Oceanography and Marine Biology: An Annual Review, 2007, 45, 407-478 © R. N. Gibson, R. J. A. Atkinson, and J. D. M. Gordon, Editors Taylor & Francis CLIMATE CHANGE AND AUSTRALIAN MARINE LIFE E.S. POLOCZANSKA1, R.C. BABCOCK2, A. BUTLER1, A.J. HOBDAY3,6, O. HOEGH-GULDBERG4, T.J. KUNZ3, R. MATEAR3, D.A. MILTON1, T.A. OKEY1 & A.J. RICHARDSON1,5 1Wealth from Oceans Flagship — CSIRO Marine & Atmospheric Research, PO Box 120, Cleveland, Queensland 4163, Australia E-mail:
[email protected] 2Wealth from Oceans Flagship — CSIRO Marine & Atmospheric Research, Private Bag 5, Floreat, Western Australia 6913, Australia 3Wealth from Oceans Flagship — CSIRO Marine & Atmospheric Research, GPO Box 1538, Hobart, Tasmania 7001, Australia 4University of Queensland, Centre for Marine Studies, St Lucia, Queensland 4072, Australia 5University of Queensland, Department of Mathematics, St Lucia, Queensland 4072, Australia 6University of Tasmania, School of Zoology, Private Bag 5, Hobart, Tasmania 7001, Australia Abstract Australia’s marine life is highly diverse and endemic. Here we describe projections of climate change in Australian waters and examine from the literature likely impacts of these changes on Australian marine biodiversity. For the Australian region, climate model simulations project oceanic warming, an increase in ocean stratification and decrease in mixing depth, a strengthening of the East Australian Current, increased ocean acidification, a rise in sea level, alterations in cloud cover and ozone levels altering the levels of solar radiation reaching the ocean surface, and altered storm and rainfall regimes. Evidence of climate change impacts on biological systems are generally scarce in Australia compared to the Northern Hemisphere.