Extraction, Separation and Phytochemical Analysis of Lignan from Nutmeg ( Myristica Fragrans) Seeds Aessam F

Total Page:16

File Type:pdf, Size:1020Kb

Extraction, Separation and Phytochemical Analysis of Lignan from Nutmeg ( Myristica Fragrans) Seeds Aessam F Online International Interdisciplinary Research Journal, {Bi-Monthly}, ISSN2249-9598, Volume-III, Issue-V, Sept-Oct 2013 Extraction, Separation and Phytochemical Analysis of Lignan from Nutmeg ( Myristica Fragrans) Seeds aEssam F. Al-Jumaily,aShymaa I. Al Barzanchi aBiotechnology Department, Genetic Engineering and Biotechnology Institute for postgraduate students; University of Baghdad, Iraq Abstract In this study natural lignan dimer was isolated from nutmeg seeds using organic solvent, partially purified using liquid/liquid partiation and purified using anion exchanger and chemically characterized using Molish’s, Benedict’s, Fehing’s and Ferric chloride tests screening, then by the aid of UFLC-PDA-IT-TOF-MS System the molecular weight (657.221 ) and the molecular formula(C 40 H48 O8 ) of this dimer were determined after that the free radical scavenging activities was studied using stable free radical compound DPPH, results showed that this purified dimer had 75% scavenging activity while the partial purified dimer had 45% compared with vitamin C. KEYWORDS :Lignan; ( Myristica fragrance ) nutmeg; phytochemical analysis Introduction Myristica fragrance belongs to Myristicaceae family in order Magnoliales which contain about 150 genera and more than 3000 species. (Asgarponah and Kazemivash, 2012). Nutmeg produces two separate spiciousos, namely nutmeg and mace. Nutmeg is the dried Kernel of the seed and mace is the dried aril surrounding it. Myristice species are indigenous to India and Sri Lanka and now cultivated in many tropical countries (Barceloux, 2008). Nutmeg contains about 2% of lignan, which are nonvolatile dimmers. Lignan refers to a group of natural compounds comprising n-phenyl propane bound to B-position of the n- propyl side chain and is widely distributed in nature. There have been studies on the various physiological activities of lignan. Such as blood glucose- lowering action, anticancer action, anti- asthmatic action and whitening action. for example. It was reported that lignans isolated from sesame, such as sesamin, episesamin, sesaminol, sesamolin and episesaminol, have anti-inflammatory effects (Korean Patent Publication No. 1997-7001043). Lignan compounds isolated from Magnoliae floss can be used antiasthma tic agents (Korean patent Registration No. 0263439). Moreover macelignan is atypical lignan compound found in Myristica fragrans (Tuchinda. et al .,2002 ). Park, ( 2004) was reported to have various activities, such as the activation of caspase-3 during apoptosis . The aims of this study are to extraction and separation of ligana from nutmeg (Myristica fragrans) Seeds. Materials and Methods The dried seeds of Myristica fragrans were collected from local market in Baghdad during November /2011 and identified by the botanist professor Dr. Ali Almosawi in the College of Sciences/ Baghdad University. Firstly, nutmeg seed was cleaned from derbies which include other plants seeds, some parts of vegetarian of nutmeg and dust, Secondly www.oiirj.org ISSN 2249-9598 Page 1 Online International Interdisciplinary Research Journal, {Bi-Monthly}, ISSN2249-9598, Volume-III, Issue-V, Sept-Oct 2013 nutmeg seed was grinded by a grinder by a coffee grinder to a fine powder and stored in a closely tight container until used. Defatting Layer Stage This stage involved defatting of nutmeg oils by using Soxhelt apparatus according to (AACC, 1984). So (50) g. of powder was put in a thumble and (300) ml of petroleum ether was added within (40-60) 0C for (6) hours when time was over, petroleum ether was substituted by Chloroform with the same volume and the same time, continuously on the same program. Extraction of Crud Lignan The method which was described by Rickard et al, (1996) was used, (25)g of defatted powder was treated with a mixture of Dioxan and Ethanol alcohol (1:1)(v:v),respectively, with a ratio (1:8),(w:v),(powder: solvent),sample was placed on magnetic stir for (4)hrs., then filtrated by whatmann filter paper No.1. The solvent was evaporated by rotary evaporator at (40) 0C to obtain crud lignan. Separation of Lignan The process of separation Alkaline hydrolysis of SDG oligomers was done by dissolving a certain amount of crud dry lignanin an alkaline hydrolysis solution (a methanolicNaOH , 20 mM,pH=8) at 50 ºC for hydrolyzing SDG oligomers.(Li et al . ,2008).The mixture was filtered by filter paper then the supernatant was concentrated with a rotary evaporator within (45) 0C. Eventually, a thick sticky texture material was obtained ,pH was corrected into 3.0 through adding drops of sulfuric acid 2 molar then the sample was stored in (4) 0C. Liquid/Liquid Partition This method involves (liquid/ liquid) separation according to Westcott and Muir,(1996).There were two separating solvent systems which were differed in their polarity these systems include: Ethyl acetate: distilled water with ratio(1:7). Two layers were formed and take aqueous layer. This process repeated twice and the aqueous layer was concentrated with the rotary evaporator at (45) 0C to produce dry crude. Preparative Thin Layer Chromatography There was a method mentioned byHarborne (1973) was used. Aluminum plated (20x20cm) coated with silica gel thickness 1mm type (60F254). The separation solution ( Benzene:ethanol) was used with ratio (1:9)(v:v).When the solvent system moves about (15) cm from the spots plate directly pulled out and dried by air and illuminated under UV light source. The plate was examined at (280) nm wave length and the Rf value was calculated according to this equation: Rf = distance of sample (cm) /distance of solvent (cm) www.oiirj.org ISSN 2249-9598 Page 2 Online International Interdisciplinary Research Journal, {Bi-Monthly}, ISSN2249-9598, Volume-III, Issue-V, Sept-Oct 2013 Purification of Lignan: The anion exchanger Sephadex Q25 QAE (Pharmacia Co.) was used for lignan purification and was prepared according to Westcott and Muri (1998) then packaged as acetate form in (2.5×15) cm and the flow rate is 1 ml/ min. 2ml fractions were collected , then the D.W. was replaced by using 50% glacial acetic acid in 15% ethanol to remove substances that attached to the exchanger.All fractions were detected for lignan using Benedict reagent. Chemical tests for the Lignan compound By using the Molish’s, Benedict’s, Fehing’s and Ferric chloride test there were done according to (AOAC ,1984). Lignan Characterization By HPLC-TOF-MS System Shimadzu UFLC-PDA-IT-TOF-MS system , it is combination of HPLC and Mass spectrum that connected with fractionation system, so we able to purify the compounds by fractionation the samples according to the retention time and in the same time high sensitive TOF- mass identify molecular weight of compounds by measuring the time of fly (TOF) for each single atom and suggest possibility of compound identification using software data base.Shimadzu system (advance analytical HPLC) consist of dual pump solvent delivery system. Programmable fluorescence detector and water XBidge 2.2×50 mm column. The sample injection volume of auto injector was set to 100 µL, the solvent system consisting of water: acetonitrile:methanol (30:35:35 vol/vol%) as a mobile phase, the flow rate was 1 ml/min. Antioxidant Activity Antioxidant activity of partial purified lignan and purified lignan was detected using DPPH Radical Scavenging Assay according to Romeilah et al , (2010). 130 µl of methanol was added to each well of microtiter plate.20 µl of each sample (partial purified lignan, purified lignan and vitamin C) were added separately .Serial 10 fold dilution were done for each sample.50 µl of DPPH (Freshly prepared DPPH solution (0.004% w/v) was added for each well.Microtiter plate was incubated at 37 C for one hour.Radical scavenging activity of samples against the staple DPPH radical was determined spectrophotometrically using ELISA , the colorimetric changes ( from deep- violet to light- yellow) when DPPH is reduced were measured at 517 nm . The Scavenging activity of DPPH (%) was calculated by using the following equation – % DPPH radical scavenging = [(Absorbance of control - Absorbance of test Sample) / (Absorbance of control)] x100.Were the absorbance of negative control which was (1:9) (vol:vol) of ( DMSO : Methanol ) mixture and Abs. sample was the absorbance of samples( partial purified lignan, purified lignan and vitamin C which was the positive control). Results and Discussion Chemical Detection When purification of lignin was done by colum chromatography, chemical examination was carried out by using chemical reagents. These were specified for sugar www.oiirj.org ISSN 2249-9598 Page 3 Online International Interdisciplinary Research Journal, {Bi-Monthly}, ISSN2249-9598, Volume-III, Issue-V, Sept-Oct 2013 groups that are bound to lignan structurally, lignan contained two sugar moieties, therefore these reagents were used to detect these groups ,including firstly Molish’sreagent and the violet color appearance is an indication of lignan presence, While in Benedict’s test, the orange color which then changed into red sediment in the bottom of test tube is an indication for lignan presence. This result was supported by Fehling’s reagent where red sediment appeared , while in Ferric Chloride test the appearance of Intense Green colure was another evidence for sugar moieties presence in lignan compound and this agrees with AL-Awaad (2001) and AL-Al-Juamily(2012) whose used these reagents for lignan chemical detection . Table (1) shows chemical reagents which had been used in detection of the sugar moieties in lignan compound.
Recommended publications
  • Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
    Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000
    [Show full text]
  • Phenylpropanoids
    Phenylpropanoids The phenylpropanoids are a diverse family of organic compounds that are synthesized by plants from the amino acids phenylalanine and tyrosine. Their name is derived from the six-carbon, aromatic phenyl group and the three-carbon propene tail of cinnamic acid, which is synthesized from phenylalanine in the first step of phenylpropanoid biosynthesis. Phenylpropanoids are found throughout the plant kingdom, where they serve as essential components of a number of structural polymers, provide protection from ultraviolet light, defend against herbivores and pathogens, and mediate plant-pollinator interactions as floral pigments and scent compounds. Concentrations of phenylpropanoids within plants are also altered by changes in resource availability. www.MedChemExpress.com 1 Phenylpropanoids Inhibitors & Modulators (+)-Columbianetin (+)-Columbianetin acetate ((S)-Columbianetin) Cat. No.: HY-N0363 ((S)-Columbianetin acetate) Cat. No.: HY-N0363A (+)-Columbianetin is an isomer of Columbianetin. (S)-Columbianetin acetate is an isomer of Columbianetin is a phytoalexin associated with Columbianetin. Columbianetin is a phytoalexin celery (Apium graveolens) resistance to associated with celery (Apium graveolens) pathogens during storage. Columbianetin exhibits resistance to pathogens during storage. excellent anti-fungal and anti-inflammatory Columbianetin exhibits excellent anti-fungal and activity. anti-inflammatory activity. Purity: >98% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 5 mg, 10 mg, 20 mg Size: 5 mg, 10 mg, 20 mg (+)-Guaiacin (+)-Peusedanol Cat. No.: HY-N2247A Cat. No.: HY-N6063 (+)-Guaiacin is a compound extracted of the bark (+)-Peusedanol is a coumarin isolated from of Machilus wangchiana Chun. (Lauraceae). Peucedanumjaponicum. (+)-Guaiacin shows potent in vitro activities against the release of β-glucuronidase in rat polymorphonuclear leukocytes (PMNs) induced by platelet-activating factor (PAF) .
    [Show full text]
  • Asian Journal of Medical Sciences 1 (2010) 20-25
    Asian Journal of Medical Sciences 1 (2010) 20-25 ASIAN JOURNAL OF MEDICAL SCIENCES Hepato-protective Potential of Hull Fraction from Indian Flaxseed Cultivar J. Rajesha1*, A. Ranga Rao3, M. Karuna Kumar2 and G. A. Ravishankar3 1Department of Biochemistry, Yuvaraja’s College and 2Department of Studies in Biochemistry, University of Mysore, Mysore. 570005, India. 3Plant Cell Biotechnology Department, Central Food Technological Research Institute, Mysore 570020,India. Abstract Objective: Secoisolariciresinol diglucoside (SDG) isolated from hull fraction of Indian flaxseed cultivar was studied for its hepatoprotective potential by measuring the level of hepatic enzymes such as catalase, peroxidase and superoxide desmutase (SOD) upon feeding to albino rats. Material & Methods: The animals were grouped into five groups (n=5): The first group served as normal and received normal diet without treatment of toxin and hull fraction of flaxseed. The second group was named the control and received a regular commercial diet. The third, fourth and fifth groups were fed with normal diet and supplemented with hull fraction of flaxseed (150 and 250 μg/kg) and standard SDG (150 μg/kg), that was mixed with olive oil for 14 days. Results: Pretreatment of rats with 150 µg/kg b.w hull fraction of flaxseed followed by CCl4 treatment caused restoration of catalase, SOD and peroxidase by 37.70%, 108.22% and 23.89% respectively as compared to control. The group treated with 250 µg/kg b.w hull fraction of flaxseed showed the restoration of 67.30%, 152.82% and 39.88% of catalase, SOD and peroxidase, respectively. Conclusion: In conclusion, SDG fed in the form of flaxseed hull is responsible for its hepatoprotective properties.
    [Show full text]
  • 1.25 Lignans: Biosynthesis and Function
    1.25 Lignans: Biosynthesis and Function NORMAN G. LEWIS and LAURENCE B. DAVIN Washington State University, Pullman, WA, USA 0[14[0 INTRODUCTION 539 0[14[1 DEFINITION AND NOMENCLATURE 539 0[14[2 EVOLUTION OF THE LIGNAN PATHWAY 531 0[14[3 OCCURRENCE 534 0[14[3[0 Li`nans in {{Early|| Land Plants 534 0[14[3[1 Li`nans in Gymnosperms and An`iosperms "General Features# 536 0[14[4 OPTICAL ACTIVITY OF LIGNAN SKELETAL TYPES AND LIMITATIONS TO THE FREE RADICAL RANDOM COUPLING HYPOTHESIS 536 0[14[5 707? STEREOSELECTIVE COUPLING] DIRIGENT PROTEINS AND E!CONIFERYL ALCOHOL RADICALS 541 0[14[5[0 Diri`ent Proteins Stipulate Stereoselective Outcome of E!Coniferyl Alcohol Radical Couplin` in Pinoresinol Formation 541 0[14[5[1 Clonin` of the Gene Encodin` the Diri`ent Protein and Recombinant Protein Expression in Heterolo`ous Systems 543 0[14[5[2 Sequence Homolo`y Comparisons 543 0[14[5[3 Comparable Systems 543 0[14[5[4 Perceived Biochemical Mechanism of Action 546 0[14[6 PINORESINOL METABOLISM AND ASSOCIATED METABOLIC PROCESSES 547 0[14[6[0 Sesamum indicum] "¦#!Piperitol\ "¦#!Sesamin\ and "¦#!Sesamolinol Synthases 547 0[14[6[1 Magnolia kobus] Pinoresinol and Pinoresinol Monomethyl Ether O!Methyltransferase"s# 550 0[14[6[2 Forsythia intermedia and Forsythia suspensa 551 0[14[6[2[0 "¦#!Pinoresinol:"¦#!lariciresinol reductase 552 0[14[6[2[1 "−#!Secoisolariciresinol dehydro`enase 554 0[14[6[2[2 Matairesinol O!methyltransferase 556 0[14[6[3 Linum usitatissimum] "−#!Pinoresinol:"−#!Lariciresinol Reductase and "¦#!Secoisolariciresinol Glucosyltransferase"s# 557
    [Show full text]
  • ANTIOXIDANT PROPERTIES of FLAXSEED LIGNANS USING in VITRO MODEL SYSTEMS a Thesis Submitted to the College of Graduate Studies A
    ANTIOXIDANT PROPERTIES OF FLAXSEED LIGNANS USING IN VITRO MODEL SYSTEMS A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the College of Pharmacy and Nutrition of the University of Saskatchewan Saskatoon, Saskatchewan Canada By Farah Hosseinian Copyright Farah Hosseinian April 2006 All Rights Reserved The author claims copyright. Use shall not be made of the material contained herein without proper acknowledgment, as indicated on the copyright page. i PERMISION TO USE In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis, in whole or in parts, should be addressed to: Head College of Pharmacy and Nutrition University of Saskatchewan 110 Science Place Saskatoon, SK S7N 5C9 Canada ii 1.0 ABSTRACT The major objectives of this study were to investigate the antioxidant properties of flaxseed lignans secoisolariciresinol (SECO 2) and secoisolariciresinol diglycoside (SDG 1) and their major oxidative compounds using 2,2'-azobis(2- amidinopropane) dihydrochloride (AAPH 47) in an in vitro model of lipid peroxidation.
    [Show full text]
  • Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases
    International Journal of Molecular Sciences Review Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases Thanasekaran Jayakumar 1, Periyakali Saravana Bhavan 2 and Joen-Rong Sheu 1,3,* 1 Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; [email protected] 2 Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; [email protected] 3 Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan * Correspondence: [email protected]; Tel.: +886-2-27361661-3199; Fax: +886-27390450 Received: 16 June 2020; Accepted: 8 July 2020; Published: 13 July 2020 Abstract: Osteoarthritis (OA) is the most common type of arthritis that occurs in an aged population. It affects any joints in the body and degenerates the articular cartilage and the subchondral bone. Despite the pathophysiology of OA being different, cartilage resorption is still a symbol of osteoarthritis. Matrix metalloproteinases (MMPs) are important proteolytic enzymes that degrade extra-cellular matrix proteins (ECM) in the body. MMPs contribute to the turnover of cartilage and its break down; their levels have increased in the joint tissues of OA patients. Application of chondroprotective drugs neutralize the activities of MMPs. Natural products derived from herbs and plants developed as traditional medicine have been paid attention to, due to their potential biological effects. The therapeutic value of natural products in OA has increased in reputation due to their clinical impact and insignificant side effects. Several MMPs inhibitor have been used as therapeutic drugs, for a long time. Recently, different types of compounds were reviewed for their biological activities.
    [Show full text]
  • WO 2018/002916 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL).
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tuberculosis
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tuberculosis Chemical Activity Count (+)-3-HYDROXY-9-METHOXYPTEROCARPAN 1 (+)-8HYDROXYCALAMENENE 1 (+)-ALLOMATRINE 1 (+)-ALPHA-VINIFERIN 3 (+)-AROMOLINE 1 (+)-CASSYTHICINE 1 (+)-CATECHIN 10 (+)-CATECHIN-7-O-GALLATE 1 (+)-CATECHOL 1 (+)-CEPHARANTHINE 1 (+)-CYANIDANOL-3 1 (+)-EPIPINORESINOL 1 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-GALBACIN 2 (+)-GALLOCATECHIN 3 (+)-HERNANDEZINE 1 (+)-ISOCORYDINE 2 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 2 (+)-T-CADINOL 1 (+)-VESTITONE 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-3-HYDROXY-9-METHOXYPTEROCARPAN 1 (-)-ACANTHOCARPAN 1 (-)-ALPHA-BISABOLOL 2 (-)-ALPHA-HYDRASTINE 1 Chemical Activity Count (-)-APIOCARPIN 1 (-)-ARGEMONINE 1 (-)-BETONICINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 2 (-)-BORNYL-FERULATE 2 (-)-BORNYL-P-COUMARATE 2 (-)-CANESCACARPIN 1 (-)-CENTROLOBINE 1 (-)-CLANDESTACARPIN 1 (-)-CRISTACARPIN 1 (-)-DEMETHYLMEDICARPIN 1 (-)-DICENTRINE 1 (-)-DOLICHIN-A 1 (-)-DOLICHIN-B 1 (-)-EPIAFZELECHIN 2 (-)-EPICATECHIN 6 (-)-EPICATECHIN-3-O-GALLATE 2 (-)-EPICATECHIN-GALLATE 1 (-)-EPIGALLOCATECHIN 4 (-)-EPIGALLOCATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN-GALLATE 9 (-)-EUDESMIN 1 (-)-GLYCEOCARPIN 1 (-)-GLYCEOFURAN 1 (-)-GLYCEOLLIN-I 1 (-)-GLYCEOLLIN-II 1 2 Chemical Activity Count (-)-GLYCEOLLIN-III 1 (-)-GLYCEOLLIN-IV 1 (-)-GLYCINOL 1 (-)-HYDROXYJASMONIC-ACID 1 (-)-ISOSATIVAN 1 (-)-JASMONIC-ACID 1 (-)-KAUR-16-EN-19-OIC-ACID 1 (-)-MEDICARPIN 1 (-)-VESTITOL 1 (-)-VESTITONE 1
    [Show full text]
  • Planta Medica
    www.thieme.de/fz/plantamedica | www.thieme-connect.de/ejournals Planta Medica July 2009 · Page 877 – 1094 · Volume 75 9 · 2009 Editorial Poster 877 Editorial 903 Topic A: Lead finding from Nature 928 Topic B: Conservation and biodiversity issues 878 Lectures 939 Topic C: Plants and aging of the population 944 Topic D: Natural products and neglected diseases Workshops 882 WS1 Workshops for Young Researchers: 966 Topic E: Anti-cancer agents Validation of Analytical Methods 988 Topic F: HIV and viral diseases 882 WS2 Workshops for Young Researchers: Cell Culture 991 Topic G: Quality control and safety assessments of phytomedicines 882 WS3 Permanent Committees on Manufacturing and Quality Control of Herbal Remedies and 1007 Topic H: Prevention of metabolic diseases Regulatory Affairs of Herbal Medicinal Products by medicinal plants and nutraceuticals 883 WS4 Permanent Committee on Biological and 1019 Topic I: Cosmetics, flavours and aromas Pharmacological Activity of Natural Products: Phytoestrogens: risks and benefits for human 1029 Topic J: Free Topic health 883 WS5 Permanent Committee on Breeding and 1083 Authors’ Index Cultivation of Medicinal Plants: Genetic Resources, Conservation and Breeding 1094 Masthead 884 Short lectures Editorial 877 57th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research Date/Place: Geneva, Switzerland, August 16 – 20, 2009 Chairman: Kurt Hostettmann Dear Colleagues, The 57th Congress of the Society of Medicinal Plant and Natural Product research will be held this year in Geneva, Switzerland. The congress venue is going to be at the CICG (Centre International des Confrences Genve) which is very well equipped to host such an important scientific event.
    [Show full text]
  • A Mini Review on the Protective Effect of Lignans for the Treatment of Neurodegenerative Disorders
    Das M and Devi KP. J Nutr Food Lipid Sci 2019(1): 40-53. https://doi.org/10.33513/NFLS/1901-06 OCIMUM Journal of Nutrition, Food and Lipid Science Review Article A Mini Review on the Protective Effect of Lignans for the Treatment of Neurodegenerative Disorders Abstract Nature is a rich source of numerous bioactive compounds that are categorized as secondary metabolites. Lignans are group of such compounds, generally called phytoestrogens widely present in many plants and vegetables, grains, seeds, nuts and tea. They have been used as folk medicine for the treatment of several clinical conditions like asthma, cardiovascular diseases, arthrosclerosis, colitis Mamali Das and Kasi Pandima Devi* and many more. Structurally, lignans are characterized by two phenylpropane Department of Biotechnology, Alagappa University, groups attached by a carbon bond. They have been divided in to several types Tamil Nadu, India on the basis of structure of their carbon skeleton, the way of cyclization and oxygen incorporation in the skeleton. Lignans from numerous plant species Received Date: 22 December 2018 such as Kadsura polysperma, Kadsura ananosma, Schisandra wilsoniana, Accepted Date: 28 January 2019 Schisandra chinensis, Schisandra arisanensis, Manglietiastrum sinicum, Published Date: 19 February 2019 Pycnanthus angolensis, Cleistanthus indochinensis, Sargentodoxa cuneata, Tabebuia chrysotricha, Lindera glauca, Tilia amurensis and many more have Citation been found to be beneficial for cancer, hepatitis, microbial and fungal infection. Neurodegenerative Diseases (NDD) represent a class of disorder each of which Das M, Devi KP (2019) A Mini Review on the corresponds to a specific pathological condition while their molecular pathways Protective Effect of Lignans for the Treatment of have been found to be interlinked.
    [Show full text]
  • Variation of Sesamin and Sesamolin Contents in Sesame Cultivars from China
    Pak. J. Bot., 45(1): 177-182, 2013. VARIATION OF SESAMIN AND SESAMOLIN CONTENTS IN SESAME CULTIVARS FROM CHINA LINHAI WANG1, YANXIN ZHANG1, PEIWU LI2, WEN ZHANG2, XUEFANG WANG2, XIAOQIONG QI AND XIURONG ZHANG1 1Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Sesame Germplasm and Genetic Breeding Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, 430062, China 2Quality Inspection and Test Center for Oilseeds and Products of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, 430062, China E-mail: [email protected]; Tel: 86 27-86811836; Fax: 86 27-86811836 Abstract A collection of 62 sesame cultivars from China were analyzed for sesamin and sesamolin contents in seeds using HPLC. Results showed the sesamin and sesamolin contents of these cultivars ranged from 0.82 to11.05 mg/g and 1.35 to 6.96 mg/g, respectively. About 60.0% of the cultivars stayed in the range from 6.0 to 9.0 mg/g in the total content of sesamin and sesamolin. On average, cultivars with white seed coat color had higher sesamin content than those samples with black color. The correlation coefficient between sesamin and sesamolin of the cultivars with different seed colors ranked as white (R = 0.44) < medium (R = 0.75) < black (R = 0.96). The landraces had higher sesamin and sesamolin contents than other cultivars significantly. The results of this study exhibited useful lignan information of the cultivars from China and identified potential cultivars having high sesamin or sesamolin for functional food, pharmaceutics and cosmetic industries.
    [Show full text]
  • Sesame Seed Lignans for Their Biological Scott R, Macpherson A, Yates RWS, Et Ai
    570/SELENlUM PDR FOR NUTRITIONAL SUPPLEMENTS Reilly C. Selenium: a new entrant into the functional food Egyptians and as the fundamental body massage oil in arena. Trends Food Sci Technol. 1998;9:114-118. Ayurvedic medicine. These days, bodybuilders use lignans Schrauzer GN. Selenomethionine: a review of its nutritional from sesame seeds for supposed performance enhancement significance, metabolism and toxicity. J Nutr. 2000; 130:1653- and weight loss. Recently, there has been a great deal of 1656. interest in studying sesame seed lignans for their biological Scott R, MacPherson A, Yates RWS, et aI. The effect of oral effects and possible health benefits. selenium supplementation on human sperm motility. J Urol. 1998;82:76-80. Sesame seed is one of the two major dietary sources of plant Selenium Intoxication-New York. Morbidity and Mortality lignans, the other major source being flaxseed. The major Weekly. 1984; Report 33, No.12:157-158. sesame seed lignan is sesamin. Sesame seed contains about Stranges S, Marshall JR, Natarajan R, et al. Effects of long- 0.4% sesamin in sesame oil or about 4 mg per gram. Sesame term selenium supplementation on the incidence of type 2 seed also contains about half as much of the lignan diabetes: a randomized trial. Ann Intern Med. 2007;147(4):217- sesamolin and smaller amounts of sesamol, sesaminol, and 223. the water-soluble lignans, sesaminol diglucoside and sesami- Suadicani P, Hein HO, Gyntelberg F. Serum selenium nol triglucoside. (The aglycosides are lipid-soluble.) In concentration and risk of ischaemic heart disease in a addition, it contains small amounts of matairesinol, lariciresi- prospective cohort study of 3,000 males.
    [Show full text]