Spin-Polarized Superconductivity: Order Parameter Topology, Current Dissipation, and Multiple-Period Josephson Effect

Total Page:16

File Type:pdf, Size:1020Kb

Spin-Polarized Superconductivity: Order Parameter Topology, Current Dissipation, and Multiple-Period Josephson Effect Spin-polarized superconductivity: order parameter topology, current dissipation, and multiple-period Josephson effect Eyal Cornfeld,1 Mark S. Rudner,2 and Erez Berg1 1Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel 2Niels Bohr International Academy and Center for Quantum Devices, University of Copenhagen, 2100 Copenhagen, Denmark We discuss transport properties of fully spin-polarized triplet superconductors, where only elec- trons of one spin component (along a certain axis) are paired. Due to the structure of the order parameter space, wherein phase and spin rotations are intertwined, a configuration where the super- conducting phase winds by 4π in space is topologically equivalent to a configuration with no phase winding. This opens the possibility of supercurrent relaxation by a smooth deformation of the order parameter, where the order parameter remains non-zero at any point in space throughout the entire process. During the process, a spin texture is formed. We discuss the conditions for such processes to occur and their physical consequences. In particular, we show that when a voltage is applied, they lead to an unusual alternating-current Josephson effect whose period is an integer multiple of the usual Josephson period. These conclusions are substantiated in a simple time-dependent Ginzburg-Landau model for the dynamics of the order parameter. One of the potential applications of our analysis is for moir´esystems, such as twisted bilayer and double bilayer graphene, where superconductivity is found in the vicinity of ferromagnetism. I. INTRODUCTION Spin-triplet superconductors (SCs) and superfluids are predicted to exhibit rich phenomena owing to the inter- play between the spin and phase degrees of freedom of their order parameters. A celebrated example is super- fluidity in 3He [1,2]. Triplet superconductivity remains scarce in electronic systems, however; possible examples include uranium heavy-fermion compounds where super- conductivity is found to coexist with ferromagnetism [3{ 5], and Sr2RuO4 [6], although the latter has recently been contested [7]. Two-dimensional moir´ematerials, such as twisted bi- layer graphene (TBG) and heterostructures based on other van der Waals materials have recently emerged as a fertile ground for novel correlated-electron phenom- ena [8{29]. In particular, the phase diagrams of these sys- tems include spin and valley polarized states [19, 22, 30] residing in proximity to superconducting states, raising the possibility of spin-triplet superconductivity. More- over, since these systems have multiple valleys in their band structures and can be made relatively clean, they may avoid the pair-breaking effect of disorder that in- hibits triplet superconductivity in many materials. In carbon-based materials, spin-orbit coupling is expected to be negligible, opening the possibility of a non-trivial FIG. 1. (a) A depiction of the proposed experimental setup; a fully spin-polarized triplet superconductor is connected to a intertwining of the gapless magnetic and superconduct- arXiv:2006.10073v3 [cond-mat.supr-con] 15 Jan 2021 DC voltage source and drain via the left and right leads. We ing phase degrees of freedom. Intriguingly, recent experi- overlay a current-carrying configuration of the order param- ments in twisted double-bilayer graphene (TDBG) with a eter. (b) A visualization of the order parameter triad where perpendicular electric field show possible signs of triplet d(1) and d(2) are depicted by the red and blue arrows and superconductivity [31, 32]. the pairing polarization m is depicted by the gray arrow. (c) These remarkable findings motivate us to reexamine Schematics of the current response of the system portray AC the physics of triplet SCs in systems with negligible spin- Josephson effect period doubling. orbit coupling. We focus on a particular state which is natural for TBG and related graphene-based moir´e materials: a fully spin-polarized triplet superconductor, in which only electrons of one spin component (along a 2 spontaneously chosen quantization axis) are paired. This exchange both energy and spin angular momentum. For phase is analogous to the A1 and β phases discussed in currents larger than the critical current density men- 3 the context of superfluid He [1,2, 33]. The order param- tioned above, Jc, the model provides a prediction for the 2 eter of such a superconductor is specified by the spin di- current-voltage relation: V / (J − Jc) , up to logarith- rection of the condensate and its phase; topologically, the mic corrections, where J is the DC component of the order parameter space is equivalent to the space of three- current. When an external Zeeman field is applied (e.g., dimensional rotation matrices, SO(3) [34]; see Fig.1(b). an in-plane magnetic field in a two-dimensional system), This property crucially determines the topology of the it pins the direction of the spin magnetization, and the order parameter space, and hence the ability of the su- properties of the system rapidly cross over to those of perconductor to carry stable supercurrents. an ordinary SC. We hope that these predictions will pro- In a ring geometry, the superconducting phase of an vide guidance to experiments in novel exotic SCs, such as ordinary (e.g., singlet) SC can wind any integer number TDBG, where they can be used to confirm or invalidate of times around the hole of the ring. Mathematically, the existence of a fully spin-polarized triplet SC. this is expressed by the homotopy group π1[U(1)] = Z. This paper is organized as follows. In Sec.II we review Changing the winding number requires creating a topo- the properties of a fully-spin polarized SC, its distinc- logical defect at which the magnitude of the order pa- tion from other triplet SC phases, and the topology of rameter is suppressed to zero, such as a phase slip or a its order parameter space. We then describe the physi- vortex [35, 36]. Since such defects are energetically sup- cal picture and summarize the main results of the paper. pressed, a configuration with a non-zero winding number Sec. III describes the Ginzburg-Landau (GL) model. In (corresponding to a supercurrent) is metastable and may Sec.IV we study the energy landscape of the model, ei- persist over a very long time. ther with or without an applied Zeeman field, deriving In contrast, the homotopy group the order param- the maximum supercurrent the system can carry in a eter of a fully spin-polarized triplet SC on a ring is metastable state. Sec.V introduces a time-dependent extension of the GL model. This model allows us to π1[SO(3)] = Z2. Physically, this means that in such a SC, two vortices can always annihilate each other, re- study dynamic phenomena, such as the properties of the gardless of their vorticity. A configuration in which the system in the presence of a finite applied voltage. The SC phase winds twice, either around a point or in a ring results are discussed in Sec.VI. The Appendices contain geometry, can be \untwisted" back to a uniform configu- technical details of the solution of the time-dependent ration continuously, without diminishing the magnitude Ginzburg-Landau (TDGL) equations. of the order parameter at any location. The untwisting process involves a temporary change in the system's mag- netization; thus, the timescale for this process to occur II. PHYSICAL PICTURE & MAIN RESULTS depends on the coupling of the SC condensate to either an intrinsic or extrinsic bath with which it can exchange In order to gain physical intuition of spin-polarized spin angular momentum. triplet superconductivity, we begin with a short review The purpose of this work is to explore the unusual of the relevant order parameters. Those who are already transport properties of fully spin-polarized triplet SCs familiar with this material may opt to skip to the results that result from the topology of their order parameter which are presented in Sec. IIB. space. We find that in such SCs, a supercurrent-carrying state is much more fragile than in an ordinary SC. The critical current density, Jc, that the system can sustain in A. Review of triplet superconductivity and a metastable state depends on the applied Zeeman field, application to multi-valley systems B. For B = 0, we find that Jc scales inversely with the system size along the current direction, and depends on 1. Order parameter both the spin and phase stiffnesses. A small voltage ap- plied across the SC results in a time-dependent current with a direct-current (DC) component of magnitude close The order parameter of a triplet SC can be repre- to this critical current, and an alternating-current (AC) sented in terms of the so-called d-vector, which is a complex vector defined as d = h y iσ σ y i, where component with a fundamental frequency! ~J = eV=~, k k 2 −k y y y i.e., half of the usual Josephson frequency across a SC k = ( k"; k;#), and the Pauli matrices σ = (σ1; σ2; σ3) weak link; see Fig.1(c). This doubled periodicity is di- act on the spin degrees of freedom ("; #). The Pauli prin- rectly related to the Z2 topological structure of the order ciple forces dk = −d−k.[37] parameter space. For sufficiently large appliedp Zeeman The existence of multiple valleys in systems such as field, the critical current scales as Jc / B indepen- TBG and TDBG enables the possibility of a valley-singlet dently of system size. state which does not require the order parameter to be We demonstrate these phenomena within a time- momentum dependent within each valley. (Exotic spin- dependent Ginzburg-Landau model, where we assume singlet order parameters have been proposed in mono- that the system is coupled to a bath with which it can layer graphene [38]; here, we focus on spin-triplet pair- 3 ing.) Considering a system at a finite density away from (i) Non-spin-polarized, unitary \spin nematic" phase.{ charge neutrality with a finite Fermi surface, we project In this phase, the pairing polarization vanishes, the pairing potential to Bloch states near the Fermi sur- m = 0, corresponding to d(1) jj d(2).
Recommended publications
  • Allan Hugh Macdonald Date and Place of Birth
    10/31/2014 CURRICULUM VITAE ALLAN H. MACDONALD Full name: Allan Hugh MacDonald Date and place of birth: December 1, 1951 Antigonish, Nova Scotia, Canada Citizenships: Canadian and American Present address: 2519 Harris Boulevard Austin, Texas 78703 USA Phone (512) 495-9192 Institutional affiliation: The University of Texas at Austin Austin, Texas 78712 Phone (512) 232-9113 FAX (512) 471-9621 e-mail: [email protected] Title: Sid W. Richardson Foundation Regents Chair Field of Specialization: Condensed Matter Theory Employment: September 1973 -- April 1978 Ph.D. Student University of Toronto May 1978 -- October 1980 Research Associate --- National Research Council November 1980 -- June 1982 Assistant Research Officer -- National Research Council of Canada August 1982 -- August 1987 Associate Research Officer --- National Research Council of Canada September 1987 -- August 1992 Professor of Physics --- Indiana University September 1992 -- August 2000 Distinguished Professor of Physics --- Indiana University September 2000 -- present Sid W. Richardson Foundation Regents Chair --- The University of Texas at Austin 1 10/31/2014 Scholarships and Honors: President's Scholarship, St. Francis Xavier University, 1969–1973 Governor-General's Medal, St. Francis Xavier University, 1973 (Highest academic standing in graduating class) NSERC 1967 Science Scholarship, University of Toronto, 1973–1977 Herzberg Medal, 1987 (Awarded by the Canadian Association of Physicists) Fellow of the American Physical Society, 1989 Sid W. Richardson Foundation Regents
    [Show full text]
  • Moiré Band Topology in Twisted Bilayer Graphene
    Moiré Band Topology in Twisted Bilayer Graphene Chao Ma, † Qiyue Wang, ‡ Scott Mills,§ Xiaolong Chen, †# Bingchen Deng, † Shaofan Yuan, † Cheng Li, † Kenji Watanabe, || Takashi Taniguchi, || Du Xu, *§ Fan Zhang, *‡ and Fengnian Xia*† †Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA ‡Department of Physics, The University of Texas at Dallas, Richardson, TX 7508, USA §Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY11794, USA ||National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 1 ABSTRACT Recently twisted bilayer graphene (t-BLG) emerges as a new strongly correlated physical platform near a magic twist angle, which hosts many exciting phenomena such as the Mott-like insulating phases, unconventional superconducting behavior and emergent ferromagnetism. Besides the apparent significance of band flatness, band topology may be another critical element in determining strongly correlated twistronics yet receives much less attention. Here we report compelling evidence for nontrivial noninteracting band topology of t-BLG moiré Dirac bands through a systematic nonlocal transport study, in conjunction with an examination rooted in K- theory. The moiré band topology of t-BLG manifests itself as two pronounced nonlocal responses in the electron and hole superlattice gaps. We further show that the nonlocal responses are robust to the interlayer electric field, twist angle, and edge termination, exhibiting a universal scaling law. While an unusual symmetry of t-BLG trivializes Berry curvature, we elucidate that two Z2 invariants characterize the topology of the moiré Dirac bands, validating the topological edge origin of the observed nonlocal responses. Our findings not only provide a new perspective for understanding the emerging strongly correlated phenomena in twisted van der Waals heterostructures, but also suggest a potential strategy to achieve topologically nontrivial metamaterials from topologically trivial quantum materials based on twist engineering.
    [Show full text]
  • Exploring the Electrical Properties of Twisted Bilayer Graphene
    Linfield University DigitalCommons@Linfield Senior Theses Student Scholarship & Creative Works 5-2019 Exploring the Electrical Properties of Twisted Bilayer Graphene William Shannon Linfield College Follow this and additional works at: https://digitalcommons.linfield.edu/physstud_theses Part of the Condensed Matter Physics Commons, Energy Systems Commons, Engineering Physics Commons, Materials Science and Engineering Commons, and the Power and Energy Commons Recommended Citation Shannon, William, "Exploring the Electrical Properties of Twisted Bilayer Graphene" (2019). Senior Theses. 45. https://digitalcommons.linfield.edu/physstud_theses/45 This Thesis (Open Access) is protected by copyright and/or related rights. It is brought to you for free via open access, courtesy of DigitalCommons@Linfield, with permission from the rights-holder(s). Your use of this Thesis (Open Access) must comply with the Terms of Use for material posted in DigitalCommons@Linfield, or with other stated terms (such as a Creative Commons license) indicated in the record and/or on the work itself. For more information, or if you have questions about permitted uses, please contact [email protected]. Exploring the Electrical Properties of Twisted Bilayer Graphene William Shannon A THESIS Presented to the Department of Physics LINFIELD COLLEGE McMinnville, Oregon In partial fulfillment of the requirements for the Degree of BACHELOR OF SCIENCE May, 2019 THESIS COPYRIGHT PERMISSIONS Pleaseread this document carefully before signing. If you have questions about any of these permissions,please contact the DigitalCommonsCoordinator. Title of the Thesis: Exploring the Electrical Properties of Twisted Bilayer Graphene Author's Name: (Last name, first name) Shannon, William111 Advisor's Name DigitalCommons@Linfield(DC@L) is our web-based, open access-compliantinstitutional repository for digital content produced by Linfield faculty, students, staff, and their collaborators.
    [Show full text]
  • Critical Point for Bose–Einstein Condensation of Excitons in Graphite
    Critical point for Bose–Einstein condensation of excitons in graphite Jinhua Wanga,b , Pan Niea,b , Xiaokang Lia,b, Huakun Zuoa,b, Benoˆıt Fauque´ c, Zengwei Zhua,b,1 , and Kamran Behniad aWuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China; bSchool of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; cJeunes Equipes´ de l’Institut de Physique, Unite´ Mixte de Service et de Recherche 3573, CNRS, College` de France, Paris Sciences et Lettres Research University, 75231 Paris Cedex 05, France; and dLaboratoire de Physique et d’Etude´ des Materiaux,´ CNRS, Ecole´ Superieure´ de Physique et de Chimie Industrielles Paris, Paris Sciences et Lettres Research University, 75005 Paris, France Edited by Zachary Fisk, University of California, Irvine, CA, and approved October 15, 2020 (received for review June 22, 2020) An exciton is an electron–hole pair bound by attractive Coulomb nature of EI unexpected in the alternative Peierls-driven charge interaction. Short-lived excitons have been detected by a vari- density wave (CDW) (9). Other indirect signatures of BEC ety of experimental probes in numerous contexts. An excitonic transition have been reported in two-dimensional systems, such insulator, a collective state of such excitons, has been more elu- as quantum wells (11), graphene (12–14), and transition metal sive. Here, thanks to Nernst measurements in pulsed magnetic dichalcogenides heterostructures (15, 16). fields, we show that in graphite there is a critical temperature Here, we present the case of graphite subject to strong mag- (T = 9.2 K) and a critical magnetic field (B = 47 T) for Bose–Einstein netic field where the existence of a thermodynamic phase transi- condensation of excitons.
    [Show full text]
  • Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor
    Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition Seunghyun Lee§, Kyunghoon Lee§, Zhaohui Zhong * Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor, MI 48109, USA § These authors contributed equally to this work. *Corresponding author. Electronic mail: [email protected] ABSTRACT The discovery of electric field induced bandgap opening in bilayer graphene opens new door for making semiconducting graphene without aggressive size scaling or using expensive substrates. However, bilayer graphene samples have been limited to µm2 size scale thus far, and synthesis of wafer scale bilayer graphene posts tremendous challenge. Here we report homogeneous bilayer graphene films over at least 2 inch × 2 inch area, synthesized by chemical vapor deposition on copper foil and subsequently transferred to arbitrary substrates. The bilayer nature of graphene film is verified by Raman spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM). Importantly, spatially resolved Raman spectroscopy confirms a bilayer coverage of over 99%. The homogeneity of the film is further supported by electrical transport measurements on dual-gate bilayer graphene transistors, in which bandgap opening is observed in 98% of the devices. 1 KEYWORDS Graphene, bilayer, chemical vapor deposition, wafer scale, bandgap opening Single and few-layer graphene1-5 are promising materials for post-silicon electronics because of their potential of integrating bottom-up nanomaterial synthesis with top-down lithographic fabrication at wafer scale.4,6 However, single layer graphene is intrinsically semimetal; introducing energy bandgap requires patterning nanometer-width graphene ribbons7-9 or utilizing special substrates.10-12 Bilayer graphene, instead, has an electric field induced bandgap up to 250 meV,13-18 thus eliminating the need for extreme scaling or costly substrates.
    [Show full text]
  • Gate Controlled Valley Polarizer in Bilayer Graphene ✉ Hao Chen1,2, Pinjia Zhou1, Jiawei Liu1,2, Jiabin Qiao1, Barbaros Oezyilmaz1,2 & Jens Martin 1,2,3
    ARTICLE https://doi.org/10.1038/s41467-020-15117-y OPEN Gate controlled valley polarizer in bilayer graphene ✉ Hao Chen1,2, Pinjia Zhou1, Jiawei Liu1,2, Jiabin Qiao1, Barbaros Oezyilmaz1,2 & Jens Martin 1,2,3 Sign reversal of Berry curvature across two oppositely gated regions in bilayer graphene can give rise to counter-propagating 1D channels with opposite valley indices. Considering spin and sub-lattice degeneracy, there are four quantized conduction channels in each direction. Previous experimental work on gate-controlled valley polarizer achieved good contrast only in the presence of an external magnetic field. Yet, with increasing magnetic field the ungated 1234567890():,; regions of bilayer graphene will transit into the quantum Hall regime, limiting the applications of valley-polarized electrons. Here we present improved performance of a gate-controlled valley polarizer through optimized device geometry and stacking method. Electrical mea- surements show up to two orders of magnitude difference in conductance between the valley-polarized state and gapped states. The valley-polarized state displays conductance of nearly 4e2/h and produces contrast in a subsequent valley analyzer configuration. These results pave the way to further experiments on valley-polarized electrons in zero magnetic field. 1 Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546 Singapore, Singapore. 2 Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 Singapore, Singapore. 3Present address:
    [Show full text]
  • Arxiv:2105.05857V1 [Cond-Mat.Str-El] 12 May 2021
    Kekul´espiral order at all nonzero integer fillings in twisted bilayer graphene Y.H. Kwan,1 G. Wagner,1 T. Soejima,2 M.P. Zaletel,2, 3 S.H. Simon,1 S.A. Parameswaran,1 and N. Bultinck1, 4 1Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom 2Department of Physics, University of California, Berkeley, California 94720, USA 3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 4Department of Physics, Ghent University, 9000 Ghent, Belgium We study magic angle graphene in the presence of both strain and particle-hole symmetry break- ing due to non-local inter-layer tunneling. We perform a self-consistent Hartree-Fock study that incorporates these effects alongside realistic interaction and substrate potentials, and explore a com- prehensive set of competing orders including those that break translational symmetry at arbitrary wavevectors. We find that at all non-zero integer fillings very small strains, comparable to those measured in scanning tunneling experiments, stabilize a fundamentally new type of time-reversal symmetric and spatially non-uniform order. This order, which we dub the `incommensurate Kekul´e spiral' (IKS) order, spontaneously breaks both the emergent valley-charge conservation and moir´e translation symmetries, but preserves a modified translation symmetry T^0 | which simultaneously shifts the spatial coordinates and rotates the U(1) angle which characterizes the spontaneous inter- valley coherence. We discuss the phenomenological and microscopic properties of this order. We argue that our findings are consistent with all experimental observations reported so far, suggesting a unified explanation of the global phase diagram in terms of the IKS order.
    [Show full text]
  • TRINITY COLLEGE Cambridge Trinity College Cambridge College Trinity Annual Record Annual
    2016 TRINITY COLLEGE cambridge trinity college cambridge annual record annual record 2016 Trinity College Cambridge Annual Record 2015–2016 Trinity College Cambridge CB2 1TQ Telephone: 01223 338400 e-mail: [email protected] website: www.trin.cam.ac.uk Contents 5 Editorial 11 Commemoration 12 Chapel Address 15 The Health of the College 18 The Master’s Response on Behalf of the College 25 Alumni Relations & Development 26 Alumni Relations and Associations 37 Dining Privileges 38 Annual Gatherings 39 Alumni Achievements CONTENTS 44 Donations to the College Library 47 College Activities 48 First & Third Trinity Boat Club 53 Field Clubs 71 Students’ Union and Societies 80 College Choir 83 Features 84 Hermes 86 Inside a Pirate’s Cookbook 93 “… Through a Glass Darkly…” 102 Robert Smith, John Harrison, and a College Clock 109 ‘We need to talk about Erskine’ 117 My time as advisor to the BBC’s War and Peace TRINITY ANNUAL RECORD 2016 | 3 123 Fellows, Staff, and Students 124 The Master and Fellows 139 Appointments and Distinctions 141 In Memoriam 155 A Ninetieth Birthday Speech 158 An Eightieth Birthday Speech 167 College Notes 181 The Register 182 In Memoriam 186 Addresses wanted CONTENTS TRINITY ANNUAL RECORD 2016 | 4 Editorial It is with some trepidation that I step into Boyd Hilton’s shoes and take on the editorship of this journal. He managed the transition to ‘glossy’ with flair and panache. As historian of the College and sometime holder of many of its working offices, he also brought a knowledge of its past and an understanding of its mysteries that I am unable to match.
    [Show full text]
  • Strain-Induced Time Reversal Breaking and Half Quantum Vortices Near a Putative Superconducting Tetra-Critical Point in Sr $ 2 $ Ruo $
    Strain-induced time reversal breaking and half quantum vortices near a putative superconducting tetra-critical point in Sr2RuO4 Andrew C. Yuan,1 Erez Berg,2 and Steven A. Kivelson1 1Department of Physics, Stanford University, Stanford, CA 93405, USA 2Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel It has been shown [1] that many seemingly contradictory experimental findings concerning the superconducting state in Sr2RuO4 can be accounted for as resulting from the existence of an assumed tetra-critical point at near ambient pressure at which dx2−y2 and gxy(x2−y2) superconducting states are degenerate. We perform both a Landau-Ginzburg and a microscopic mean-field analysis of the effect of spatially varying strain on such a state. In the presence of finite xy shear strain, the superconducting state consists of two possible symmetry-related time-reversal symmetry (TRS) preserving states: d ± g. However, at domain walls between two such regions, TRS can be broken, resulting in a d + ig state. More generally, we find that various natural patterns of spatially varying strain induce a rich variety of superconducting textures, including half-quantum fluxoids. These results may resolve some of the apparent inconsistencies between the theoretical proposal and various experimental observations, including the suggestive evidence of half-quantum vortices [2]. I. INTRODUCTION If it happens that superconducting (SC) orders with two distinct symmetries are comparably fa- vorable for some microscopic reason, it is possible to have a two-parameter phase diagram (e.g. T and isotropic strain, 0) that exhibits a multicriti- cal point (e.g. at = ? and T = T ?) at which the transition temperatures, Tc, of the two different or- (a) (b) ders coincide, as shown in Fig.
    [Show full text]
  • Experimental Investigations of Contact Friction and Transport Properties of Monolayer and Bilayer Graphene
    Graduate Theses, Dissertations, and Problem Reports 2021 Experimental Investigations of Contact Friction and Transport Properties of Monolayer and Bilayer Graphene Prakash Gajurel [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Condensed Matter Physics Commons Recommended Citation Gajurel, Prakash, "Experimental Investigations of Contact Friction and Transport Properties of Monolayer and Bilayer Graphene" (2021). Graduate Theses, Dissertations, and Problem Reports. 7994. https://researchrepository.wvu.edu/etd/7994 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Graduate Theses, Dissertations, and Problem Reports 2021 EXPERIMENTAL INVESTIGATIONS OF CONTACT FRICTION AND TRANSPORT PROPERTIES OF MONOLAYER AND BILAYER GRAPHENE Prakash Gajurel Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Condensed Matter Physics Commons EXPERIMENTAL INVESTIGATIONS OF CONTACT FRICTION AND TRANSPORT PROPERTIES OF MONOLAYER AND BILAYER GRAPHENE Prakash Gajurel Dissertation submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Physics Mikel Holcomb, Ph.D., Chair Wathiq Abdul -Razzaq, Ph.D.
    [Show full text]
  • College Record 2020 the Queen’S College
    THE QUEEN’S COLLEGE COLLEGE RECORD 2020 THE QUEEN’S COLLEGE Visitor Meyer, Dirk, MA PhD Leiden The Archbishop of York Papazoglou, Panagiotis, BS Crete, MA PhD Columbia, MA Oxf, habil Paris-Sud Provost Lonsdale, Laura Rosemary, MA Oxf, PhD Birm Craig, Claire Harvey, CBE, MA PhD Camb Beasley, Rebecca Lucy, MA PhD Camb, MA DPhil Oxf, MA Berkeley Crowther, Charles Vollgraff, MA Camb, MA Fellows Cincinnati, MA Oxf, PhD Lond Blair, William John, MA DPhil Oxf, FBA, FSA O’Callaghan, Christopher Anthony, BM BCh Robbins, Peter Alistair, BM BCh MA DPhil Oxf MA DPhil DM Oxf, FRCP Hyman, John, BPhil MA DPhil Oxf Robertson, Ritchie Neil Ninian, MA Edin, MA Nickerson, Richard Bruce, BSc Edin, MA DPhil Oxf, PhD Camb, FBA DPhil Oxf Phalippou, Ludovic Laurent André, BA Davis, John Harry, MA DPhil Oxf Toulouse School of Economics, MA Southern California, PhD INSEAD Taylor, Robert Anthony, MA DPhil Oxf Yassin, Ghassan, BSc MSc PhD Keele Langdale, Jane Alison, CBE, BSc Bath, MA Oxf, PhD Lond, FRS Gardner, Anthony Marshall, BA LLB MA Melbourne, PhD NSW Mellor, Elizabeth Jane Claire, BSc Manc, MA Oxf, PhD R’dg Tammaro, Paolo, Laurea Genoa, PhD Bath Owen, Nicholas James, MA DPhil Oxf Guest, Jennifer Lindsay, BA Yale, MA MPhil PhD Columbia, MA Waseda Rees, Owen Lewis, MA PhD Camb, MA Oxf, ARCO Turnbull, Lindsay Ann, BA Camb, PhD Lond Bamforth, Nicholas Charles, BCL MA Oxf Parkinson, Richard Bruce, BA DPhil Oxf O’Reilly, Keyna Anne Quenby, MA DPhil Oxf Hunt, Katherine Emily, MA Oxf, MRes PhD Birkbeck Louth, Charles Bede, BA PhD Camb, MA DPhil Oxf Hollings, Christopher
    [Show full text]
  • Arxiv:2103.08851V2 [Cond-Mat.Mes-Hall] 28 Mar 2021
    Macroscopically degenerate localized zero-energy states of quasicrystalline bilayer systems in strong coupling limit 1 1, 2, 3, Hyunsoo Ha and Bohm-Jung Yang ∗ 1Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea 2Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea 3Center for Theoretical Physics (CTP), Seoul National University, Seoul 08826, Korea (Dated: March 30, 2021) When two identical two-dimensional (2D) periodic lattices are stacked in parallel after rotating one layer by a certain angle relative to the other layer, the resulting bilayer system can lose lattice periodicity completely and become a 2D quasicrystal. Twisted bilayer graphene with 30◦ rotation is a representative example. We show that such quasicrystalline bilayer systems generally develop macroscopically degenerate localized zero-energy states (ZESs) in strong coupling limit where the interlayer couplings are overwhelmingly larger than the intralayer couplings. The emergent chiral symmetry in strong coupling limit and aperiodicity of bilayer quasicrystals guarantee the existence of the ZESs. The macroscopically degenerate ZESs are analogous to the flat bands of periodic systems, in that both are composed of localized eigenstates, which give divergent density of states. For monolayers, we consider the triangular, square, and honeycomb lattices, comprised of homogenous tiling of three possible planar regular polygons: the equilateral triangle, square, and regular hexagon. We construct a compact theoretical framework, which we call the quasiband model, that describes the low energy properties of bilayer quasicrystals and counts the number of ZESs using a subset of Bloch states of monolayers. We also propose a simple geometric scheme in real space which can show the spatial localization of ZESs and count their number.
    [Show full text]