17 Detailed kinematic analysis on faults developing within the same overall tectono- 18 stratigraphic setting can shed light on the kinematics of blind fault growth. 19 20 21 22 Abstract 23 Fault growth and dimensions are controlled by mechanical stratigraphy on seismic scales. Here 24 we present a detailed analysis of largely blind faults and their kinematics Offshore, Angola; 25 where, salt bodies and mass-transport complexes (MTC) act as mechanically restricting 26 elements to an array of extensional faults. Our study presents mechanically restricted faults 27 whose data fall within the general scatter present in global displacement-length (D-L) scaling 28 datasets, and yet have starkly different fault growth models to those expected using geometric 29 data alone. We show how using displacement-length data to determine fault growth can mask 30 the not insignificant mechanical controls on growth histories in the absence of detailed 31 kinematic analysis.
    [Show full text]
  • Data for Quaternary Faults, Liquefaction Features, and Possible Tectonic Features in the Central and Eastern United States, East of the Rocky Mountain Front
    U.S. Department of the Interior U.S. Geological Survey Data for Quaternary faults, liquefaction features, and possible tectonic features in the Central and Eastern United States, east of the Rocky Mountain front By Anthony J. Crone and Russell L. Wheeler Open-File Report 00-260 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards nor with the North American Stratigraphic Code. Any use of trade names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. 2000 Contents Abstract........................................................................................................................................1 Introduction..................................................................................................................................2 Strategy for Quaternary fault map and database .......................................................................10 Synopsis of Quaternary faulting and liquefaction features in the Central and Eastern United States..........................................................................................................................................14 Overview of Quaternary faults and liquefaction features.......................................................14 Discussion...............................................................................................................................15 Summary.................................................................................................................................18
    [Show full text]
  • Relationship Between Growth Faults, Subsidence, and Land Loss: an Example from Cameron Parish, Southwestern Louisiana, USA
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340069701 Relationship between Growth Faults, Subsidence, and Land Loss: An Example from Cameron Parish, Southwestern Louisiana, USA Article in Journal of Coastal Research · March 2020 DOI: 10.2112/JCOASTRES-D-19-00108.1 CITATION READS 1 257 1 author: Raphael Gottardi University of Louisiana at Lafayette 41 PUBLICATIONS 136 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Basin Analysis View project All content following this page was uploaded by Raphael Gottardi on 23 March 2020. The user has requested enhancement of the downloaded file. Journal of Coastal Research 00 0 000–000 Coconut Creek, Florida Month 0000 Relationship between Growth Faults, Subsidence, and Land Loss: An Example from Cameron Parish, Southwestern Louisiana, USA Matthew O’Leary and Raphael Gottardi* School of Geosciences University of Louisiana at Lafayette Lafayette, LA 70504, U.S.A. ABSTRACT O’Leary, M. and Gottardi, R., 0000. Relationship between growth faults, subsidence, and land loss: An example from Cameron Parish, Southwestern Louisiana, USA. Journal of Coastal Research, 00(0), 000–000. Coconut Creek (Florida), ISSN 0749-0208. This study investigates the relationship between faulting, subsidence, and land loss in coastal Louisiana. A methodology that integrates three-dimensional (3D) seismic data, well logs, high-resolution topographic mapping (LIDAR), and historical aerial photography is successfully developed to identify fault-related geomorphic changes in southwestern Louisiana’s Chenier Plain. Analysis of a 3D seismic survey and well logs reveals the presence of 10 normal faults that form an east-west graben in the middle of the study area.
    [Show full text]