<<

DefiningrarityanddeterminingthemechanismsofrarityforNorthAmericanfreshwaterfishes JeremyJ.Pritt ThesissubmittedtotheFacultyofVirginiaPolytechnicInstituteandState Universityinpartialfulfillmentoftherequirementsforthedegreeof MasterofScience In FisheriesandWildlifeSciences EmmanuelA.Frimpong,Chair PaulL.Angermeier C.AndrewDolloff 1/6/2010 Blacksburg,Virginia Keywords:rarespecies,numericalrarity,proportionalrarity,imperiledspecieslist,sampling intensity,habitattemplates,speciestraits Copyright2010,JeremyJ.Pritt

DefiningrarityanddeterminingthemechanismsofrarityforNorthAmericanfreshwaterfishes

JeremyJ.Pritt

Abstract

Conservingrarespeciesandprotectingbiodiversitydependsonsoundinformationonthe natureofrarity.Rarityismultidimensional,presentingtheneedforaquantitativeclassification schemebywhichtolabelspeciesasrareorcommon.Idefinedrarityforfreshwaterfishesbased ontherangeextents,habitatbreadths,andsiteabundanceandexaminedtherelationshipbetween thesedimensionsofrarityandimperilment.Imperiledfishesweremostoftenrarebyallthree dimensions,whereasundesignatedspeciesweremostoftencommonbyallthreedimensions.

Next,Iexaminedtheeffectofsamplingintensityonobservedrarityofstreamfishusingdifferent numericalandproportionalraritycriteriaandfoundthatincreasingsamplingintensityincreased thenumberofspecieslabelledasrarewithproportionalcriteriabutdidnotaffectthenumberof specieslabelledasrarewithnumericalcriteria.Additionalelectrofishingpasseswithinafixed reachincreasesthelikelihoodofdetectingrareandendemicspecies.Atradeoffbetween informationcollectedandsamplingresourcesshouldbecarefullyconsideredinthecontextof objectiveswhensamplingforrarespecies.Finally,Iexaminedtheeffectofregionaland watershedhabitatvariables,bioticinteractionvariables,andinstreamhabitatvariables,onthe rareorcommonstatuson23NorthAmericanfreshwaterfishes.Ialsocomparedbiologicaland reproductivetraitsamongspeciesclassifiedintotherarityframework.Raritywassuccessfully explainedin19ofthe23speciesandIfoundthatregionalandwatershedhabitatvariableswere themostimportantpredictorsofrarity.Ialsofoundthatspecieslargebodysize,highfecundity, andlongageatmaturityweregenerallymorecommonbyrangeextentandsiteabundancewhile thosespeciesthatdidnotguardnestsweremorefrequentlyrarebysiteabundance.

Acknowledgements

Thisthesiswouldnotbepossiblewithoutthehelpandsupportofmanypeople.First,Iwould liketothankmyadvisor,EmmanuelFrimpongforhisguidance.Withouthispatience,help,and knowledge,thisthesiswouldnothavebeenpossible.Thankstomyadvisorcommittee,Paul

AngermeierandAndyDolloff,whohavebeeninstrumentalindevelopingtheideasforthis work.IwouldliketothankBrandonPeoplesforparticipatinginfrequentramblingsonallthings fishy(scientificandotherwise).IalsothankthemembersofteamFrimpong:RichPendleton,

MollyTainer,AprilGeisler,VictorWooten,JasonHerrala,JeffersonDeweber,Michael

Henebry,andYawAnsah,fortheirassistanceinthefield.Finally,specialthankstomywife

Andreaforherunwaveringsupportoverthepasttwoyears.

iii

Table of Contents

Abstract ……………………………………………………………………………………...…ii Acknowledgements ……………………………………………………………………………iii List of Tables …………………………………………………………………………………..vi List of Figures ……………………………………………………………………………...….vii Attribution ……………………………………………………………………………………..ix General Introduction ……………………………………………………………………..……1 Chapter 1 .AquantitativeclassificationofrarityforfreshwaterfishesoftheUnitedStatesand implicationsforimperiledspeciesdesignations……………………………………………….….5 Abstract ………………………………………………………………………………….………..5 Introduction ………………………………………………………………………………………6 Methods ………………………………………………………………………………………….11 Data sources ……………………………………………………………………………..11 Data analysis …………………………………………………………………………….12 Results …………………………………………………………………………………………...15 Discussion ……………………………………………………………………………………….18 Patterns of rarity in freshwater fishes. ………….……………………………………….18 Importance to conservation ……………………………………………………………...19 References ……………………………………………………………………………………….24 Chapter 2 .Theeffectofsamplingintensityontheoccurrenceofrarespeciesandcommunity assessmentmetricsinstreamfishsamples………………..……………………………………..38 Abstract …………………………………………………………………………………………38 Introduction ……………………………………………………………………………………..39 Methods ………………………………………………………………………………………….44 Study area ………………………………………………………………………………..44 Sampling methods. ……………………………………………………………………….45 Rarity criteria and assessment metrics …………………………………………………..47 Data analyses …………………………………………………………………………….48 Results …………………………………………………………………………………………...49 Discussion ……………………………………………………………………………………….51 References ………………………………………………………………………………………54 Chapter 3.Macroecologicalandhabitatfactorsdeterminingrarityinfishesandbiologicaltraits ofrarefishspecies……………………………………………………………………………….66 Abstract ………………………………………………………………………………………….66

iv

Introduction ……………………………………………………………………………………..67 Methods ………………………………………………………………………………………….73 Spatial, habitat, and biotic predictions of site-level rarity ………………………………73 Traits as mechanisms for rarity…………………… ……………………………………….75 Results …………………………………………………………………………………………...76 Spatial, habitat, and biotic predictions of site-level rarity ………………………………76 Traits as mechanisms for rarity…………………… ………………………………………78 Discussion ……………………………………………………………………………………….79 References ………………………………………………………………………………………84

Summary and Conclusions …………………………………………………………………100

Additional References………………………………………………………………………102 Appendix ……………………………………………………………………………….……105

v

List of Tables

Table 1.1. EightpermutationsoftherarityclassificationframeworkofRabinowitz(1982) brokendownbythreedimensionsofrarity:extent,habitatbreadth,andlocalpopulationsize. Sevenoftheeightgroupsdisplayrarityonatleastonedimensionwhileonegroup(A)is commonacrossallthreedimensions………………………………………………..…………..30 Table 1.2. The19habitattypesrepresentingsixbroadcategoriesusedtodetermineindexof habitatbreadth(IHB)scoresfor678speciesintheFishTraitsdatabase(Firmpongand Angermeier2009).Finesubstratepreferenceindicatesanassociationwithmaterialssuchas clay,silt,andsandwhilecoarsesubstratepreferenceindicatesanassociationwithgravel,cobble, boulder,orbedrock………………………………………………………………………………30 Table 1.3. Theeightgroupsintherarityclassificationschemeandthecriteriacutoffsforeach group………………………………………………………………………………………….….31 Table 1.4. Speciesthatwererarealongallthreedimensionsofrarity(groupH)butwerenot designatedasimperiledbyJelksetal.(2008).Stateoccupancyandimperilmentinformationwas obtainedusingtheNatureServeExplorer………………………………………………………..32 Table 2.1. Communityassessmentmetricsforone,two,andthreepasselectrofishing. DifferentlettersindicatesignificantdifferenceswithBonferroniconfidencelimits.…..………61 Table 2.2. AssessmentoffourNewRiverendemicspeciesforone,two,andthreepass electrofishing………………………………………………………………………………….…61

Table 3.1. EightpermutationsoftherarityclassificationframeworkofRabinowitz(1982) brokendownbythreedimensionsofrarity:extent,habitatbreadth,andlocalpopulationsize. Sevenoftheeightgroupsdisplayrarityonatleastonedimensionwhileonegroup(A)is commonacrossallthreedimensions……………………………………………………………91 Table 3.2 .Descriptionofregional,watershed,andinstreamhabitatvariablesusedtomodelthe rarityorcommonnessoffishes…………………………………………………………………91

Table 3.3. Modeldetailsofspeciessuccessfulpredictedasrareorcommonbylogisticregression models.…………………………………………………………………………………………92

Table 3.4. Significantexplanatoryvariablesoftherareorcommonstatusof19fishes………..93

vi

List of Figures

Figure 1.1. Stepsfordistinguishingbetweenrareandcommonspeciesbasedonsiteabundance. Thefirstpartoftheprocessistodefineasmallsiteabundancewhilethesecondistodefinea consistentlysmallsiteabundance………………………………………………….………….33

Figure 1.2.a)Histogramofadjustedspeciesrangeareas,b)costfunctionforbreakingadjusted rangeintotwoclasses(wherecostisdefinedasthetotalsumsofsquareddeviationsofspecies valuesfromtheirrespectivegroupmeans),c)histogramofIHBscores,andd)histogramof speciesatproportionsofsitesthattheyoccupyandmeetatleasttwooutofthreelocalrarity criteria.Verticallinesrepresentthecutoffbetweenrare(leftofline)andcommon(rightofline) foreachdimension……………………………………………………………….…………….34

Figure 1.3.a)Quantileregressionfornumericalcriteriaandb)relativeabundancecriteriafor sites.Verticallinesrepresentthecriterionforwhichthenumberofspeciesclassifiedasrareis approximately80%oftheasymptotic(stable)rarity…………………………..………………35

Figure 1.4.Numberoftotalspeciesandlistedspeciesineachoftheeightfinalrarity classificationgroups.Groupsaredefinedas:A)largerangeextent,widehabitatpreferences,and largesiteabundance,B)largeextent,widehabitat,smallsiteabundance,C)largeextent,narrow habitat,smallsiteabundance,D)largeextent,narrowhabitat,smallsiteabundance,E)small extent,widehabitat,largesiteabundance,F)smallextent,widehabitat,smallsiteabundance,G) smallextent,narrowhabitat,largesiteabundance,andH)smallextent,narrowhabitat,andsmall siteabundance…………………………………………………………………………………..36

Figure 1.5.Pairwisebubbleplotmatriciesofspeciesbya)Indexofhabitatbreadth(IHB)scores andadjustedrangesizes,b)IHBscoresandproportionsofoccurrencesasrare,andc)adjusted rangesizesandproportionsofoccurrencesasrare…………………………………………….37

Figure 2.1 .Fourtheoreticaloutcomesofsamplingintensityonnumericallyrarespecies.Circles indicateacommonspeciesinapopulationwhiletrianglesrepresentararespecies.Boxa indicatesthataspeciesisrareatlowlevelsofsamplingintensity(areawithintheellipse)and highlevelsofsampling(areawithintheroundedrectangle),andinthiscasesamplinghasa neutraleffectonnumericalrarity.Boxbindicatesthatsamplingintensityhasapositiveeffect onthenumberofnumericallyrarespecies.Boxcrepresentsasituationinwhichaspeciesis numericallyrareatalowlevelofintensitybutnotatahighlevel,anegativeeffectofsampling intensityonthenumberofrarespecies.Finally,boxdrepresentsaspeciesthatisnotnumerically rarebutmayappeartoberareinsamplesbecauseofsamplinginefficienciesassomeindividuals (denotedbyhollowtriangles)arenotdetected…………………………………………………..62

Figure 2.2. Thenumberofrarespeciesatincreasingnumericalraritycriteriaforonebackpack andtwobackpackelectrofishingprotocols(a),andthenumberofrarespeciesatincreasing relativeabundancecriteriaforoneandtwobackpackprotocols(b)……………………………63

vii

Figure 2.3. Thenumberofrarespeciesatincreasingnumericalraritycriteriaforonepass,two pass,andthreebackpackelectrofishingprotocols(a),andthenumberofrarespeciesat increasingrelativeabundancecriteriaforone,two,andthreepassprotocols(b)………..……64

Figure 2.4. Thenumberofrarespeciesatincreasingnumericalraritycriteriaforincreasingreach length(a),andthenumberofrarespeciesatincreasingrelativeabundancecriteriaforincreasing reachlength(b)……………………………………………………………………………..……65

Figure 3.1. a)Boxplotofmaximumtotallength,b)ageatmaturity,c)longevity,d)fecundity, ande)larvalsize,forspeciesineachoftheeightraritygroupsestablishedbyPrittandFrimpong (2010)…………………………………………………………………………………………....95

Figure 3.2 Scatterplotsoflifehistorytraitswithadjustedrangesize(ac),indexofhabitat breadthscores(df),andpercentofsitesatwhichaspeciesoccursasrare(gi)………….…….98

Figure 3.3.Percentofnongaurder,guarder,andbearerspeciesineachraritygroup…………99

viii

Attribution

EmmanuelFrimpongcoauthoredChapter1andChapter2.ThemanuscriptforChapter1is currentlyinpressfor Conservation Biology, andwassubmittedonAugust9,2008.The manuscriptforChapter2iscurrentlyinpreptobesubmittedtothe Canadian Journal of

Fisheries and Aquatic Sciences andChapter3isinpreptobesubmittedto Ecography .

Emmanuel’scontributionstothepapersincludeassistanceindevelopingtheconceptual framework,evaluationofthestatisticalanalysis,andeditingthemanuscriptsforpublication.

ix

General Introduction

Thecurrentlossofbiodiversity,bothgloballyandinfreshwaterecosystems,is staggering.Mckeeetal.(2003)predictthatthenumberofthreatenedspecieswillincreasebyan averageof14%pernationby2050.Infreshwaterecosystems,asmuchof20%oftheworld’s freshwaterfishesarealreadyextinct(MoyleandLeidy1992),andRicciardiandRasmussen

(1999)predictedafuturerateof4%perdecadeoffishes,mollusks,crayfish,and amphibians.Furthermore,Jelksetal.(2008)evaluatedtheimperilmentofNorthAmerican freshwaterfishesandfoundthatalmost40%ofNorthAmericanfishesarecurrentlyimperiled andalmosttwiceasmanyspecieswereconsideredimperiledcurrentlyincomparisontoasimilar listin1989.Thelossofbiodiversityinfreshwaterecosystemshasbeenattributedto anthropogenicdisturbancessuchaschangesinlanduse,climatechange,nitrogendeposition

(Salaetal.2000)introductionofnonindigenousspecies,habitatdegradation,overexploitation, andintroductionofdiseasesandparasites(Jelksetal.2008).

Rarityisanimportantcomponentofbiodiversityandvirtuallyalloftheworld’sspecies canbeconsideredrareinsomewayoranother(KuninandGaston1993).Rarityisalso correlatedwithextinctionrisk(MaceandKershaw1997)andhenceisanimportantaspectof speciesimperilment.Clearly,rarityiscrucialtoconservationbiology,andunderstandingwhat rarityisandthemechanismsthatleadtorarityisvitaltomakingsoundconservationdecisions

(MaceandKershaw1997).

Littleisknownaboutmanyoftheworld’srarespeciesasafunctionoftheinherent difficultytofindrarespecies(Gaston1997)andtheviewbymanyecologiststhatthesespecies areofdecreasedvaluetoecologicalfunctioning(KuninandGaston1993).Rarespeciesmay actuallyprovideimportantandpotentiallyvaluableecosystemfunctions,althoughtheecological

1 functionsofmostrarespecieshavenotyetbeendetermined(Lyonsetal.2005).Forexample, thepresenceofonelargepredatorhasbeenshowntochangethebehaviorofpooldwellingfish instreams(Schlosser1987;others).Also,thefeedingbythenorthernhogsucker,aspeciesthat isfrequentlyrareinsmallerstreams,dislodgesmaterialsfromthebenthosthatthenserveasa foodsourceforotherfish(BakerandFoster1994).FaganandStephens(2006)hypothesized thatlosingrarefishspecieschangesthenatureofinterspecificcompetition,alteringthe assemblagestructureanddamagingopportunitiesforlongterm,bioticdrivenforcessuchas coevolution.

Definingrarityandunderstandingexactlywhatraritymeansaredifficulttasksto accomplish.Therarityversuscommonnessdichotomytranscendsthestudyofcommunitiesand populations.Forexample,raritycanbethoughtofasanattributeofaspecies,thatis,agiven speciesisrareinsomewayoranotherandthisdescriptionisoftencasuallyawardedtomany species(personalobservation).However,tolabelaspeciesasrareimpliesthatatleastone similarspecies,thatoccupiesthesametemporalandspatialdimensions,iscommonand thereforeraritycannotbedivorcedfromcommunityecology.Similarly,raritycanbeattributed toanassemblagebasedonthenumberofrarespeciesinassemblageAversusassemblageB,to makecommunitylevelcomparisons(Santouletal.2005).Unlikemanymeasurementsof speciesattribute,suchasabundanceanddemographics,ormeasurementsofassemblagessuchas richnessorevenness,raritydoesnothaveasingledimensionbywhichitcanbeeasilymeasured.

Rarityhasbeendefinedonabundance,rangesize,habitatbreadth,temporalpersistence,threatof imperilment,genetics,enemism,taxonomicdistinctness(Gaston1997),andfrequency occurrenceatsomespatialscale(Prendergastetal.1993).Eachofthesedefinitionscomeswith differentmeaningsanddifferentimplicationstoconservation.Forexample,aspeciesmaybe

2 consideredcommonbasedonabundancebutrarebasedonrangesizeorendemism.Without consideringmultipleraritycriteria,therarityofanygivenspeciescannotbefullyunderstood.

Consideringspatialscaleiscrucialtounderstandingrarity.Forexample,Hartleyand

Kunin(2003)examinedtheeffectofdifferingspatialscalesondefiningaspeciesasrareand foundthatBritishplantswereconsideredrareatsmallscalesbutanincreasedspatialextentof thestudyscaleresultedinthesespeciesnolongerbeingconsideredasrare.Additionally,they recommendedconductinganalysesatmultiplespatialscalesandcarefullyselectingan appropriatescalebasedontheresearchquestionbeingasked.

Thereisstrongevidencethatrarespecieshavespecificcharacteristicsthatdifferfrom commonspecies.Thisincludesdifferencesinlifehistorytraits(Murrayetal.2002), reproductivestrategy,parentalinvestment,dispersalability,genetics,competitiveability,and patternsofresourceusage(GastonandKunin1997)betweenrareandcommonspecies.There alsoappearstobegeographicpatternsbetweentherareorcommonstatusofpopulationswithin speciesthatcanbeattributedtoenvironmentalconditionsratherthanrandomchance(Schoener

1987).Thesefindingssuggestthatraritycanindeedbepredicted;somespeciesaremorelikely toberarethanothersandindividualspeciesaremorelikelytoberareinsomelocationsthanin others.

Wemustalsoconsiderthatraritycouldbeanartifactofoursamplingmethodologies.

Ineffectiveorincompletesamplingmayleadtoobservedraritywhenaspeciesisactually common.Inspeciesrich,terrestrialspidercommunities,Sharaffetal.(2003)determinedthat onespecieswasrareasanartifactofmethodologywhileseveralmorewerelikelyrareasaresult ofundersampling.Decipheringartifactualrarityfromactualrarityiscrucialtounderstanding rarityandformakingconservationdecisionsaboutspeciesobservedtoberare.

3

Thegoalofthisstudyistodefineanddescriberarityandexplorepossiblemechanisms drivingobservedpatternsofrarityinstreamfishcommunitysamples.Threepotential mechanismswillbeexamined:samplingintensity,spatialandtemporalfactorsofspecies distributionsandenvironmentalconditions,andspeciestraits.Myresearchquestionsare:1) whatisthenatureofrarityinfishesandhowisrarityassociatedwithspeciesimperilment,2) whatistheeffectofsamplingintensityonobservedrarity,and3)whatspeciestraitsare associatedwithrarityacrossspeciesandwhatenvironmentalfactorsdriveraritywithinspecies?

Iwillexaminethesepotentialmechanismsatmultiplespatialscalesanddeterminetheeffectof differentraritycriteriaontheoutcomeofmyresults.Thisstudyshouldprovidemanagersand researcherswithanunderstandingoftheforcesthatdriverichnessandrarity,andprovideinsight intofuturestreamfishcommunitysamplingefforts,management,andconservation.

4

Chapter 1

A quantitative classification of rarity for freshwater fishes of the United States and implications for imperiled species designations

Abstract

Rarespeciesareavitalcomponentofbiodiversityandmanyrarespeciesarelistedas endangered,threatened,orvulnerable.Conservingrarespeciesandprotectingbiodiversityand ecosystemfunctioningdependsonsoundinformationonthenatureofrarity.Rarityis multidimensionalandhasbeendefinedanumberofwaysbymanydifferentresearchers, presentingtheneedforaquantitativeclassificationschemebywhichtolabelspeciesasrareor common.IconstructedsuchaclassificationforNorthAmericanfreshwaterfishesinorderto betterdescriberarityinfishesandprovideresearchersandmanagerswithatooltostreamline conservationefforts.Iused(1)therangeextents,(2)habitatbreadths,and(3)localabundance ofNorthAmericanfreshwaterfishesandemployedavarietyofquantitativemethodsand statisticaldecisioncriteriatodetermineappropriatecutoffstolabelaspeciesasrareorcommon alongeachofthesedimensions.Theresultingclassificationofspeciesintoeightgroups conformstoawellestablishedframeworkforrarity.Fishesthatwerelistedasendangered, threatened,orvulnerableweremostoftenrarebylocalsiteabundance,rangeextent,andhabitat breadthsinthatorder,whereasunlistedspeciesweremostoftencommonbythesecriteria.

Specieswithlargerangeextentsgenerallyhadwidehabitatbreadthswhilethosewithsmall rangeextentstendedtohavenarrowhabitatbreadths.Iidentified30speciesnotdesignatedas imperiledbytheAmericanFisheriesSocietythatwererarealongalldimensionsofrarityand maywarrantfurtherstudyorprotection,whilethreedesignatedspecieswerefoundtobe commonalongalldimensionsandmayrequireareviewoftheirprotectionstatus.Myapproach

5 couldbeappliedtoothertaxatoaidconservationdecisionswhilstalsoservingasausefultool forfuturerevisionsoffishspecieslistings.

Introduction

Protectionofrarespeciesiscentraltomanyconservationeffortsandtheabilitytomake prudentmanagementdecisionsreliesuponsoundinformationaboutthesespecies(Schoener

1987;Fagan&Stephens2006).Bycontrast,otherrarespeciesmayrepresenttheearlystagesof undesirableinvasions(Colautti&MacIssac2004)andmayrequireactiontopreventpotential harmfuleffects.Rarespeciesmayprovideimportantandpotentiallyvaluableecosystem functions(Moyle&Moyle1995;Lyons&Schwartz2001),althoughtheecologicalfunctionsof mostrarespecieshavenotyetbeendetermined(Lyonsetal.2005).Also,losingrarespecies couldchangethenatureofinterspecificcompetition,alteringassemblagestructureanddamaging opportunitiesforlongterm,bioticdrivenevolutionaryforcessuchascoevolution(Fagan&

Stephens2006).

Speciesrarityplaysanimportantroleinthecreationoffederal,state,andnon governmentalimperiledspecieslistsandrarityisastrongcorrelateofextinctionrisk(Mace&

Kershaw1997).Informationaboutspeciesrarityiscombinedwithassessmentofthreatsto populatemostimperiledspecieslists(USFWS2009;H.W.Jelks,pers.com.).Manyreasons existforlistingspeciesasendangered,threatened,orvulnerable,includingsmallrangesize, overexploitation,habitatdestruction,diseaseorparasitism,competition,hybridization,or predationresultingfromintroducedspecies,oraninadequacyofcurrentregulations(Jelksetal.

2008;USFWS2009).

6

Manyimperiledspecieslistsarecurrentlyinexistenceandtheexactprocessusedto createtheselistsareoftenvaried.Forthecreationofthemostwellknownimperiledspecieslist, theUnitedStatesEndangeredSpeciesList(USFWS2009),theprocessbeginsthroughUnited

StatesFishandWildlifeService(USFWS)publicationofnoticesofreviewofcandidatespecies identifiedbytheUSFWSorthroughapetition.Theythenrankthemagnitudeofthethreat,the immediacyofthethreat,andthetaxonomicdistinctivenessofthecandidatespeciestocreatean orderofpriorityamongcandidatesandproposelistingstatusasthreatenedorendangered.The

USFWSthenseeksbiologicalinformationandpubliccommentsregardingaproposedspecies andfinallydecidestolistthespecies,withdrawtheproposal,orextendtheproposal(USFWS

2009).

ThecurrentprocessofcreatingtheUnitedStatesEndangeredSpeciesList(USFWS

2009)hasseveralweaknessesthatlikelyresultininconsistenciesandshortcomingsin designatingspeciesasimperiled.Forexample,thespeciesbyspeciesapproachisslowand attentionisgenerallyskewedtowardshighprofilespecies(Rohlf1991).Aquantitativesystem fordescribingspeciesraritywouldhelpabatetheseproblemsbyobjectivelyidentifyingspecies thatarepossiblydeservingofimperiledstatus,pendingassessmentofthreats,buthavebeen overlooked,andbyprovidingatooltodescribethebiologyofrarityforalargenumberof species.Suchasystemcouldalsofacilitateamorepromptlistingofnewlyimperiledspecies, thusimprovingtheiroddsforrecovery(Tayloretal.2005).

Severalnongovernmentalagencieshavealsocreatedendangeredspecieslists.Recently, theAmericanFisheriesSociety(AFS)createdanimperiledspecieslistforNorthAmerican freshwaterfishes(Jelksetal.2008).IncontrasttotheprocessemployedbytheUSFWS,the

AFSlistwascreatedbyacommitteeofexperts.Thecommitteebeganwithapreviouslist

7

(Williamsetal.1989)andtheneachmemberaddedalistofspeciesthatheorshebelievedto deservefurtherattention.Eachspecieswasthenevaluatedbyacommitteememberwith knowledgeofthespecies.Theevaluationprocessforeachspeciesincludedaliteraturereview andexternalopinionfromlocalexperts.Thecommitteememberthensuggestedadesignationof endangered,threatened,orvulnerable.Theresultinglistwasthenevaluatedbythecommitteeas awholeuntilaconsensuswasreached(Jelksetal.2008).

ThenongovernmentalAFSlisthasseveraladvantagesoverthefederallistincludinga morerapidlistingofspeciesandfewerpoliticalconstraintsthatoftenaccompanyagencylisting protocols.However,becausespeciesonthislistareindependentlyevaluatedbydifferent committeemembersandexperts,thereisapossibilitythattheevaluationprocesslacks consistency.Aquantitativesystemfordescribingraritymayprovideameansforcomparing speciesandaidacommitteeintheevaluationphaseofthelistcreation(H.W.Jelks,pers.com.).

Anydiscussionofrarespeciesmustbeginbydefiningararespecies,andthecriteriafor rarityhavetakenonmanyformsinmanydisciplines(Kunin&Gaston1993).Rarityhasbeen definedatthesitelevelbasedontotalnumericalabundance(totalabundanceinasample)

(Novotny&Basset2000;Scharffetal.2003;Kannoetal.2009),onproportionalabundance

(abundanceproportionaltoothermembersofthecommunity)(Stevens&Willig2002;Murray

&Lepschi2003;Kannoetal.2009),oroncommunitylevelindices(Camargo1993;Stevens&

Willig2002).Eachcriterionhasitsownsetofadvantagesanddisadvantages.Numerical abundanceislikelyagoodmeasureofpopulationsizebutcanbeheavilyinfluencedbysampling effortandeffectiveness.Proportionalabundancemaynotbeaseasilyinfluencedbysampling effortbutisaffectedbythetotalabundanceofindividualsacrossallspecies.Communitylevel indices,suchasCamargo’sindex(Camargo1993),cannormalizeproportionalabundance

8 informationwithspeciesrichness,potentiallyrenderingtheseindicesmoreusefulforcomparing rarityacrosssiteswithdifferingspeciesrichness.However,thisimposesdifferingcriteriaof rarityforthesamespeciesamongsites.

Rarityisnotrestrictedtothesitelevelandhasbeendefinedwithmanyothercriteria.For example,rarespecieshaveoftenbeendefinedbasedontheirproportionofoccurrenceinsamples confinedbysomespatialextent(Prendergastetal.1993;Santouletal.2005;Cucheroussetetal.

2008)whileothershavelabeledspeciesasrarebasedontheextentofgeographicrange(Fagan

&Stephens2006)oronapriorfederalorstateagencylistingofaspeciesasendangered, threatened,oraspeciesofconcern(Hayeretal.2008;Petersenetal.2008).

Althoughitisreasonabletoassumethatsomespecieswillbeconsideredrareover convergingcriteria,thevariationinthecriteriausedtolabelspeciesas“rare”or“common”may resultinmisleadingandinconsistentresultswithintheliterature.Thisproblem,inconjunction withthelackofaquantitativemethodologyforlistingspeciesforprotection,presentsaneedfor aquantitativeclassificationsystemthatcanbeappliedtocreateacommonlanguagesurrounding rarityandhelpmanagersmakesoundconservationdecisions.Ahierarchicalrarityclassification hasbeendevelopedforplantsbyRabinowitz(1981)thathassincebeenappliedtomammals(Yu

&Dobson2000).Inthisframework,speciesareconsideredcommonorrarefirstbygeographic extent,thenbyhabitatbreadth(thenumberofhabitattypesinwhichaspeciesisknowntoexist), andfinallybylocalpopulationsize,resultingineightpermutations,sevenofwhichdisplayrarity inatleastonedimensionoftheframeworkandoneclassificationgroupthatdisplays commonnessacrossallthreedimensions(Table1).

ApplyingtheRabinowitz(1981)modelisdifficultandrequiresalargeamountof detaileddata(GastonandLawton1990).SincetheCleanWaterActin1972,monitoringof

9 biotainUnitedStatesstreamshasbecomemoreprevalent.Recently,theUnitedStates

GeologicalSurvey(USGS)andtheUnitedStatesEnvironmentalProtectionAgency(USEPA) havemadeavailablelargedatabasesofstreamfishsamplesthatcoverasignificantproportionof theconterminousUnitedStates.Additionally,decadesofdetailedautecologystudiesof hundredsofspecieshaveprovidedagreatamountofspeciesspecifichabitatbreadthinformation

(Leeetal.1980;Hocutt&Wiley1986;Page&Burr1991).Byutilizingtheseadvancementsin fishecology,UnitesStatesfreshwaterfishespresentanexcellentstudytaxontoquantitatively applytheRabinowitz(1981)model.Inaddition,fishrepresentoneofthemostimperiledtaxaon theplanetandNorthAmericahasaparticularlydiversefishfauna(Helfman2007;Jelksetal.

2008).Also,greatnumbersofrarefishspeciesareoftenpositivelyassociatedwithareasofhigh biodiversitythatshouldbeprotected(Lawleretal.2003).Finally,Jelksetal.(2008)have developedacurrent,comprehensiveimperiledspecieslistthatallowsustoexaminethe relationshipbetweenrarityandspeciesimperilment.

Thegoalofthecurrentstudyistoprovideanexampleofaquantitativeclassification schemeforrarityoffreshwaterfishspeciesthatwillallowresearcherstointerpretrarityintheir dataandprovidemanagerswithatoolformakingconservationdecisionsregardingrarespecies.

Myobjectivesareto:(1)establishcriteriaforraritybasedonspeciesrangeextents,habitat breadths,andlocalsiteabundancesfornativefishesintheconterminousUnitedStates,(2) explorepatternsofrarityinfishes,and(3)applymyclassificationschemetoinvestigatethe relationshipbetweenrarityandtheJelksetal.(2008)designationsoffishimperilment.

10

Methods

Data Sources

Dataweregatheredfromtwonationaldatabasestodeveloptherarityclassification.I used1,040streamsites,representing44states,fromtheUSGSNationalWaterQuality

Assessmentprogram(NAWQA)(USGS2008)sampledbetween1993and2004.Thesenational databasesareidealforstudyingrarityatanationwidescalebecausetheyaredistributedovera largegeographicareaandincorporatealargenumberofspecies.TheNAWQAsamplereach lengthswerebetween150mand300minwadeablestreams,and500mto1000mfornon wadeablestreams.Ialsouseddatafrom308streamsitesfromtheUSEPARegional

EnvironmentalMonitoringandAssessmentProgram(REMAP)databasefromthemidAtlantic

US(USEPA2008).TheREMAPsitesweresampledbetween1993and1998withelectrofishing andthesamplestreamlengthwasapproximately40timesthemeanstreamwidthandatleast

150m,makingthisdatasetcomparabletotheNAWQAprotocol.BoththeNAWQAand

REMAPsamplessoughttocharacterizeentirefishassemblagesintermsofspeciespresentina siteandtheirproportionalabundances.Becausesomesitesinthesedatasetshadmultiple reachesandsomeweresampledmultipletimes,onlythefirstreachesatthefirstsamplingtimes wereusedtoavoidoverrepresentationofsomesites.

SpeciesrangesandtraitinformationwereobtainedfromtheFishTraitsdatabase

(Frimpong&Angermeier2009).Thisdatabaseincludesecologicaltraitdataforover800 speciesoffreshwaterandanadromousfishesfoundintheconterminousUnitedStates.The ecologicaltraitsincludehabitatbreadthinformationfromaccountsofspeciesassociationswith specifichabitatdescriptorssuchassubstrate,lenticversusloticsystems,streamsize,current speed,elevation,andsalinitytolerance.

11

Data Analysis

Tocreatemyrarityclassificationscheme,Icreateddistributionhistogramsforrange extent,habitatbreadth,andsiteabundanceandplacedspeciesintoappropriatebins(described below).Ifirstvisuallyanalyzedthehistogramsfornaturalbreaksinthedataatwhichspeciesto onesidecouldbeconsideredrarewhilethosetotheothersidecouldbeconsideredcommon.

Whenanaturalbreakwasnotapparent,Iappliedacostfunctionalgorithminwhichcostwas definedbytheresidualerrorthatresultedfromsplittingspeciesintotwogroupsatanypoint alongtherangeofvalues.Thecostfunctionwasfoundbyaddingthesumsofsquareddeviations ofspeciesvaluesfromtheirrespectivegroupmeans(Faraway2006).Iiterativelysearchedfor thebreakalongthehistogramthatgavetheminimumtotalsumofsquares.Theresultwasthe creationoftwogroupseachforrangeextent,habitatbreadth,andsiteabundancethathadthe maximumpossiblewithingroupsimilarityandbetweengroupdifference.Aftercutoffsforall threeraritydimensionsweredetermined,Iassignedspeciesas“rare”or“common”foreach dimension.Finally,IorganizedspeciesintotheRabinowitz(1981)hierarchybasedonavailable data.

Toestablisharangeextentcriterion,Iadjustedspeciesrangesbasedonsizeofoverall range,latitudinalrange,andlongitudinalrangeusingtheformula:R adj =

0.5[ln(√Rtotal )]+0.25[ln(R lat )]+0.25[ln(R long )],whereR adj istheadjustedrangeofaspecies,R total

2 isthespecies’rangearea(km ),R lat isthespecies’latitudinalrange(km),andR long isthe species’longitudinalrange(km).Thisadjustmentwasmadebecausefishesaregenerally distributedalongphysicalandclimaticgradientsthatoftenleadtooddlyshapeddistributions.I plottedahistogramofspeciesscoresontherangeextentcriterionandthenappliedthecost

12 functionalgorithmtolocatethebreakinthedataatwhichspecieswithagreateradjustedrange couldbeconsideredcommonandthosewithasmalleradjustedrangecouldbeconsideredrare.

Todevelopameasureofhabitatbreadth,Ifirstidentifiedtwobroadcategoriesofhabitat breadthsatthemacrohabitatlevel(fluvial,landscape,andsalinitybreadths),andfourcategories atthemicrohabitatlevel(substrate,current,andwatercolumnbreadths).Withinthesebroad habitatcategories,atotalof19possiblehabitatselectionswereidentified(Table2).Tocreatean

IndexofHabitatBreadth(IHB),eachspecieswasbinaryscoredoneachofthe19habitattypes as“1”ifthespeciesassociateswiththegivenhabitatand“0”ifitdoesnotassociatewith thegivenhabitattype,followingFrimpongandAngermeier(2009).Specieswithmorescoresof

“1”wouldtendtobehabitatgeneralistswhilethosewithmorescoresof“0”wouldtendtobe morehabitatspecificorspecialists.Ascoreof“1”wasassignedinlieuof“1”forspeciesthat aremigratory(potadromousoranadromous)becausealthoughthesespeciesarefoundina varietyofhabitats,theyneedeachhabitattocompleteadifferentphaseoftheirlifecycleand thereforecannotbeconsideredhabitatgeneralists.Thebinaryhabitatscoreswereaddedto createtheIHBasaninversemeasureofhabitatbreadth.Thecostfunctionalgorithm,described above,wasagainappliedtothecalculatedIHBvaluestodetermineanappropriatecutoff betweenspecieswithnarrowhabitatbreadthsandthosewithwidehabitatbreadths.

Iused“siteabundance”asasurrogatefor“localpopulationsize”(asintheRabinowitz

(1981)framework)becausethestreamsamplesinthetwonationaldatabasesdonotrepresent spatiallyconfinedpopulationsandwerenotintendedtoprovidepopulationestimates.Before settingacutofftodeterminewhichspecieshave“consistentlysmall”siteabundances,Ihadto firstdefinesmallsiteabundance.Iusedmultiplecriteriatoprotectagainsttheshortcomingsof arbitrarynumericalandproportionalcutoffsandcommunityindices.Iusedfishassemblagedata

13 forthe1,348sitesintheNAWQAandREMAPdatabasestoestablishstablecutoffsofnumerical andproportionalcriteriaandcombinedtheresultwiththeCamargo(1993)communitycriterion todevelopasingleclassificationofsmallversuslargesiteabundance.Tounderstandthe statisticalbehaviorofrarity,Iplottedthenumberofrarespeciesineachsampleagainst numericalabundancecriteriarangingfrom1to100individualsandproportionalabundance criteriarangingfrom0.5%to50%.Ithenusedvisualanalysisandparametric,nonlinear regressiontoestablishthatbothplotsreachedanasymptotewithintherangeofcriteriaselected.

Becauseofalargeamountofvarianceinmydata,Iperformedanonlinearquantileregression usingcubicsplines(Chen2009)atthe50 th ,75 th ,90 th ,and95 th quantilesthatallowedmeto understandthepatternsandsensitivityofrarityatdifferentquantiles.Basedontheregressions,I setasmallsiteabundanceastherespectivenumericalandproportionalabundancesthatsatisfied approximately80%orhigheroftheasymptoticrarityforatleastthreeofthefourquantiles(Fig.

1.1).

Afterestablishingbothnumericalandproportionalabundancecutoffstodefineasmall siteabundance,IincludedtheCamargocommunityindexthatdefinesasubordinatespeciesas: pi ≤1/S,wherep iistheproportionalabundanceofspecies i andSisthespeciesrichness

(Camargo1993),asathirdcriterionforlocalrarity.Ineachofthe1,348Iclassifiedaspeciesas rareinthesampleifitwasrarebytwoorallthethree(i.e.,numerical,proportional,and

Camargo)criteria(Fig.1.1).Next,Icalculatedtheproportionofoccurrencesatwhicheach specieswasrare.Iplottedtheseproportionsinahistogramandvisuallyanalyzedthishistogram tofindatwhatproportionofsitesaspeciesmusthaveasmallsiteabundanceforittobe considered“consistentlyrare”(Fig1.1).

14

Afterdeterminingthresholdsbetweencommonandrarespeciesatrangeextent,habitat breadth,andsiteabundance,IclassifiedallspeciesonwhichIhadsufficientinformationbased ontheRabinowitz(1981)framework(Table1).Ianalyzedthespeciesdesignatedasvulnerable, threatened,orendangeredbyJelksetal.(2008)(designatedspecies)toexplorewherethese speciesfalloutinmyclassification.SomeoftheJelksetal.(2008)speciesdesignationswere forsubspecies.Ididnotincludethosespeciesasdesignatedspeciesinmyanalysis,asmostof theavailabledatarepresentthespeciesatlargeandnottheimperiledsubspecies.Achisquared testofhomogeneitywasusedtotestforadifferenceinproportionsofspeciesinraritygroups betweendesignatedspeciesandnondesignatedspecies.Toexaminediscrepanciesbetweenmy rarityclassificationsystemandtheimperiledspeciesdesignationsofJelksetal.(2008),Iused theExplorertoolavailablefromNatureServe(NatureServe2009)toevaluatespeciesonacase bycasebasis.Finally,Itestedforcorrelationsamongrangeextent,habitatbreadth,andsite abundancetoestablishhowthesethreedimensionsofrarityarerelatedinfishes.

Results

Speciesrangeinformationwasfoundfor722nativespeciesandrangedfrom440km 2to

>14millionkm 2whiletheadjustedrangesrangedfrom3.2to8.5(Fig.1.2a).Thecostfunction showedthattheminimumcostofbreakintheadjustedrangewasat6.17(Fig.1.2b;Table3); hence334specieswereconsideredcommonundertherangeextentraritycriteriawhile388 specieswereconsideredrare(AppendixA).

InformationwasavailabletocalculateanIHBscorefor678nativespeciesandvalues rangedfrom5to15(Fig.1.2c).Thecostfunctionshowedtheglobalminimumofthesumsof squarestobe8.0.Thereforeallspecieswithascore<8wereconsideredtohavenarrowhabitat

15 preferenceswhilethosewithascore≥9wereconsideredtohavewidehabitatpreferences(Table

3).Overall369specieshadwidehabitatpreferenceswhile309hadnarrowhabitatpreferences

(AppendixA).

Siteabundancedatafor410nativespecieswerefoundfromthe1,348NAWQAand

REMAPfishdatasets.Thequantileregressionsrevealedthatthenumberofrarespecies approached80%oftheasymptoticlevelatapproximately≤20individualsforthenumerical abundancecriterionand≤5%fortheproportionalabundancecriterion(Fig.1.3).Withthe inclusionoftheCamargoindex,thesethreecriteriawereusedtodefinea“consistentlysmall” siteabundance.

Over30%ofallspecieswerecategorizedasrarebytwoorthreeofthenumerical, proportional,andCarmargocriteriaineverysamplethattheyoccurredandthesespecieswere consideredtohaveconsistentlysmallsiteabundances(Fig.1.2d).Ireasonedthatthesharpbreak inthehistogrambetweenspeciesrarein100%ofthesitestheyoccupyandthosethatwere commoninatleastonesitepresentsanappropriatecutoffforthesiteabundancecriterion.I electedtoplacethecutoffforaconsistentlyraresiteabundanceasspeciesrareat≥95%ofsites toensurethatIcaptureallrarespecieswithinamarginof5%oferrorinmyobservations(Table

3).

Rangeextentandhabitatbreadthdatawereavailablefor399ofthe410speciesthatalso hadlocalabundancedata,and47ofthesespeciesweredesignatedasimperiledbyJelksetal.

(2008).Thespecieswithafullsetofdatawereplacedintotheeightcategoriesofthe

Rabinowitz(1981)framework(AppendixA).Themostfrequentcategoryfornondesignated specieswasgroupA(commonbyallthreecriteria),followedbygroupE(rarebyextent, commonbyhabitatandsiteabundance),groupC(commonbyextent,rarebyhabitat,and

16 commonbysiteabundance),andthengroupB(commonbyextent,commonbyhabitat,rareby siteabundance).SpeciesdesignatedasimperiledweremostfrequentlyfoundingroupH(rare byallthreecriteria),followedbygroupF(rarebyextent,commonbyhabitat,andrarebysite abundance)andthengroupB(commonbyextentandhabitat,rarebysiteabundance)(Fig.1.4).

Thechisquaredtestshowedtheabovedifferencesbetweenthegroupingofdesignatedandnon designatesspeciestobesignificantlydifferent(p<0.001).

Myclassificationidentified30speciesthatwererarealongallthreedimensionsbutwere notdesignatedasimperiledbyJelksetal.(2008)(Table4).AccordingtotheNatureServe

Explorertool,25ofthesespecieswereclassifiedasvulnerable,imperiled,criticallyimperiled,or extirpatedinatleastonestatetheyoccupied(Table4).Inaddition,threespecies,theRioGrande chub,Plainsminnow,andsnailbullhead,designatedasimperiledbyJelksetal.(2008)were foundtobecommonalongallthreedimensionsofrarity.

Correlationsbetweenraritydimensionsshowedthatadjustedrangewasmoderately correlatedwithhabitatbreadth(IHBscore)(r=0.44,p<0.001).Thisindicatesthatspecieswith largerrangesizestendedtohavewidehabitatbreadths(Fig1.5a).However,adjustedrangehad almostnorelationshipwithrarityinsiteabundance(r=0.001,p=0.87)(Fig1.5b).Site abundanceandIHBscorewereweaklycorrelated(r=0.13,p=0.009),indicatingthatspecies withlowIHBscores(habitatspecialists)tendedtohaveslightlysmallersiteabundance; however,thereisagreatdealofvariationinthisrelationship(Fig.1.5c).

17

Discussion

Patterns of rarity in freshwater fishes

Severalpatternsareapparentinthefinaleightgroupings.Fornondesignatedfish species,groupsthatrepresentedlargesiteabundances(A,C,E,andG)hadmorespeciesthan thosethatrepresentedsmallsiteabundances(B,D,F,andH).Theoppositepatternwastruefor designatedspeciesasmorespeciesfellintothegroupswithsmallsiteabundancesthanthe groupswithlargesiteabundances.Thispatternisnotsurprisingassmallpopulationsizeis correlatedwithhighextinctionrisk(MaceandKershaw1997).Asexpected,fewdesignated speciesfellintogroupAandthemostpopulatedgroupwasgroupH,themostextremelyrare group.Thelargestdifferenceinasinglegroupbetweennondesignatedanddesignatedspecies occurredingroupFwhichcontained20%ofdesignatedspeciesbutonly5%ofnondesignated species.TheFgroupingrepresentsspecieswithawidehabitatpreferencebutsmallrange extentsandsmallsiteabundances;speciesinthisgroupthatareimperiledarelikelyfacing threatsotherthanhabitatmodification.Infact,oftheninedesignatedspeciesinthisgroup,three aredesignatedasimperiledbecauseof“other”naturaloranthropogenicfactorsincluding impactsofnonnativespecies(Jelksetal.2008)whilenoneofthe13speciesingroupsHorGare designatedforthisreason.Thestrikingdifferencesingroupingsbetweendesignatedspeciesand nondesignatedspeciesindicatesthattherearebiologicalandecologicaldifferencesthatmake somespeciesmorevulnerablethanothers,ashypothesizedbyKuninandGaston(1997).

Thepatternsofrarityinfreshwaterfishescanalsobeusedtoguidefurtherresearchin evolutionaryandbiogeographicmechanismsofrarityinfishes.Forexample,thecorrelations betweenraritydimensionsindicatethatspecieswithsmallrangesalsohavesmallhabitat preferencesandthemechanismforthisphenomenoncouldhavetwopossibleexplanations.

18

First,smallerhabitatpreferencescouldleadtosomespeciesoccupyingsmallerrangesbecause theyarenotabletotakeadvantageofopennichesandthereforecannotdisperseintonewareas.

Bycontrast,specieswithgreaterrangeextentsresultingfrombiogeographichistorymayhave adaptedtoagreaternumberofhabitattypesthatareprevalentthroughoutpartsoftheirlarger ranges(Pyron1999).IhypothesizethatthelatterexplanationisamorecommoncauseinNorth

Americanfishesbecausemanyofthespecieswithnarrowhabitatpreferencesandsmallrange extentsarethatarethoughttohaveallopatricspeciation(e.g.NearandBernard2004).

Importance to conservation

Myclassificationschemehighlightsmanyspeciesthatcouldbeinneedofprotection.

Mostofthe30speciesthatmeettheraritycriteriaonalldimensions(groupH)butarenot designatedasimperiledbyJelksetal.(2008)wereconsideredimperiledatalocallevelby

NatureServe.Althoughraritywithoutdetailedanalysisofthreatsisnotsufficientforlisting speciesasimperiled(MaceandKershaw1997;H.L.Jelks,pers.com.),raritydoescorrelates withextinctionrisk(MaceandKershaw1997),andasaresult,thesespeciesmaywarrantfurther evaluationoftheirimperiledstatusatthenationallevel.Itispossiblethatthesespeciesare commonatthelocalpopulationlevelinlocationsthatwerenotcapturedbytheNAWQAand

REMAPdatasets;however,thislistpresentsanopportunitytodirectfutureresearchintothese possiblyimperiledspeciesandexpeditetheirprotectionifnecessary.Forexample,researchers maywishtoconductmoreintensivesamplingforthesespeciestogainmoreinformationontheir localabundancesandexaminepossiblethreatsthatthesespeciesmayface.Thefactthatmostof thesespeciesareconsideredimperiledatthelocallevelbutdonotappearonanynationallists highlightstheimportanceofutilizinglocalexpertiseindeterminingspeciesimperilment.

19

Ialsoidentifiedseveralspeciesthataredesignatedasimperiledbutwhosestatusmay meritreviewwithregionalandmoreuptodatedata.Threedesignatedspeciesthathad abundancedata,theplainsminnow( Hybognathus placitus ),snailbullhead( Ameiurus brunneus ), andRioGrandechub( Gila pandora )wereconsideredcommonatallthreelevelsofthe hierarchy.Theplainsminnowisdesignatedbecauseofhabitatdestruction,thesnailbullheadis designatedbecauseofhabitatdestructionandothernaturalandanthropogenicfactors,andthe

RioGrandechubisdesignatedbecauseofhabitatdestruction,diseaseandparasitism,andother naturaloranthropogenicfactors(Jelksetal.2008).Allthreespeciesaredesignatedas vulnerable(thelowestlevelofimperilment)andthebullheadandplainsminnowhavearankof

G4(onascaleofG1ascriticallyimperiledtoG5assecure)whiletheRioGrandechubhasa rankofG3.TheplainsminnowhasanIHBscoreof9,justoutsideofthe8scorerepresenting thecutoffbetweenwideandnarrowhabitatbreadths.ThesnailbullheadhasanIHBscoreof11, andtheRioGrandechubhasanIHBscoreof10,bothwelloutsideofmycutoff.Inaddition,the snailbullheadoccurredin26sitesandwascommoninfourofthesesites,andtheRioGrande chuboccurredinthreesitesandwascommonintwositeswhiletheplainsminnowwasonly foundinonesite(atwhichitwascommon).Thethreatsthatthesespeciesfacemayoutweigh theirapparentcommonnessinmyclassification,however,furtherinvestigationmaybeneededto rectifythesedifferencesbetweentheJelksetal.(2008)designationandmyclassification.

Alargenumberofspecies,includingmanyofthosedesignatedbyJelksetal.(2008), werenotpresentinanyofthe1,300+sitesfrommydatabases.Inthissituationspeciescanstill beclassifiedbasedonrangeextentorhabitatbreadthforwhichdataaremostlyavailable.

Becausesmallrangesizeandhabitatdestructionarecommonlycitedasreasonsforlistinga speciesasimperiled(Jelksetal.2008),theselevelsoftherarityframeworkmaystillbeuseful

20 forevaluatingspeciesdesignationsforthesereasons.Inaddition,abundancedataislikely availableformanyofthesespeciesandthroughfurthercollaboration,morespeciescanbeadded totheframeworktoamoredetailedcomparisonofrarityinfishes.

Theraritygroupscreatedinthisstudycouldaidindevelopingmanagementstrategiesfor rarespecies.Forexample,areascontainingspecieswithsmallrangeextentscanbeidentified andprotectedwhilespecieswithlargerangeextentsthatfaceimperilmentmayrequire cooperativeeffortsbetweencountries,states,andcountiesforeffectivemanagement.

Additionally,specifichabitatscanbeidentified,protected,orcreatedforspecieswithnarrow habitatbreadthswhilespecialattentioncanbegiventoexistingpopulationsofthosespeciesthat haveconsistentlysmalllocalpopulations.Knowledgeofraritycanbeusedtoguide conservationactions.Forexample,speciesthatarerarebyrangeextentandoftenendemictoa particular,welldefinedareacanbemonitoredandprotectedinthisarea.Oneextremeexample ofsuchrarityistheDevil’sHolepupfish,foundinonespringinArizona.Thisspeciesisunder closewatchandthestringentmanagementtoprotecttheonlypopulationknowninexistence

(Baugh&Deacon1988).Also,knowledgeofhabitatbreadthscanbemanagedbasedonthis particularhabitat.Forinstance,successfulpropagationandreintroductionofrarespecies dependsonexplicitknowledgeofhabitatrequirements(Rakesetal.1999).

Mymethodologycouldbeeasilyappliedtomanyothertaxaasmuchinformationexists intheformofspeciesrangemaps,habitatbreadths,andabundancedatafromprevioussurveys suchasaquaticandmussels.Theremaybesomedifficultyinapplyingthisschemeto speciesthatarenoteasilysampled,suchasterrestrialinvertebrates(NovotnyandBasset2000) orwhosehabitatrequirementsarenotwellunderstoodsuchasthewinteringhabitatofmany migratorybirds.Quantitativelydefiningrarityforothertaxashouldfacilitateconsistencyof

21 comparativeevaluationswithintheliteratureandimprovethegeneralunderstandingofrarityas anecologicalphenomenonwithconservationimplications.Forexample,freshwaterfishesshow aremarkablysimilarpatternofraritycomparedtomammalsdescribedbyYuandDobson

(2000).Bothtaxahaveasignificantproportionofspeciesinthemostcommongroup(A),the rarestgroup(H)andthegroupwithlargerangeextentandsiteabundancesbutnarrowhabitat

(C).Similarly,fishesandmammalsdonothavemanyspeciesinthegroupswithlargerange extent,widehabitatpreferences,andsiteabundances(B),largerangeextent,narrowhabitat,and siteabundances(D),andsmallrangeextent,widehabitatpreferences,andsmallsiteabundances

(F).Themajordifferencebetweenfishesandmammalswasthatmammalshadalargenumber ofspeciesinthegroupwithsmallrangeextent,narrowhabitat,andlargesiteabundance(G) whilefishhadfewspeciesinthiscategory(notethatmyorganizationfollowsthatofRabinowitz

(1981),andthelettersmatchthegroupsinTable1andnotthelettersusedbyYuandDobson

(2000)).Theoverallsimilaritiesbetweenfishesandmammalsindicatethatthebiologicaland ecologicalmechanismsofraritycouldalsobesimilar.

Cautionisneededwhendistinguishingbetweenrareandcommonspecies.Forexample, rangeareaoffishesisnotasufficientmeasureofextentbecausespeciesdispersalsare constrainedbydrainagebasins,coastlines,temperaturegradients,elevationgradients,or precipitationgradientsthatcanleadtooddlyshapeddistributions(Leeetal.1980;Hocutt&

Wiley1986).Iincludedlatitudinalrangeandlongitudinalrangetoaccountforthesefactors.

Besidesgeographicrange,Iselectedmacrohabitatandmicrohabitatfeaturestocaptureawider rangeofhabitatneedsofaspecies.Includingspecifichabitatvariablesalsoprovidesmanagers withgreaterinsightintohowtoprotectspeciessingledoutbytheclassificationscheme.For example,theguardian( oophlax )hasanIHBscoreof6,andisabenthic

22 speciesfoundinslowcurrentinlowlandcreekswithfinesedimentorvegetation.Thisdetailed habitatrequirementprovidesresearchersandmanagerswithpreliminaryinformationto streamlinepossiblehabitatconservationeffortsforthisspecies.Atthelocalpopulationlevel, usingmultipleraritycriteriaisimportanttosafeguardagainstthedownfallsofcommon numericalandproportionalcriteria.Iarguethataspeciesthatiscommonatthelocallevel shouldbeidentifiedassuchthroughtheuseofmultiplecriteriaforrarity.

Thedichotomousrareversuscommonclassificationcouldpossiblyoverestimateor underestimateactualrarityandIrecognizethepossibleutilityofcreatingintermediaterarity groups.However,theadditionofevenoneintermediategrouponeachdimensionofrarityforms a3x3x3classificationthatresultsin27raritygroups.Thisincreaseindatadimensionalitywould certainlyleadtoagreatdealofdifficultyintheinterpretationofresultsandtheidentificationof patterns.Theuseofanintermediateraritygroupshouldperhapsbeconductedonacasebycase basisintheevaluationofrarityforconservation.Forexample,developingintermediategroups andintegratingthesegroupswiththreatassessmentsmayhelpmanagersdecideonappropriate levelsofimperilment(vulnerable,threatened,orendangered)whereasthecurrentscopeofthis paperfocusesonimperiledversusnonimperiledstatus.Thecostfunctionalgorithmdescribed inthisstudygeneralizestothecreationofanynumberofclassesandwouldbeusefulindefining anoptimalnumberofgroupswithfinerresolutiononeachraritydimensionwhendesired.

Severallimitationsonthelocalabundancedatausedinthisstudyshouldbeconsideredin theinterpretationofmyfinalclassification.Theavailableabundancedataarelikelyskewed towardscommonfishspeciesandthesespeciesmaybeoverrepresentedinthefinal classification.Additionally,fishesfromeasternNorthAmericawerebetterrepresentedthan thosefromwesternNorthAmerica.Thisproblemisaresultofapaucityofpubliclyavailable

23 datafromtheWest.Also,manyoftheavailabledataareold,datingasfarbackas1993.Itis likelythatpatternsoflocalabundanceforsomespecieshavechangedsincecollectionshave beenmadeandthishighlightsyetanotherproblemwithpubliclyavailabledata.Finally,aswith anypublicallyavailabledata,therearepossibleerrorsofomissionandcommissioninmydataset

(HittandAngermeier2008).Itismorelikelythatararespecieswasomittedormistakenfora similarcommonspeciesthanacommonspeciestobemisidentifiedasararespecies,asmostfish biologistsaremostfamiliarwithcommonspecies.Therefore,siteabundanceraritymaybe slightlyunderestimatedinsomeofthedatausedforthisstudy.

Futureresearchcouldimprovemyclassificationoffreshwaterfishesaswellasthe methodologiesusedinthisstudy.Morethoroughspeciesaccountsandmorecomplete abundancedatawouldlikelychangetheplacementofsomespeciesfromtheirproposedrarity groups.Asmoreinformationsurfacesandspeciesaremovedintomoreappropriate classificationgroups,myclassificationshouldbecomemorecompleteandmoreaccurate.Also, thecurrentstudyprovidesonlyasnapshotofrarityinfishes.Continuedmonitoringandanalysis offreshwaterfishesareneededtocapturetrendsindiversityforfutureconservation.

Acknowledgements

ThisstudywassupportedbytheVirginiaAgriculturalExperimentStation.

Literature Cited

Baugh,T.M.,andJ.E.Deacon.1988.Evaluationoftheroleofrefugiainconservationeffortsfor

theDevilsHolepupfish, Cyprinodon diabolis .ZooBiology7:351358.

Camargo,J.A.1993.Mustdominanceincreasewiththenumberofsubordinatespeciesin

24

competitiveinteractions?JournalofTheoreticalBiology161:537542.

Chen,C.2009.AnintroductiontoquantileregressionandtheQUANTREGprocedure.

http://www2.sas.com/proceedings/sugi30/21330.pdf.SASInstituteInc.,Cary,NC.

Colautti,R.I.,andH.J.MacIsaac.2004.Aneutralterminologytodefine'invasive'species.

DiversityandDistributions10:135141.

Cucherousset,J.,F.Santoula,J.Fiquerola,andR.Cereghino.2008.Howdobiodiversitypatterns

ofriveremergefromthedistributionsofcommonandrarespecies?Biological

Conservation141:29842992.

Fagan,W.F.,andA.J.Stephens.2006.Howlocalextinctionchangesrarity:anexample

withinSonoranDesertfishes.Ecography29:845852.

Faraway,J.J.2006.ExtendingthelinearmodelwithR:generalizedlinear,mixedeffects,

nonparametricregressionmodels.Chapman&Hall/CRC,BocaRato,FL.

Frimpong,E.A.,andP.L.Angermeier.2009.FishTraits:adatabaseofecologicalandlifehistory

traitsoffreshwaterfishesoftheUnitedStates.Fisheries34:487495.

Frimpong,E.A.,T.M.Sutton,K.J.Lim,P.J.Hrodey,B.A.Engel,T.P.Simon,J.G.Lee,andD.C.

LeMaster.2005.Determinationofoptimalriparianforestbufferdimensionsforstream

biota–landscapeassociationmodelsusingmultimetricandmultivariateresponses.

CanadianJournalofFisheriesandAquaticSciences62:16.

Gaston,K.J.,andJ.H.Lawton.1990.Thepopulationecologyofrarespecies.JournalofFish

Biology37:97104.

Hayer,C.A.,S.S.Wall,andC.R.Berry.2008.Evaluationofpredictedfishdistributionmodels

forrarefishspeciesinSouthDakota.NorthAmericanJournalofFisheriesManagement

28:12591269.

25

Helfman,G.S.2007.Fishconservation:aguidetounderstandingandrestoringglobal

aquaticbiodiversityandfisheryresources.IslandPress,Washington,D.C

Hitt,N.P.,andP.L.Angermeier.2008.RiverStreamconnectivityaffectsfishbioassessment

performance.EnvironmentalManagement42:132150.

Hocutt,C.H.,andE.O.Wiley.1986.ThezoogeographyofNorthAmericanfreshwaterfishes.

JohnWileyandSons,NewYork.

Jelks,H.L.,S.J.Walsh,N.M.Burkhead,S.ContrerasBalderas,E.DiazPardo,D.A.

Hendrickson,J.Lyons,N.E.Mandrak,F.McCormick,J.S.Nelson,S.P.Platania,B.A.

Porter,C.B.Renaud,J.J.SchmitterSoto,E.B.Taylor,andM.L.Warren.2008.

ConservationstatusofimperiledNorthAmericanfreshwateranddiadromousfishes.

Fisheries33:372407.

Kanno,Y.,J.C.Vokoun,D.C.Dauwalter,R.M.Hughes,A.T.Herlihy,T.R.Maret,T.M.

Patton.2009.Influenceofrarespeciesonelectrofishingdistancewhenestimatingspecies

richnessofstreamandriverreaches.TransactionsoftheAmericanFisheriesSociety

238:12401251.

Kunin,W.E.,andK.J.Gaston.1993.Thebiologyofraritypatterns,causes,andconsequences.

TrendsinEcology&Evolution8:298301.

Lawler,J.J.,D.White,J.C.Sifneos,andL.L.Master.2003.Rarespeciesandtheuseof

indicatorgroupsforconservationplanning.ConservationBiology17:875882.

Lee,D.S.,C.R.Gilbert,C.H.Hocutt,R.E.Jenkins,D.E.McAllister,andJ.R.Stauffer.1980.

AtlasofNorthAmericanfreshwaterfishes.NorthCarolinaStateMuseumofNatural

History,Raleigh,NC.

Lyons,K.G.,C.A.Brigham,B.H.Traut,andM.W.Schwartz.2005.Rarespeciesand

26

ecosystemfunctioning.ConservationBiology19:10191024.

Lyons,K.G.,andM.W.Schwartz.2001.Rarespecieslossaltersecosystemfunctioninvasion

resistance.EcologyLetters4:358365.

Mace,G.M.,andM.Kershaw.1997.Extinctionriskandrarityonanecologicaltimescale.Pages

130149inW.E.KuninandK.J.Gaston,editors.Thebiologyofrarity.Chapmanand

Hall,Suffolk,UK.

Moyle,P.B.,andP.R.Moyle.1995.Endangeredfishesandeconomicsintergenerational

obligations.EnvironmentalBiologyofFishes43:2937.

Murray,B.R.,andB.J.Lepschi.2004.Arelocallyrarespeciesabundantelsewhereintheir

geographicalrange?AustralEcology29:287293.

NatureServe.2009.NatureServeexplorer.http://www.natureserve.org/explorer/index.htm.

NatureServe,Arlington,VA.

Near,T.J.,andM.F.Bernard.2004.Rapidallopatricspeciationindarters(:

Percina ).Evolution58:27982808.

Novotny,V.,andY.Basset.2000.Rarespeciesincommunitiesoftropicalherbivores:

ponderingthemysteryofsingletons.Oikos89:564572.

Page,L.M.,andB.M.Burr.1991.Afieldguidetofreshwaterfishes.HoughtonMifflin

Company,NewYork.

Petersen,J.H.,D.L.DeAngelis,andC.P.Paukert.2008.Anoverviewofmethodsfor

developingbioenergeticsandlifehistorymodelsforrareandendangeredspecies.

TransactionsoftheAmericanFisheriesSociety137:244253.

Prendergast,J.R.,R.M.Quinn,J.H.Lawton,B.C.Eversham,andD.W.Gibbons.1993.Rare

27

species,thecoincidenceofdiversityhotspotsandconservationstrategies.Nature

365:335337.

Pyron,M.1999.Relationshipsbetweengeographicalrangesize,bodysize,localabundance,and

habitatbreadthinNorthAmericansuckersandsunfishes.JournalofBiogeography

26:549559.

Rabinowitz,D.1981.Sevenformsofrarity.Pages205217inH.Synge,editor.The

biologicalaspectsofrareplantconservation.JohnWileyandSons,Chichester,UK.

Rakes,P.L.,J.R.Shute,andP.W.Shute.1999.Reproductivebehavior,captivebreeding,and

restorationecologyofendangeredfishes.EnvironmentalBiologyofFishes55:3142.

RohlfD.J.1991.WhytheEndangeredSpeciesActdoesn’tworkandwhattodoaboutit.

ConservationBiology5:273282.

Rosenberger,A.E.2007.AnupdatetotheRoanokelogperchrecoveryplan.

http://www.sfos.uaf.edu/directory/faculty/rosenberger/LRP_RecoveryPlanUpdate.pdf

Santoul,F.,J.Figuerola,S.Mastrorillo,andR.Cereghino.2005.Patternsofrarefishandaquatic

insectsinasouthwesternFrenchrivercatchmentinrelationtosimplephysicalvariables.

Ecography28:307314.

Scharff,N.,J.A.Coddington,C.E.Griswold,G.Hormiga,andP.PBjorn.2003.Whento

quit?EstimatingspiderspeciesrichnessinanorthernEuropeandeciduousforest.The

JournalofArachnology31:246273.

Schoener,T.W.1987.Thegeographicaldistributionofrarity.Oecologia74:161173

Stevens,R.D.,andM.R.Willig.2002.Geographicalecologyatthecommunitylevel:

Perspectivesonthediversityofnewworldbats.Ecology83:545560.

Taylor,M.F.J.,K.F.Suckling,andJ.J.Rachlinski.2005.TheeffectivenessoftheEndangered

28

SpeciesAct:aquantitativeanalysis.BioScience55:360368.

Tear,T.H.,J.M.Scott,P.H.Hayward,andB.Griffith.1995.RecoveryplansandtheEndangered

SpeciesAct:arecritisicimssupportedbydata?ConservationBiology9:182195.

UnitedStatesEnvironmentalProtectionAgency(USEPA).2008.Surfacewatersdataand

metadatafiles.http://www.epa.gov/emap/remap/html/three/data/index.html.USEPA

Region3,Philadelphia,Pennsylvania

UnitedStatesFishandWildlifeService(USFWS).2009.Listingaspeciesasthreatenedor

endangered.http://www.fws.gov/Endangered/factsheets/listing.pdf.USFWS,Washington

D.C.

UnitedStatesGeologicalSurvey(USGS).2008.Ecologydata.

http://water.usgs.gov/nawqa/ecology/.USGS,Reston,Virginia.

Williams,J.E.,J.E.Johnson,D.A.Hendrickson,S.ContrerasBalderas,J.D.Williams,M.

NavarroMendoza,D.E.McAllister,andJ.E.Deacon.1989.FishesofNorthAmerica

endangered,threatened,orofspecialconcern:1989.Fisheries14(6):220.

Yu,J.P.,andF.S.Dobson.2000.Sevenformsofrarityinmammals.JournalofBiogeography

27:131139.

29

Table1.1.EightpermutationsoftherarityclassificationframeworkofRabinowitz(1982)broken

downbythreedimensionsofrarity:extent,habitatbreadth,andlocalpopulationsize.Sevenof

theeightgroupsdisplayrarityonatleastonedimensionwhileonegroup(A)iscommonacross

allthreedimensions.

RangeExtent LargeSmall

Habitatbreadth Wide Narrow Wide Narrow

Localpopulation Large A C E G size

Small B D F H

Table1.2.The19habitattypesrepresentingsixbroadcategoriesusedtodetermineindexof

habitatbreadth(IHB)scoresfor678speciesintheFishTraitsdatabase(Firmpongand

Angermeier2009).Finesubstratepreferenceindicatesanassociationwithmaterialssuchas

clay,silt,andsandwhilecoarsesubstratepreferenceindicatesanassociationwithgravel,cobble,

boulder,orbedrock.

Categories Habitattypes Fluvial Macrohabitat 1)Lakes 2)LargeRiver 3)SmallRiver 4)Creeks 5)Caves 6)Migratory breadth Landscape 7)Lowland 8)Upland 9)Montane breadth

Substrate Microhabitat 10)Fine 11)Coarse 12)Vegetation 13)Pelagic breadth

Current 14)Slow 15)Moderate 16)Fast breadth

Position 17)Benthic 18)Watercolumnorsurface breadth

Salinity 19)Euryhaline breadth

30

Table1.3.Theeightgroupsintherarityclassificationschemeandthecriteriacutoffsforeach group.

RangeExtent Large(adj.range>6.17)Small(adj.range<6.17) Habitatbreadth Wide Narrow Wide Narrow (IHB>8) (IHB<8) (IHB>8) (IHB<8) Siteabundance Large A(rare<95% C(rare<95% E(rare<95% G(rare<95% sitesfound) sitesfound) sitesfound) sitesfound)

Small B(rare>95% D(rare>95% F(rare>95% H(rare>95% sitesfound) sitesfound) sitesfound) sitesfound)

31

Table1.4.Speciesthatwererarealongallthreedimensionsofrarity(groupH)butwerenot

designatedasimperiledbyJelksetal.(2008).Stateoccupancyandimperilmentinformationwas

obtainedfromNatureServeExplorer.

Species Statesfound StateDesignations Cottusbaileyi VA Imperiled(VA) Erimystaxinsignis AL,GA,KY,TN,VA Vulnerable(TN,VA),imperiled(AL,GA)criticallyimperiled(KY) Etheostomabarrenense KY,TN Vulnerable(TN) Etheostomaedwini AL,FL,GA Vulnerable(GA) Etheostomaeuzonum AR,MO Vulnerable(AR) Etheostomahopkinsi GA,SC None Etheostomajordani AL,GA,TN Vulnerable(TN),imperiled(GA) Etheostomajuliae AR,MO Vulnerable(AR) Etheostomakennicotti AL,IL,KY,MS,TN Imperiled(IL,MS),vulnerable(AL) Etheostomalongimanum VA,WV Vulnerable(VA),criticallyimperiled(WV) Etheostomanigripinne AL,MS,TN Imperiled(MS) Etheostomaoophylax KY,TN None Etheostomapunctulatum AR,KS,MO,OK Criticallyimperiled(KS),vulnerable(MO) Etheostomarupestre AL,GA,MS,TN Vulnerable(MS,TN),imperiled(GA), Exoglossumlaurae NY,NC,OH,PA,VA,WV Vulnerable(PA,WV),imperiled(NC,NY,OH) Fundulusescambiae AL,FL,GA Vulnerable(AL) Lythrurusatrapiculus AL,FL,GA Imperiled(FL,GA) Moxostomapappillosum NC,SC,VA None Notropisasperifrons AL,GA,TN Imperiled(GA,TN) Notropisgreenei AR,MO,OK Imperiled(OK) Notropisuranoscopus AL Imperiled(AL) Noturusalbater AR,MO None Noturuselegans AL,KY,TN Vulnerable(TN),extirpated(AL) carbonaria TX None Percinagymnocephala NC,VA,WV Vulnerable(NC,VA,WV) Percinacrassa NC,SC,VA Criticallyimperiled(VA) Percopsistransmontana ID,OR,WA Vulnerable(WA),criticallyimperiled(ID) Phenacobiuscrassilabrum GA,NC,TN,VA Vulnerable(NC,TN),imperiled(VA),criticallyimperiled(GA) Phenacobiusteretulus NC,VA,WV Imperiled(VA,NC),criticallyimperiled(WV) Phenacobiusuranops AL,GA,KY,TN,VA Vulnerable(VA),imperiled(KY),criticallyimperiled(AL,GA)

32

Figures

Figure1.1.Stepsfordistinguishingbetweenrareandcommonspeciesbasedonsiteabundance.

Thefirststepoftheprocessistodefineasmallsiteabundancewhilethesecondistodefinea consistentlysmallsiteabundance.

Rareif Rareifnumerical Rareifprop.abundance proportional abundance<20 <1/Sp.Richness abundanc e<5% individuals (CamargoIndex)

33

Figure1.2.a)Histogramofadjustedspeciesrangeareas,b)costfunctionforbreakingadjusted rangeintotwoclasses(wherecostisdefinedasthetotalsumsofsquareddeviationsofspecies valuesfromtheirrespectivegroupmeans),c)histogramofIHBscores,andd)histogramof speciesatproportionsofsitesthattheyoccupyandmeetatleasttwooutofthreelocalrarity criteria.Verticallinesrepresentthecutoffbetweenrare(leftofline)andcommon(rightofline) foreachdimension.

Indexofhabitatbreadthscore

34

Figure1.3.Thenumberofspecieslabeledasrare(yaxis)byincreasingraritycriteria(xaxis)for theNAWQAandREMAPsites.Nonlinearregressionsforthe50 th ,75 th ,90 th ,and95 th quantiles providetheaveragenumberofrarespeciesforeachgivenquantileatincreasingcriteriafor a)numericalcriteriaandb)proportionalabundancecriteriaforsites.Verticallinesrepresentthe criterionforwhichthenumberofspeciesclassifiedasrareisapproximately80%ofthe asymptotic(stable)rarity.

35

Figure1.4.Numberoftotalspeciesandlistedspeciesineachoftheeightfinalrarity classificationgroups.Groupsaredefinedas:A)largerangeextent,widehabitatpreferences,and largesiteabundance,B)largeextent,widehabitat,smallsiteabundance,C)largeextent,narrow habitat,smallsiteabundance,D)largeextent,narrowhabitat,smallsiteabundance,E)small extent,widehabitat,largesiteabundance,F)smallextent,widehabitat,smallsiteabundance,G) smallextent,narrowhabitat,largesiteabundance,andH)smallextent,narrowhabitat,andsmall siteabundance.Designatedspecies(darkbars)arethosespeciesthatarelistedasimperiledby

Jelksetal.(2008)whilenodesignatedspecies(lightbars)havenoimperiledstatus.

36

Figure1.5.Pairwisebubbleplotmatriciesof399speciesclassifiedintherarityframeworkbya) Indexofhabitatbreadth(IHB)scoresandadjustedrangesizes,b)IHBscoresandproportionsof occurrencesasrare,andc)adjustedrangesizesandproportionsofoccurrencesasrare.Bubbles sizerepresentthenumberofspeciesatagivenpointontheplot(i.e.largebubblesindicatelarge numbersofspecies)

r=0.44

Indexofhabitatbreadthscore

r=0.13

Indexofhabitatbreadthscore

r=0.001

37

Chapter 2

The effect of sampling intensity on the occurrence of rare species and community assessment metrics

Abstract

Rarestreamfishspeciesareimportanttobothconservationandbioassessment;however theeffectofsamplingintensityonrarestreamfisheshasnotbeendocumented.Iexaminedthe effectofsamplingintensityonobservedrarityofstreamfishusingdifferentnumericaland proportionalabundanceraritycriteriaaswellaseffectsontheassessmentofstreamfish communities.Icomparedaonebackpackelectrofishingunitprotocoltoatwobackpackunit electrofishingprotocol,asinglepasselectrofishingprotocoltomultiplepassprotocolsatafixed samplereachlength,andincreasingreachlengthasmeanstoincreasesamplingintensity.Linear mixedmodelsshowedthatincreasingsamplingintensityincreasedthenumberofspecies labelledasrarewithproportionalabundancecriteriabutdidnotaffectthenumberofspecies labelledasrarewithnumericalcriteria.Ifoundnosignificantdifferenceintheassessmentof streamfishcommunitiesbetweentheonebackpackandtwobackpackprotocolsbutfounda significantdifferenceintheassessmentofstreamfishcommunitiesamongone,two,andthree passelectrofishing;howeverthedifferencebetweentwoandthreepasselectrofishingwas minimal.Theseresultsshowthatanumericalraritycriterionisindependentofsampling intensityandmaybepreferabletoaproportionalabundancecriterionwhenexcludingrare speciesincommunityassessments.Inaddition,aonebackpackelectrofishingprotocolmaybe abletocharacterizestructuralandfunctionalcompositioninwadeablestreams,butatwopass protocolprovidesasignificantimprovementformanymetrics.Additionalelectrofishingpasses withinafixedreachincreasesthelikelihoodofdetectingrareandendemicspecies.Atradeoff

38 betweeninformationcollectedandsamplingresourcesshouldbecarefullyconsideredinthe contextofobjectiveswhensamplingforrarespecies.

Introduction

Rarespeciesarecriticaltotwofacetsofstreamfishresearchandmanagement: conservationofstreamfishesandstatisticalanalysesassociatedwithbioassessment.To conservationbiologists,rarityisoftenassociatedwithimperiledspecies(Jelksetal.2008)that requireconservationeffortssuchasprotectionorhabitatimprovement.Rarespeciescanalso serveasindicatorsofareasofgreatbiodiversity(Lawleretal.2003)thatarecandidatesfor protection.Tootherresearchers,rarespeciesrepresentstatisticalanomaliesindatathatcan profoundlyinfluencetheinterpretationoffishcommunitydata.Someresearchershave concludedthatrarespeciesincreasethesensitivityofbioassessmentandmultivariatecommunity analysismethodsbyprovidingvaluableinformation(Caoetal.1998;Caoetal.2001),butothers believethesespeciescreatenoiseandredundancyindata(Merchant1999).Atthesitelevel, raritycanbedefinedusingsomecutoffofnumericalabundance(NovotnyandBassett2000;

Kannoetal.2009),proportionalabundance(Reynoldsetal.2003;StephensandWillig2003;

Kannoetal.2009),orbasedonsomecommunitystructuralindex(Camargo1993;Stephensand

Willig2003).Morerecently,PrittandFrimpong(2010)usedmultiplelocalraritycriteriato deriveanecologicallymeaningfuldefinitionofrarityinstreamfishsurveysthroughananalysis ofnationwidesiteabundancedata.Understandinghowsamplingintensityinfluencesobserved rarityatasiteisimportantformakingconservationdecisionsinvolvingrarityinformation,such ascreatingimperiledspecieslists(Jelksetal.2008),andforinterpretingbioassessmentdata.

39

Manycommunityattributesormetricsarealsoimportanttoassessmentandconservation ofstreamfishesandcanbeinfluencedbythepresenceofrarespeciesandsamplingintensity.

Forexample,diversityindicessuchasShannonDiversityIndex(WeaverandGarman1994)and

SimpsonDiversityIndex(MagurranandPhillip2001)canbeusedtoidentifylocationswith exceptionalspeciesdiversityandcanbesensitivetohighnumbersofrarespecies(Magurran

1988).Inaddition,communitystructuralandfunctionalmetricssuchasthoseintheindexof bioticintegrity(IBI)(Karr1981)areusedtoidentifyimpairmentinstreamsatlargescales(Pont etal.2006;Pontetal.2009).TheIBImetricsthatinvolvetaxonomicrichnessestimatescould besensitivetothenumberofrarespecies.Forexample,thepresenceofrarespeciescangreatly influenceobservedspeciesrichnesswhichcaninturnaffecttheoutcomeofbioassessment studies(Caoetal.1998).

Streamelectrofishingsamplingintensitycanbemanipulatedinavarietyofways, includingchangeingeartypeorconfiguration,numberofelectrofishingpasses,orincreasing samplereachlength.Theeffectofincreasingsamplingintensitycanbeillustratedtheoretically throughdetectionprobability.Presenceandabundanceofaspeciesinasampleisafunctionof theactualabundanceofthespeciesandtheprobabilityofcapturinganyindividualofthespecies

(BayleyandPeterson2001).Differentmethodsofincreasingsamplingintensitycanchange eitherorbothofabundanceandprobabilityofcapture.Forexample,increasingthereachlength willincreasetheactualabundanceofthespecieswhileincreasingthenumberofelectrofishing passesinafixedreachlengthwillincreasetheprobabilityofanyindividualbeingcaptured.In bothcasesthedetectionprobabilityofeachspecieswillbeincreasedwithincreasingsampling intensity,andobservedpresence,absence,andabundancecouldbeinfluenceddependingon spatialdistributionofthespecies.

40

Theeffectofsamplingintensityonrarityhasnotbeenexaminedforstreamfishesbuthas beenexaminedforothertaxa.Terrestrialentomologistshavefoundthatincreasingsampling intensityincreasesthenumberofnumericallyrarespecies(NovotnyandBasset2000;Scharffet al.2003);however,terrestrialinvertebratecommunitieshavemanymorespeciesthanfish communities.Thetheoreticaleffectofsamplingintensityonanumericallyrarespecieshas severalpossibleoutcomes.First,aspecieswithatrulylownumericalabundancemaybe detectedatanintermediatelevelofsamplingbutnoadditionalindividualsarefoundwith increasingintensity(Figure2.1a)ornotdetectedatthestartofsamplingbutdiscoveredthrough anincreaseinsamplingintensity(Figure2.1b).Inthesecases,aspeciesisproperlyclassifiedas rarebutatlowsamplingintensities,thisspeciesmaynotbefoundatall,whichcouldleadto erroneousinferencesaboutaspecies’siteoccupancy,distribution,orfrequencyofoccurrences.

Next,aspeciescouldbenumericallyrareatthestartofsampling,butasintensityincreasesthe speciesmaynolongermeetthenumericalcriteria(Figure2.1c),oraspeciesthatisactually common,butdifficulttodetectduetosamplingineffectiveness,maybenumericallyrareina sampleevenafteranincreaseinintensity(Figure2.1d).Inthelasttwocases,aspeciesmaybe erroneouslyclassifiedasrarewhenitactuallydoesnotmeettheraritycriteria.

Otherraritycriteriamaynotrespondtosamplingintensityinthesamemannerasthe numericalcriteria.Forexample,whenmoreindividualsaresampled,mostarelikelytorepresent commonspeciesorthosespeciesmoresusceptibletocapture,thusdrivingdowntheproportion oflessabundantspecies(Kannoetal.2009).Itisthereforeunlikelythataspecieswouldbe consideredrarebyproportionalabundanceatanintermediatelevelofsamplingbutnotata higherlevelofsampling,keepingthecutofffixed.However,asnewspeciesareaddedasaresult ofincreasedsamplingintensity,theseadditionswouldlikelymeettheproportionalabundance

41 raritycriteria.Inthisway,samplingintensitywouldhaveaneutralorpositiveeffectonthe numberofrarespeciesbyaproportionalabundancecriterionwhilethenumberofnumerically rarespeciescouldbeneutrally,positively,ornegativelyaffectedasindividualsareadded.

Samplingintensitycouldalsoplayanimportantroleininfluencingobservedpatternsof raritydeterminedbyproportionofsitesitoccursinandgeographicextent,buttheeffectof samplingintensityonthesedimensionsofrarityhavenotyetbeendetermined.Because increasingsamplingintensityincreasesdetectionprobability,aspeciesislikelytobeobservedin moresitesunderahighintensityprotocolthanalowintensityprotocol,increasingitssite occurrenceandpossiblyincreasingitsobservedgeographicextent.Thepossibledifferencein observedextent,siteoccurrence,andlocalabundancecouldhaveramificationsintheassessment andmanagementofimperiledspeciesatawatershedlevel(SmithandJones2008).Sampling intensitycouldalsobeimportanttocharacterizingspeciesandcommunitiesatthewatershed levelwhenspeciesaredistributedpatchily(AngermeierandSmogor1995).

Theeffectofsamplingintensityonstreamfishcommunityassessmenthasbeen examinedbymanyresearchers.Forexample,speciesrichnessincreaseswithstreamlength sampled,eventuallyreachinganasymptoticlevelassumedtorepresentanexhaustivelevelof samplingintensity(Lyons1992;AngermeierandSmogor1995;Hughesetal.2002;Dauwalter andPert2003a;Reynoldsetal.2003;Meador2005;dosAnjosandZuanon2007).Increasing thestreamlengthhasalsobeenshowntoincreaseotherrichness/taxonomicmetricsusedinthe indicesofbioticintegrity(DauwalterandPert2003b).

Apparentassemblagestructurehasalsobeenshowntochangewithelectrofishingpass.

Increasingthenumberofelectrofishingpassesoverafixedsamplingreachhasbeenshownto increasespeciesrichness,(Puseyetal.1998;Meadoretal.2003;Kennardetal.2006;Kimmel

42 andArgent2006)andchangethetotalabundanceandproportionalabundanceofindividualsin theassemblage(Puseyetal.1998).However,someresearchershavefoundthatsinglepass electrofishingprovidesaccuratemeasurementsofspeciesrichnessandothercommunitymetrics

(SimonsonandLyons1994;Paller1995;Reidetal.2009).Meadoretal.(2003)foundthat addingasecondelectrofishingpassresultedinthecaptureofadditionalspeciesinhalfofallsites sampledandnotedthatmultiplepasselectrofishingmaybeofincreasedimportancefor estimatingspeciesrichnessinlargerstreams.Increasingsamplingintensitythroughmultiple passesratherthanextendingthestreamlengthcouldhavesomeadvantages.Puseyetal.(1998) andKennardetal.(2006)suggestedthatmultipleelectrofishingpassescouldreplaceorreduce increasingthesamplestreamlengthasameansforincreasingsamplingintensitywithout increasingthepotentialconfoundingeffectsofspatialvariability;howeverthismethodwould likelyunderestimatespeciesrichnessextrapolatedtoalargerstreamreach,segment,or watershed(SmithandJones2005).

Thetypeandconfigurationofelectrofishinggearused,intermsofthenumberof electrofishingunitsdeployedandfieldcrewmemberresponsibilities,couldalsohaveaneffect onobservedspeciesrichnessandthenumberofrarespecies.KimmelandArgent(2006) suggestedthattheadditionofbackpackelectrofishingunitswithincreasingstreamsizecould improvesamplingefficiency;however,theconfigurationoftheelectrofishinggearandcrewhas notbeenexaminedinmuchdetail.Similarly,multipleboatelectrofishingunitsaresometimes deployedonlargerriversbymanagementagenciesinordertoincreasesamplingintensityand improvecaptureofgamespecies(OdenkirkandSmith2005).

InthecurrentstudyIexaminedtheeffectsofincreasedsamplingintensityonobserved rarityandcommunityassessmentinstreambackpackelectrofishingsamplesbycomparinga

43 onebackpackelectrofishingconfigurationtoatwobackpackconfiguration,singlepass electrofishingtomultiplepasselectrofishing,andafixedreachlengthtoincrementally increasingstreamlength.Myobjectiveswereto1)examinehowsamplingintensityinfluences observedrarityusinganumberofraritycriteria,2)examinehowsamplingintensityaffectsother metricscommonlyemployedintheassessmentofstreamfishcommunities,and3)examinethe influenceofsamplingintensityonthecharacterizationofendemicspeciesoftheNewRiver,

Virginiaintermsofsiteabundance,observedrarity,andfrequencyofoccurrences.

Methods

Study Area

ThestudystreamsaresecondtofourthorderstreamsintheNewRiverbasinin southwestVirginia.Multiplesitesweresampledonallofthesestreamstocapturefish assemblagesacrossalongitudinalgradient.Siteswereselectedtoincludeavarietyoflanduse conditionsandprovidearepresentationofwadeablestreamsinthebasin.TheNewRiverbasin ischaracterizedbyhightomoderategradientstreamsandrelativelysteeptopography.Land coverisprimarilyforestbutalsoincludesagricultureaswellaslowandhighdensityurban areas.Althoughforestiscurrentlythedominantlandcoverinthestudyarea,historical deforestationandpooragriculturalpracticesbetween60100yearsagointheAppalachian

Mountains(Harding1998;Burcheretal.2008)haveleftalastingimpactinmanyofmystudy streamsintheformofsiltation,bankincision,anddecreasedbankstability.Thestudysectionof theNewRiverisrelativelyspeciesrich,withsixendemicspeciesandseveralintroducedspecies

(>10).

44

WadeablestreamsintheNewRiverbasinprovideagoodstudysystemforseveral reasons.TheNewRiverhasahighdiversityofhabitattypes,relativelyhighdiversityof cyprinids(34species),centrarchids(12species),andpercids(14species)(JenkinsandBurkhead

1993).OfthesixendemicspeciesintheNewRiverbasin,fourareconsideredspeciesofspecial concernbytheVirginiaDepartmentofGameandInlandFisheries(VDGIF)(VDGIF2009).

ThismoderatediversityisrepresentativeofmanyothersystemsintheeasternUnitedStates.

TheNewRiveralsohasmoderateconductivityandlowturbidity,allowingforoptimal electrofishingconditionsandevaluationofelectrofishingmethods(PrittandFrimpong unpublisheddata).

Tocaptureinterregionalvariability,Iincorporateddatafromsecondtofourthorder streamsintheupperWabashRiverbasin,Indiana,collectedinthesummerof2003(Frimponget al.2005).AlthoughtherearedifferencesbetweentheupperWabashRiverbasinandtheNew

Riverbasin,suchasgradientandlanduse,theupperWabashhascomparablespeciesdiversityto theNewandwassampledwithsimilarmethods.AsaresulttheupperWabashbasinservesasa usefulregionalcomparisontothedatafromtheNewbasin.TheupperWabashRiveris characterizedbylowergradientstreams,andmoreprevalentagriculturallanduses.Thisbasin complementstheNewRiverinregardstolanduseandstreamtype.

Sampling Methods

SamplingintheNewRiverbasinwasconductedonapproximately50sitesduringJune,

July,August,andSeptember,2008withsomeadditionalsamplinginthesummerof2009.I comparedaonebackpackversusatwobackpackelectrofishingconfigurationonatotalof23 sitesontwostreams,TomsCreekandReedCreek.AllelectrofishingwasconductedusingSmith

RootL24electrofishingunitswithsettingsadjustedbasedonambientconditions.Thesummer

45 of2008wascharacterizedbyunusuallydryweatherconditions,andasaresultallofthe samplingoccurredduringlowflowconditionsaccompaniedbyrelativelyhightermperatures

(>15C),andlowturbidity(<10nationalturbidityunits).Conductivityrangedfrom2.3to51.4 microsiemensperliterandasaresultaelectrofishingvoltagerangedfrom200to500volts.The onebackpacksampleswereconductedwithoneelectrofishingunitandtwonetters,oneoneither sideoftheunitwhilethetwobackpacksampleswereconductedwithtwoelectrofishingunits andtwonetters,onewitheachelectrofishingunit.OnTomsCreek(sampled2008and2009), twoconsecutivereaches130mlongweresampled,onewithasinglebackpackunitandtheother withtwounits;theorderwasrandomlydecided.OnReedCreek(sampled2008),five400m reaches,spaced>4kmapart,weresampledandeachcontainedten,40msubreachesthatwere sampledwithsinglepasselectrofishingalternatingbetweenonebackpackandtwobackpacks, withthebeginningconfigurationbeingrandomlyselected.Thesubreacheswereisolatedwith blocknetsduringsampling.

Iexaminedtheeffectofincreasingsamplingintensitybyincreasingthenumberof electrofishingpasseswith34sitesonsecondtofourthorderstreamsintheNewRiverbasinand

49sitesonfirsttofifthorderstreamsintheupperWabashRiverbasin.TheNewRiversites weresampledusingtriplepassdepletionelectrofishingonfixedreachlengthsof120,150,180, or240meters,dependingonstreamwidth.Thesereachlengthswereapproximately15to20 timesthemeanstreamwidthatthewettedperimeterandarerepresentativeofreachlengths commonlyusedforbioassessmentpurposes(OhioEPA1987).Twobackpackunitswereused forallreachesexceptthesmalleststreams(thosesampledwitha120mreachlength)onwhich onlyonebackpackunitwasdeployed.TheupperWabashRiversitesweresampledwithasingle

46 backpackunitwithreachlengthsof15to20meanstreamwidths(Frimpongetal.2005),with totalreachlengthsapproximatingthoseintheNewRiversamples.

IalsousedtheprotocoloutlinedaboveforReedCreektoexaminetheeffectofincreasing streamlengthonthenumberofrarespecies.Becausereachesinthissystemweresampledin40 mincrements,theprotocolallowedmetocomparethetrendsobservedforincreasingthenumber ofbackpackunitsorelectrofishingpasseswiththoseproducedbyincreasingreachlength.

Rarity Criteria and Assessment Metrics

Iexamineddifferentproportionalandnumericalraritycriteriainmyanalysis.Because theappropriatecutoffforneitherofthesecriteriahasnotbeendetermined,Iincludednumerical raritycriteriarangingfrom1to25individualsandproportionalraritycriteriarangingfrom0.5% to20%ofthecommunitysample.Tocomparecommunityassessmentmetricsbetween samplingintensities,IcalculatedavarietyofcommoncommunitymetricsincludingShannon

Diversityindex,SimpsonIndex(asameasureofevenness),andIBImetricssuchasspecies richness,numberofminnowspecies,numberofsunfishspecies,numberofbenthicspecies, percentofindividualsthatareinsectivoresandpercentofindividualsthatarelithophilic spawners(SmogorandAngermeier2001).Thesemetricsarerepresentativeofdiversity, structural,andfunctionalmetricsthatarefrequentlyemployedincommunityassessment.Also includedinmycommunitymetricswerethenumberofsingletons(specieswithanabundanceof

1,NovotnyandBassett2000;Kannoetal.2009)and“ecologicallyrare”speciesthatmeetat leasttwoofthefollowingthreecriteriabasedonpreviousanalysis(PrittandFrimpong2010):1) numericalabundanceof<20individuals,2)proportionalabundanceof<5%,and3)proportional abundanceof<1/speciesrichness(Camargo1993).Thelatterdefinitionofraritywasderived

47 throughananalysisofpatternsofabundanceatthesitelevelandthushasmoreecological significancethananarbitrarilydefinedcutoff.

Statistical Analysis

Thenumberofrarespeciesobservedatincreasingnumericalandincreasingproportional abundanceraritycriteriafortheoneversustwobackpackelectrofishingconfigurations, increasingelectrofishingpass,andincreasingstreamlengthwerecomparedusinglinearmixed models(DerandEveritt2002).Alinearmixedmodelallowsforrepeatedmeasures(rarity criteria)alonglongitudinaldata(intensitytreatment).Thelinearmixedmodelalsoallowedusto includetheeffectsofcovariatessuchaswatershedarea,conductivity,andtheeffectsofthe differentsystems(NewRivervs.upperWabashRiver)usedinthecomparisonofelectrofishing passes.Themodelincludedfixedeffectssuchasgearconfiguration(onevstwobackpack)and watershedarea,andrandomfactorssuchasraritycriteria(Iusemultipleraritycriteriaateach sitethatcannotbeviewedasindependentfromeachother).Ialsousedmixedmodelstoaccount fortheeffectofusingaoneortwobackpackprotocolinmyanalysisofelectrofishingpassand reachlengthbecausebothbackpackprotocolswereusedduringsampling(seeabove).Iused linearmixedmodelswithbothunstructuredandstructuredcovarianceassumptionsandselected themostappropriatemodelbasedonAkaike’sInformationCriteria(AIC).Modelswere implementedinSAS9.2usingthemixedprocedure(PROCMIXED).

Icomparedmetricsbetweenonebackpackandtwobackpackconfigurations,andsingle passandmultiplepasselectrofishingwiththeHotellingT 2testonpairedmultivariateresponses

(CiteJohnsonandWichern2002).Ifagloballysignificantdifferencewasdetected(i.e.,p≤

0.05),Bonferroniadjustedconfidencelimitswereusedtodeterminesignificanceofdifferences betweenindividualvariables.TheBonferroniconfidencelimitsprovidedaconservative

48 criterionforsignificanceandallowedustoaccountformultiplicityinthemultivariateanalysis.I didnotcomparechangesincommunityassessmentmetricswithincreasingreachlength(Reed

Creekprotocol)becausethesmallsamplesizedidnotlenditselftotheHotellingT 2test; however,apreviousstudyindicatedthatstructuralIBImetricsincreasedwithincreasedreach lengthswhilefunctionalmetricswereinconsistentlyinfluenced(DauwalterandPert2003b).

Toprovideacasestudyofassessmentofrarityoffisheswithconservationinterest,I comparedtheassessmentofthefourNewRiverendemicspeciesthatIfoundduringmy samplingforone,two,andthreepasselectrofishing.Icomparedthenumberofsiteswhere eachspecieswasfound,thenumberofsiteswhereeachspecieswasconsideredasingleton,the numberofsiteswhereeachspeciesmetmyecologicalraritycriteria,theaveragetotalabundance andproportionalabundanceofeachspeciesatsiteswheretheywerefoundamongpasses.

Results

Linearmixedmodelswithunstructuredcovarianceprovidedabetterfittomydatabased onAIC.Thesignificantfactorsretainedinthemodelcomparingtheonebackpackprotocolto thetwobackpackprotocolwereraritycriteria(randomfactor)andthegearconfiguration(fixed factor).Watershed(Reedvs.Toms)wasnotasignificantfixedfactor.Becauseofthepaired natureofthebackpackcomparison,factorssuchaswatershedareaandconductivitywere controlledbythesamplingdesign.Therewasnosignificantdifferenceinthenumberof numericallyrarespeciesbetweenoneandtwobackpackprotocolsbutthereweremorespecies thatmetproportionalabundanceraritycriteriawiththetwobackpackprotocolthanwiththeone backpackprotocol(p<0.0001)(Figure2.2).

49

Significantfactorsthatwereretainedinthemodelcomparingtheeffectofelectrofishing passwerewatershedareaandsystem(NewRivervs.upperWabash)(fixedfactors),andrarity criterionandpass(randomfactors).Nonsignificantfactorsthatwereexcludedfromthefinal mixedmodelweregearconfigurationandconductivity.Therewasasmallincreaseinthe numberofrarespeciesbetweenonepassandmultiplepasselectrofishingprotocols;however, thiseffectwasnotfoundtobesignificant(Figure2.3).Thenumberofspeciesthatmetthe proportionalabundancecriterionincreasedwithelectrofishingpass(p<0.0001)(Figure2.3).

Thesignificantfixedfactorsinthemodelcomparingreachlengthwasnumberof backpacksandthesignificantrandomfactorswereraritycriterionandreachlength.Thenumber ofnumericallyrarespeciesincreasedwithincreasingstreamlengthbutthisresultwasnot significant(Figure2.4).Aswiththecomparisonbetweenelectrofishingpassandbackpack configuration,thenumberofspeciesthatmetaproportionalabundancecriterionincreasedwith increasingreachlength(p=0.0036)(figure2.4).

TheHotellingT 2testdidnotdetectasignificantdifferenceincommunityassessment metricsbetweenonebackpackandtwobackpackprotocols,howevertherewasasignificant differenceincommunityassessmentbetweenonepassandtwopasselectrofishing(p<0.0001), onepassandthreepasselectrofishing(p<0.0001),andtwopassandthreepasselectrofishing

(p<0.0001).Thenumberofsingletons,biologicallyrarespecies,speciesrichness,sunfish species,minnowspecies,andbenthicspecieswerefoundtobegreaterinthedoubleandtriple passprotocolthanthesinglepassprotocol(Table2.1).Inaddition,speciesrichness,thenumber ofminnowspecies,andthenumberofbenthicspeciesweregreaterwiththreepasselectrofishing thanwithtwopasses(Table2.1).

50

IntheassessmentofNewRiverendemicspecies,increasingthenumberofelectrofishing passesincreasedobservedpresenceforthreeofthefourspecies,increasednumericalabundance foreachspecies,anddecreasedtheproportionalabundanceforeachspecies(Table2.2).There wasnomeaningfulchangeinthenumberoftimesaspecieswasobservedasasingletonamong one,two,orthreepasssamples.Alloftheseendemicspecieswerealsoconsideredecologically rareineverysitethattheyoccurred.

Discussion

Numericalraritycriteriawerenotinfluencedbysamplingintensitywhereasthenumber ofspecieslabeledasrarebyproportionalabundancecriteriashowedanincreasewithsampling intensity;thisislikelybecauseindividualsfromcommonspecieswereaddedfasterthan individualsfromrarespeciesassamplingintensityincreased.Addingmorecommonspecies increasesthenumberofrarespeciesintwoways:1)asindividualsofthemostcommonspecies areadded,theproportionalabundanceofotherspeciesisdrivendownbelowthethresholdfor rarityand2)whennewspeciesareaddedwithincreasedsamplingintensity,thesespeciesare usuallyobservedasrare.Becausethenumericalraritycriteriaarenotsensitivetosampling intensity,Isuggestusingsomenumericalcriteriontodefinerarityforstatisticalorbioassessment purposessuchasthedeletionofaspeciesformultivariateanalysis.Ifaproportionalabundance criterionisinsteadused,researchersmustbecarefultoensurethatsamplingintensityandtotal numberoffishsampledissimilarbetweensites.

Thecomparisonbetweentheoneandtwobackpackapproachescanbeattributedtoonly theelectrofishingprotocolasawholebecausetheratioofbackpackstonetterswaschanged betweenprotocols.Asaresult,Icannotdetermineifthechangeinnettersorbackpackunitswas

51 themechanismforanydifferencesbetweentheprotocols.Theratiowasadjustedbecause maintainingatwonetterperbackpackratiowouldhavenecessitatedmorefieldcrewmembers forthetwobackpackprotocol.Myaimwastoprovideanoptimalwaytoutilizeafieldcrew; expandingthenumberofcrewmemberswouldhavecausedanincreaseintheresourcesneeded toconductsampling.

Becausegreatersamplingintensityresultsinagreaternumberofspeciesandindividuals, moreinformationisavailabletoresearchersandmanagersastheyinterpretstreamelectrofishing data.However,asSmithandJones(2008)pointout,efficientuseofresourcesisofutmost importanceforanysamplingprotocol.Frommyanalysis,Icandrawseveralimportant recommendationsforfuturesamplinginwadeablestreams.First,aonebackpackapproachwas sufficientforcharacterizingfishcommunities,andhencethisapproachisrecommendedbecause oftheobvioushighcostsassociatedwithelectrofishingunits.Itisimportanttopointoutthatmy onebackpackapproachwastometiculouslysampleallavailablehabitatswiththesingleunit;if amorerapidapproach(suchasthatinReynoldsetal.2003)isutilized,theeffectofaddinga secondbackpackcouldbemoresubstantial.Althoughthisfindingcorroboratesmanyofthe backpackelectrofishingprotocolscurrentlyemployed,Isuggestthatresearchersandmanagers thatwishtogainmoreinformationfromtheirsamplingprotocolsexploreotheralternativestoan additionalelectrofishingunit.

Furthermore,therewasasubstantialdifferenceincommunityassessmentmetricsand observedraritybetweenonepassandmultiplepasselectrofishingprotocolsbutthedifference betweendoubleandtriplepasselectrofishingprotocolswasminimal.Asaresult,researchers maystronglyconsiderthemeritsofusingadoublepassprotocol;howeveratriplepassprotocol mayprovidelittlenewinformationandadiminishingreturnforsamplingresources.Careful

52 considerationofthetradeoffsbetweeninformationgainedfromincreasedsamplingintensityand costofsamplingshouldprecedeanysamplingprogram(SmithandJones2008).

Themultiplepassprotocolgenerallyimprovesstabilityofassemblagecompositionand functionalmetrics(DauwalterandPert2003b)andthereforeitislikelythatmanagement decisionsbasedonamultiplepasselectrofishingwillbelesspronetoerror.Inaddition, samplingforimperiledspeciesislikelytoprovideadifferentresultifalowintensityprotocolis usedinsteadofahighintensityprotocol.IntheexampleoftheNewRiverendemicspecies, threeofthefourendemicswerefoundinmoresitesusingamultiplepassprotocolinafixed reachandthenumericalabundanceofthesespecieswasslightlyincreased.Theassessmentof theNewRiverendemicspeciescouldbeconsiderablyalteredbasedonthenumberof electrofishingpassesusedinthesamplingprocess.Forexample,increasingthenumberof electrofishingpassesincreasedthelikelihoodthatanendemicspecieswouldbeobservedatasite andcouldhavepotentialmanagementimplications,suchassettingupconservationeasements basedontheendemicdiversityorlistingtheseendemicsonanendangeredspecieslist.

Severalprogramsandagenciescouldpotentiallyapplythefindingsofthisstudy.For example,monitoringforconservationpurposes(e.g.Edwardsetal.2002)dependonthe assumptionthatsamplingmethodsprovideanaccuraterepresentationofthespeciesorgroupof speciesofconcern.Idemonstratedthatincreasingsamplingintensityincreasestheobserved abundanceandnumberofsitesoccupiedforendemicspecies.Conservationistsmaycometo differentconclusionsaboutsuitablehabitat,areastodesignateforprotection,andspecies dispersalabilities,dependingontheintensityofthesamplingprotocolemployed.

ThisstudycanbereasonablyappliedtomosteasternUSwadeablestreamsthathave speciesrichnesssimilartotheNewRiverandupperWabashRiverbasins.Differentpatterns

53 mayexistinsystemsthathavelowspeciesrichnesscommoninmanywesternstreams(Reynolds etal.2003),orinsystemswithveryhighspeciesrichness.Also,detectionprobabilitiesare muchlowerinlargerstreams(Meador2005)asafunctionofadecreasedchanceofcapturing individuals.Inthesesystems,increasingsamplingintensitymaycauseaneffectthatisgreaterin magnitudethanasimilarincreaseinsamplingintensityinasmallerstream.Inveryspeciesrich andlargersystems,itmaybenecessarytoincreasesamplingintensitymorethandeterminedin thisstudy.

Mystudyfurtherhighlightstheimportanceofconsideringsamplingintensityforany surveyofstreamfishes.Iencourageresearchersandmanagerstogivethoughtfulconsideration totheirobjectivesinordertousesamplingresourcesinthemostefficientmanner.Future researchisnecessarytoexamineifthetrendsfoundinthisstudyholdtrueforotherregionswith differentfaunasandsamplingconditions,suchasthewesternUnitedStates.

Acknowledgements

IthankJ.Deweber,A.Geisler,M.Henebry,R.Pendleton,B.Peoples,M.Tainer,andV.

Wootenfortheirhelpinthefield.ThisstudywasfundedbytheVirginiaAgriculturalResearch

Station.

References

Angermeier,P.L.,andR.A.Smogor.1995.Estimationgnumberofspeciesandrelative

abundancesinstreamfishcommunitieseffectsofsamplingeffort.CanadianJournalof

FisheriesandAquaticSciences52:936949.

Bayley,P.B.andJ.T.Peterson.2001.Anapproachtoestimatingprobabilityofpresence

54

andspeciesrichnessoffishspecies.TransactionsoftheAmericanFisheriesSociety 130:620633 Burcher,C.L.,M.E.McTammany,E.F.Benfield,andG.S.Helfman.2008.Fish

assemblageresponsestoforestcover.EnvironmentalManagement41:336346.

Camargo,J.A.1993.Mustdominanceincreasewiththenumberofsubordinatespeciesin

competitiveinteractions?JournalofTheoreticalBiology161:537542.

Cao,Y.,D.D.Williams,andN.E.Williams.1998.Howimportantarerarespeciesin

aquaticcommunityecologyandbioassessment?LimnologyandOceanography43:1403

1409.

Cao,Y.,D.P.Larsen,andR.S.Thorne.2001.Rarespeciesinmultivariateanalysisfor

bioassessment:someconsiderations.JournaloftheNorthAmericanBenthological

Society20:144153.

Dauwalter,D.C.,andE.J.Pert.2003a.Electrofishingeffortandfishspeciesrichness

andrelativeabundanceinOzarkHighlandstreamsofArkansas.NorthAmericanJournal

ofFisheriesManagement23:11521166.

Dauwalter,D.C.,andE.J.Pert.2003b.Effectofelectrofishingeffortonanindexof

bioticintegrity.NorthAmericanJournalofFisheriesManagement23:12471252.

Der,G.,andB.S.Everitt,2002.Pages197212inAhandbookofstatisticalanalysesusingSAS.

CRCPress,BocaRaton,Florida. dosAnjos,M.B.,andJ.Zuanon.2007.Samplingeffortandfishspeciesrichnessinsmall

terrafirmeforeststreamsofcentralAmazonia,Brazil.Neotropical5:4552.

Edwards,R.J.,G.P.Garrett,andE.MarshMatthews.2002.Conservationandstatusofthefish

communitiesinhabitingtheRíoConchosbasinandmiddleRioGrande,Méxicoand

U.S.A.ReviewsinFishBiologyandFisheries12:119132.

55

Frimpong,E.A.,T.M.Sutton,K.J.Lim,P.J.Hrodey,B.A.Engel,T.P.Simon,J.G.Lee,andD.C.

LeMaster.2005.Determinationofoptimalriparianforestbufferdimensionsforstream

biota–landscapeassociationmodelsusingmultimetricandmultivariateresponses.

CanadianJournalofFisheriesandAquaticSciences62:16.

Harding,J.S.,E.F.Benfield,P.V.Bolstad,G.S.Helfman,andE.B.D.Jones.1998.Stream

biodiversity:Theghostoflandusepast.ProceedingsoftheNationalAcademyof

SciencesoftheUnitedStatesofAmerica95:1484314847.

Hughes,R.M.,P.R.Kaufmann,A.T.Herlihy,S.S.Intelmann,S.C.Corbett,M.C.Arbogast,and

R.C.Hjort.2002.Electrofishingdistanceneededtoestimatefishspeciesrichnessin

raftableOregonrivers.NorthAmericanJournalofFisheriesManagement22:12291240.

Jelks,H.L.,S.J.Walsh,N.M.Burkhead,S.ContrerasBalderas,E.DiazPardo,D.A.

Hendrickson,J.Lyons,N.E.Mandrak,F.McCormick,J.S.Nelson,S.P.Platania,B.A.

Porter,C.B.Renaud,J.J.SchmitterSoto,E.B.Taylor,andM.L.Warren.2008.

ConservationstatusofimperiledNorthAmericanfreshwateranddiadromousfishes.

Fisheries33:372407.

Jenkins,R.E.,andN.M.Burkhead.1993.FreshwaterfishesofVirginia.AmericanFisheries

Society,Bethesda,Maryland.

Johnson,R.A.,andD.W.Wichern.2002.Appliedmultivariatestatisticalanalysis,5thedition.

PrenticeHall,EnglewoodCliffs,NewJersey.

Kanno,Y.,J.C.Vokoun,D.C.Dauwalter,R.M.Hughes,A.T.Herlihy,T.R.Maret,T.M.

Patton.2009.Influenceofrarespeciesonelectrofishingdistancewhenestimatingspecies

richnessofstreamandriverreaches.TransactionsoftheAmericanFisheriesSociety

238:12401251.

56

Karr,J.R.1981.Assessmentofbioticintegrityusingfishcommunities.Fisheries6:21

27.

Kennard,M.J.,B.J.Pusey,B.D.Harch,E.Dore,andA.H.Arthington.2006.

Estimatinglocalstreamfishassemblageattributes:samplingeffortandefficiencyattwo

spatialscales.MarineandFreshwaterResearch57:635653.

Kimmel,W.G.,andD.G.Argent.2006.Efficacyoftwopasselectrofishingemploying

multipleunitstoassessstreamfishspeciesrichness.FisheriesResearch82:1418.

Lawler,J.J.,D.White,J.C.Sifneos,andL.L.Master.2003.Rarespeciesandtheuseof

indicatorgroupsforconservationplanning.ConservationBIology17:875882.

Lyons,J.1992.Thelengthofstreamtosamplewithatowedelectrofishingunitwhenfish

speciesrichnessisestimated.NorthAmericanJournalofFisheriesManagement12:198–

203.

Maret,T.R.,D.S.Ott,andA.T.Herlihy.2007.Electrofishingeffortrequiredtoestimate

bioticconditioninsouthernIdahorivers.NorthAmericanJournalofFisheries

Management27:10411052.

Margurran,A.E.1988.Ecologicaldiversityanditsmeasurement.UniversityPress,Cambridge,

GreatBritain.

Margurran,A.E.,andD.A.Phillip.2001.Implicationsofspecieslossinfreshwaterfish

assemblages.Ecography24:645650.

Matthews,W.J.,andD.C.Heins.1987.CommunityandevolutionaryecologyofMorth

Americanstreamfish.UniversityofPress,Norman,Oklahoma.

Meador,M.R.2005.Singlepassversustwopassboatelectrofishingforcharacterizing

57

riverfishassemblages:Speciesrichnessestimatesandsamplingdistance.Transactionsof

theAmericanFisheriesSociety134:5967.

Meador,M.R.,J.P.McIntyre,andK.H.Pollock.2003.Assessingtheefficacyofsingle

passbackpackelectrofishingtocharacterizefishcommunitystructure.Transactionsof

theAmericanFisheriesSociety132:3946.

Merchant,R.1999.Howimportantarerarespeciesinaquaticcommunityecologyand

bioassessment?AcommentontheconclusionsofCaoetal.Limnologyand

Oceanography44:18401841

Novotny,V.,andY.Basset.2000.Rarespeciesincommunitiesoftropicalinsect

herbivores:ponderingthemysteryofsingletons.Oikos89:564572.

Odenkirk,J.,andS.Smith.2005.Singleversusmultiplepassboatelectrofishingfor

assessingsmallmouthbasspopulationsinVirginiarivers.NorthAmericanJournalof

FisheriesManagement25:717724.

OhioEnvironmentalProtectionAgency(OhioEPA).1987.Biologicalcriteriafortheprotection

ofaquaticlife:volumesIIII.OhioEnvironmentalProtectionAgency,Columbus,Ohio.

Paller,M.H.1995.Relationshipsamongnumberoffishspeciessampled,reachlength

surveyed,andsamplingeffortinSouthCarolinacoastalplainstreams.NorthAmerican

JournalofFisheriesManagement15:110–120.

Pont,D.,R.M.Hughes,T.R.Whittier,andS.Schmutz.2009.Apredictiveindexofbiotic

integritymodelforaquaticvertebrateassemblagesofwesternU.S.streams.Transactions

oftheAmericanFisheriesSociety138:292305.

Pont,D.,B.Hugueny,U.Beier,D.Goffaux,A.Melcher,R.Noble,C.Rogers,N.Roset,andS.

58

Schmutz.2006.Assessingriverbioticconditionatacontinentalscale:aEuropean

approachusingfunctionalmetricsandfishassemblages.JournalofAppliedEcology

43:7080.

Pritt,J.J.,andE.A.Frimpong.2010.Quantitativedeterminationofrarityoffreshwaterfishes

andimplicationsoftheoutcomeforimperiledspeciesdesignations.Conservation

Biology.

Pusey,B.J.,M.J.Kennard,J.M.Arthur,andA.H.Arthington.1998.Quantitative

samplingofstreamfishassemblages:Singlevsmultiplepasselectrofishing.Australian

JournalofEcology23:365374.

Reid,S.M.,G.Yunker,andN.E.Jones.2009.Evaluationofsinglepassbackpackelectricfishing

forstreamfishcommunitymonitoring.FisheriesManagementandEcology16:19.

Reynolds,L.,A.T.Herlihy,P.R.Kaufmann,S.V.Gregory,andR.M.Hughes.2003.

Electrofishingeffortrequirementsforassessingspeciesrichnessandbioticintegrityin

westernOregonstreams.NorthAmericanJournalofFisheriesManagement23:450461.

Scharff,N.,J.A.Coddington,C.E.Griswold,G.Hormiga,andP.PBjorn.2003.Whento

quit?EstimatingspiderspeciesrichnessinanorthernEuropeandeciduousforest.The

JournalofArachnology31:246273.

Simonson,T.D.,andJ.Lyons1995.Comparisonofcatchpereffortandremoval

proceduresforsamplingstreamfishassemblages.NorthAmericanJournalofFisheries

Management15:419427.

Smith,K.L.,andM.L.Jones.2005.Watershedlevelsamplingeffortrequirementsfor

determiningriverinefishspeciescomposition.CanadianJournalofFisheriesandAquatic

Science62:15801588.

59

Smith,K.L.,andM.L.Jones.2008.AllocationofSamplingEfforttoOptimizeEfficiencyof

WatershedLevelIchthyofaunalInventories.TransactionsoftheAmericanFisheries

Society137:15001506.

Smogor,R.A.,andP.L.Angermeier.2001.Determiningaregionalframeworkforassessing

bioticintegrityinVirginiastreams.TransactionsoftheAmericanFisheriesSociety

130:1835.

Stevens,R.D.,andM.R.Willig.2002.Geographicalecologyatthecommunitylevel:

Perspectivesonthediversityofnewworldbats.Ecology83:545560.

VDGIF.2009.SpecialstatusfaunalspeciesinVirginia.

Available:http://www.dgif.virginia.gov/wildlife/virginiatescspecies.pdf.(November

2009)

Weaver,L.A.,andG.C.Garman.1994.Urbanizationofawatershedandhistoricalchangesina

streamfishassemblage.TransactionsoftheAmericanFisheriesSociety123:162172.

60

Table1.Meansofcommunityassessmentmetricsforone,two,andthreepasselectrofishing.

DifferentlettersindicatesignificantdifferenceswithBonferroniconfidencelimits.

Metric OnePass TwoPass ThreePass ShannonDiversity 1.79 a 1.83 b 1.84 b SimpsonEvenness 0.76 a 0.76 a 0.76 a SpeciesRichness 13.07 a 14.70b 15.30c Singletons 2.88 a 2.66 a 2.40a BiologicallyRareSpecies 8.98 a 10.25 b 10.13 b MinnowSpecies 6.14 a 6.78 b 6.99 c SunfishSpecies 1.58 a 1.77 b 1.86 b BenthicSpecies 2.59 a 2.90b 3.02 c Proportionofinvertivores 0.57 a 0.57 a 0.57 a Prop.oflithophilicspawners 0.34 a 0.33 a 0.33 a

Table2.AssessmentoffourNewRiverendemicspeciesforone,two,andthreepass

electrofishing.Averageabundancerepresentstheaveragenumberofindividualsobservedina

sampleandaverageproportionistheaverageproportionalabundanceobservedinasample.

Appalachian KanawhaDarter KanawhaMinnow NewRiverShiner Darter( Pecina (Etheostoma (Phenecobius (Notropis gymnochephalus ) kanawhae ) teratulus ) scabirceps ) Passes One Two Three One Two Three One Two Three One Two Three Sitesoccurred 9 12 13 12 13 14 11 13 15 4 4 4 %Sites 26 35 38 35 38 41 32 38 44 12 12 12 Sitesassingleton 1 2 3 4 4 5 2 2 1 1 1 1 Sitesasrare 9 12 13 12 14 14 11 13 15 4 4 4 Avg.abundance 3.9 5.2 6.3 3.4 4.9 5.4 5.5 6.4 5.8 4.3 5.3 8.5 Avg.proportion 1 0.9 0.8 0.7 0.6 0.5 1.5 1 0.7 0.9 0.7 0.6

61

Figures

Figure2.1.Fourtheoreticaloutcomesofsamplingintensityonnumericallyrarespecies.Circles indicateacommonspeciesinapopulationwhiletrianglesrepresentararespecies.Boxa indicatesthataspeciesisrareatlowlevelsofsamplingintensity(areawithintheellipse)and highlevelsofsampling(areawithintheroundedrectangle),andinthiscasesamplinghasa neutraleffectonnumericalrarity.Boxbindicatesthatsamplingintensityhasapositiveeffect onthenumberofnumericallyrarespecies.Boxcrepresentsasituationinwhichaspeciesis numericallyrareatalowlevelofintensitybutnotatahighlevel,anegativeeffectofsampling intensityonthenumberofrarespecies.Finally,boxdrepresentsaspeciesthatisnotnumerically rarebutmayappeartoberareinsamplesbecauseofsamplinginefficienciesassomeindividuals

(denotedbyhollowtriangles)arenotdetected.

62

Figure2.2.Thenumberofrarespeciesatincreasingnumericalraritycriteriaforonebackpack andtwobackpackelectrofishingprotocols(a),andthenumberofrarespeciesatincreasing proportionalabundancecriteriaforoneandtwobackpackprotocols(b).Errorbarsrepresent standarderror.

a Numberofspecies

Ma ximumnumberofindividualstobelabledrare

b Numberofspecies

Maximumproportionalabundancetobelabeledrare

63

Figure2.3.Thenumberofrarespeciesatincreasingnumericalraritycriteriaforonepass,two pass,andthreebackpackelectrofishingprotocols(a),andthenumberofrarespeciesat increasingproportionalabundancecriteriaforone,two,andthreepassprotocols(b).Errorbars representstandarderror.

a Numberofspecies

Maximumnumberofindividualstobelabledrare

b Numberofspecies

Maximumproportionalabundancetobelabeledrare

64

Figure2.4.Thenumberofrarespeciesatincreasingnumericalraritycriteriaforincreasingreach length(a),andthenumberofrarespeciesatincreasingproportionalabundancecriteriafor increasingreachlength(b).Errorbarsrepresentstandarderror

a Numberofspecies

Maximumnumberofindividualstobelabledrare

b Numberofspecies

Maximumproportionalabundancetobelabeledrare

65

Chapter 3

Habitat factors associated with rarity in fishes and biological traits of rare fish species

Abstract

Manyfishesarerareinsomelocationsbutcommoninothersandthefactorsthatproduce thesepatternsarenotwellunderstoodformostspecies.Inaddition,thebiologyofrarityin freshwaterfisheshasnotbeenstudiedinmuchdetail.Iusedlogisticregressionmodelsto examinetheeffectof1)regionalhabitatvariablessuchastemperature,andprecipitation,2) watershedhabitatvariablessuchasslope,landuse,andstreamorder,3)instreamhabitat variables,and4)bioticinteractionvariablesontherareorcommonstatuson23NorthAmerican freshwaterfishesfoundinanationaldatabase.Ialsocomparedbiologicalandreproductivetraits amongspeciesclassifiedintoararityframeworkbasedonrangeextent,habitatbreadth,andsite abundance.Rareorcommonstatuswassuccessfullymodeledin19ofthe23speciesandI foundthatregionalandwatershedhabitatvariableswerethemostimportantpredictorsofrarity whilebioticinteractionvariablesweresignificantpredictorsofrarityinaonlyfewspecies.

Significantexplanatoryvariablesvariedgreatlybetweenspecies.Ialsofoundthatspecieswith largebodysize,highfecundity,andlateageatmaturityweregenerallyconsideredcommon basedonrangeextent,habitatbreadthandsiteabundancewhilespeciesthatdidnotguardnests weremorefrequentlyrarebysiteabundance.Theseresultsindicatethathabitatvariablesat largespatialgrainscanbeusedtosuccessfullymodelspeciesrarityandrarefishesdifferintheir biologyandreproductionfromcommonfishes.Understandingthepotentialmechanismsdriving rarityisanimportantstepforconservingrarefishesandcouldservetoinformcaptivebreeding andtranslocationprograms.

66

Introduction

Rarityisimportanttomanycommunityecologystudiesandunderstandingwhat environmentalandanthropogenicfactorsleadtospeciesrarityisvitaltodirectingconservation efforts(MaceandKershaw1997).Notsurprisingly,examiningthefactorsthatleadtospecies rarityorcommonnessisaclassicthemeincommunityecology(KuninandGaston1993).Many factorshavebeenattributedtorarityincludingbiogeographyandmacroecologicalfactors

(Harcourt2006),habitattypeoravailability(NovotnyandBasset2000),interspecific competition(Thiollay1994),andspecies’biologyandecology(GastonandKunin1997).

Becauseofthegreatnumberofpossiblecausesofrarity,andpossibleinteractionsamongthese causes,manyfactorsrangingfromenvironmentalandhabitatfactorstospeciestraitsmustbe consideredtoinferthemechanismsthatproducepatternsofcommonnessandrarityina particularspecies.

NorthAmericanfreshwaterfishesrepresentadiversetemperatefauna,withalmost800 species(PageandBurr1992)andthisgroupischaracterizedbyagreatdealofvariationintraits amongspecies(Balon1975)thatallowfordetailedcomparisonbasedonspeciestraits.

Availableabundancedata,aswellasdetailedinformationonspeciestraitsformanyfreshwater fishesintheUnitedStates,makethisgroupausefulstudytaxonforexaminingpossible biologicalandenvironmentalcausesandcorrelatesofrarity.

PrittandFrimpong(2010)developedaclassificationofrarityforfishes,followingthe modelofRabinowitz(1981),inwhichspeciesaredefinedasrareorcommonbasedonrange extent,habitatbreadth,andsiteabundance.Thisleadstothecreationofeightgroups,sevenof whichdisplayrarityacrossatleastonedimension(table3.1).Withrespectstositeabundance, theyfoundthatapproximately35%ofspecieswererareateverysiteatwhichtheyoccurred

67 while~10%ofspecieswerecommonateverysiteatwhichtheyoccurred;thereforealmosthalf ofthespecieswererareatsomesitesbutcommonatothers.Thisphenomenon,knownas diffusiverarity,hasbeendocumentedinothertaxa(Shoener1987),butthemechanisms producingthispatternareunclear.

Examiningfactorsatdifferentspatialgrainsisimportantforunderstandingrarity(Hartley andKunin1993)andstreamhabitatscanbeclassifiedinahierarchyofspatialgrains.Frissellet al.(1986)classifiedstreamhabitatby:1)streamsystemorwatershed,2)streamsegment,3) streamreach,4)pool/rifflesequence,andfinallyby5)microhabitat.Differentgeologicaland environmentalfactorsacttoshapehabitatattributesateachofthesespatialgrains.Forexample, geologicaleventssuchastechtonicshiftsandglaciationdrivehabitatatthestreamsystemgrain whileannualfloodsanddepositioneventsdeterminehabitatatthepool/riffleandmicrohabitat scales.Habitatfeaturesateachofthesespatialgrainsarelikelytoinfluencefishpopulationsand communities(Frisselletal.1986;Schlosser1991;Poff1997).Fewresearchershaveexamined rarityinfishesatdifferentspatialgrainsbutmanyresearchershavedocumentedchangesin speciesdiversity,distributions,andabundancealonggradientsatdifferentspatialgrains(e.g.

AngermeirandWinston1998).Manyofthesewelldocumentedfactorsthatdrivespecies occurrencesandassemblagepatternsmayalsodrivespeciesrarity.Instreamfish,species occurrencescanbepredictedatthereach,watershed,andlandscapebasedonenvironmental suitabilityandspeciesdispersalability(Angermeiretal.2002).Aspatternsofpresenceand absencecanbepredictedbyenvironmentalfactors,itislikelythatpatternsofrarityor commonnesscanbepredictedbymanyofthesamefactors.

Atlargespatialgrains,macroecologicalgradientshaveoftenbeenlinkedtospecies distributionsandabundance.Forexample,fishesareoftendistributedalongtemperatureand

68 precipitationgradients(BarbourandBrown1974,Lattaetal.2008).Speciesabundanceis relatedtodistribution(GastonandKunin1997)andaspecies’abundancegenerallydecreases towardstheperipheryofthatspecies’range(Brown1984).Furthermore,speciesdiversity decreasesaslatitudeincreasespossiblybecauseofacorrespondingdropinecosystem productivityandashortergrowingseason,atrendwhichhasbeendemonstratedforfish diversityinNorthAmericanlakes(BarbourandBrown1974)andMichiganstreams(Lattaetal.

2008).Throughneutralmetacommunitymodels,patternsofbiodiversityhavealsobeen explainedbyannualrunoffproduction(Muneepeerakuletal.2008)andrivertopology(Bertuzzo etal.2009).Also,introductionshaveexpandedtherangesofmanyspeciesfarbeyondtheir nativeranges(GidoandBrown1999)andpotentiallyintoasetofconditionsandselectiveforces thataremuchdifferentthanthosewithinthenativerange.Separatingaspeciesfromitsnative rangecouldcreatepatternsofraritythataredifferentfromthoseobservedinthespecies’native range.Forexample,atransplantedspeciesmayexhibitlowerabundancebecauseconditionsare differentfromthosetowhichthespecieshasadaptedandthegeneticdiversityoftransplanted speciesissometimeslimitedfromabottleneckeffect(Sakaietal.2001).Bycontrast,the speciesmayhavegreaterabundancebecauseofreleasefromcompetitorsorpredators(Keane andCrawley2002).Therareorcommonstatusofindividualspeciesmayalsovarybecauseof theselandscapeandregionalfactors.

Instreamsystems,thewatershedrepresentsanintermediatespatialgrain.Fish assemblageshavebeendocumentedtochangeacrossthelongitudinalgradientofawatershed

(OstrandandWilde2002;Grubbs2007),ashypothesizedbytherivercontinuumconcept

(Vannoteetal.1980).Severalresearchershavefoundthatdownstreamareascontaingreater numbersofrarefishandmacroinvertebratespecies(Cucheroussetetal.2008;Santouletal.

69

2005).Cucheroussetetal.(2008)alsonotedthatthenumberofcommonspeciespeakedinthe middleoftherivercontinuumindicatingthattheareaswiththehighestnumberofcommon speciesmaynotbethesameasthosewiththehighestnumberrarespecies.Furthermore, understandingwhichareascontaingreatnumbersofrarespeciescouldallowfortheseareasto betargetedforconservationinthecasethattheserarespeciesfacethreatsofextinctionorserve assourcepopulations(Lawleretal.2003).However,thespatialpatternsofcommonnessand rarityforindividualspeciesalonglongitudinalwatershedgradientshavenotbeendocumented.

Inwatersheds,physicalandanthropogenicdisturbancegradientsthatchangethrough spacecanbedefinedashabitattemplates(PoffandWard1990).Thesehabitattemplatescontrol localprocessesandselectiveforcesthatcanbeimportantfordeterminingbioticstructureand functioning(Poff1997).Spatialpatternsoffishraritycouldbeinfluencedbyinstream conditions,andtheinteractionbetweentheselargescaleandlocalfactorscouldinfluencerarity.

Atlocalgrains,habitatheterogeneityhasagreatimportanceinexplainingspeciesdiversity,

(Eadieetal.1986;Baldi2008)andlocalgeomorphologicandhabitatcharacteristicshavebeen linkedwithspeciesrichnessandassemblagecompositionatthelocallevel(SmileyandDibble

2005).Similarly,thelocalizedeffectsofanthropogenicdisturbancecouldplayanimportantrole indeterminingspatialpatternsofspeciesrichnessandrarity.Manyresearchershave documentedthedeleteriouseffectsofanthropogenicpractices,suchasagriculture,deforestation, andurbanization,onstreamfishassemblages(Wangetal.2001;Burcheretal.2008).

Anthropogenicdisturbancehasalsobeenshowntonegativelyaffectspeciesconsideredrareby extentcriteria(Faganetal.2005).Theintensityandextentofanthropogenicdisturbance,aswell asthetypeofdisturbance(urbanizationvs.agriculture,)couldinterruptnaturallyoccurring patternsofrarityandspeciesrichnessacrosslandscapeandwatershedgradients.Forexample,

70

GuentherandSpacie(2006)demonstratedthatimpoundmentsalonganIndianariveralteredfish assemblagesinboththemainstemanditstributaries.

Atlocalspatialgrainssuchasthestreamreach,bioticinteractionsmayalsobeimportant inexplainingpatternsofrarityinstreamfishes.Interspecificcompetitionhasbeenshowntobe importantinstructuringstreamfishcommunitiesbysomeresearchers(Strangeetal.1993;

Taylor1996;HerderandFreyhof2006);however,othershaveconcludedthatcompetitionplays aminimalroleinorganizingthesefishcommunities(Jacksonetal.2001;PerezNeto2004).

Possiblecompetitionmaybediscernedfromphylogeneticrelationshipsascloselyrelatedspecies aremorelikelytocompetebecauseofgreaternicheoverlap.Thisphenomenonhasbeen documentedbyStraussetal.(2006)whofoundthatsuccessfulinvasivespecieshavefewnative relatives.Asaresult,Ihypothesizethatspecieswhichhavegreatertaxonomicrelatednesswitha greatnumberofotherspecieswithinacommunityaremorelikelytoberarethanthosespecies thathavefewcloserelatives.

Speciestraitshavebeenusedtoexplainspecies’associationswithlandscapevariables andhabitattemplates(GoldsteinandMeador2004).Thestudyofstreamfishcommunities throughatraitbasedapproachhasbecomeanimportantandusefulmethodforidentifying environmentalvariablesresponsibleforstructuringthecommunityandunderstandingthe responseoffishestoenvironmentalgradientsanddisturbance(FrimpongandAngermeier2010).

Speciestraitscanbecategorizedasbiologicaltraitswhichincludelifehistoryandmorphological characteristics,andecologicaltraitswhichincludefeeding,reproductive,andhabitat associations.Bothcategoriesoftraitscouldserveasmechanismsofrarity.

Lifehistorytraitshavebeenlinkedtorarityinplants(Murrayetal.2002)andbirds

(Cofreetal.2007).Fishescanbegroupedintothreelifehistorygroupsthatinclude:1)periodic,

71 characterizedbylonglifespans,highfecundity,andlowjuvenilesurvival,2)opportunistic, whichincludespeciesthatareshortlived,andhavelowfecundityandlowjuvenilesurvival,and

3)equilibrium,speciesthathavelowfecundity,moderatelifespans,andhighjuvenilesurvival

(Winemiller2005).Lifehistorytraitsinfishesmaybeanimportantfactordeterminingrarity andhavebeenusedtocharacterizeimperiledspecies.Oldenetal.(2008)foundthatfishesinthe

ColoradoRiverthathadlifehistoriessimilartothatoftheperiodicgroupareoftenassociated withasmallrangeextent,greaterlocalextirpationrate,andgreaterriskofextinction.Similar examinationamongfishesacrossNorthAmericashouldrevealthelifehistorytraitsthat contributetorarity.

Ecologicaltraitscanalsobeimportantindeterminingspecializationinhabitatuse, reproductionandfeeding.Specializationinecologicaltraitshasalsobeenassociatedwithlocal extirpations(Angermeier1995).Reproductiveecologyhasbeenofparticularimportancein explainingrarityintaxarangingfromplantstofishestomammals(GastonandKunin1997).

Minimalparentalcaretooffspringhasbeencorrelatedtoextinctionriskinfishes(Oldenetal.

2008)andtorarityindarters(Paine1990)andbirds(Cofreetal.2007).Parentalcaremayalso offsetadverseconditionsthatnegativelyaffectjuvenilesurvivorshipandagainallowspeciesthat offermoreparentalcaretobemorecommonthanspeciesnotofferingparentalcare.Similarly, nestbuildingmaymitigateagainstalimitinghabitattypeandthusmakenestbuildingspecies reproductivegeneralistsandallowthesespeciestobemorecommonthanthosethatdonotbuild nests(PeoplesandFrimpong,inreview).

Inthisstudy,mygoalistounderstandwhatfactorsproducepatternsofrarityor commonnessinstreamfishes.Myobjectivesareto1)examinelandscape,watershed,andlocal habitatfactorsthatpredictrarityatthesitelevel,and2)examinedifferencesinbiologicaltraits

72 amongNorthAmericanfreshwaterfishesthatdifferinrareorcommonstatusacrosstherarity dimensionsofrangesize,habitatbreadth,andsiteabundance(Rabinowitz1981).

Methods

Spatial, habitat, and biotic predictions of site-level rarity

Iused1,025sitesfromtheUnitedStatesGeologicalSurvey(USGS)NationalWater

QualityAssessmentProgram(NAWQA)databasethatcontainedfishabundance,landscape,and habitatdata(USGS2008).TheNAWQAdatabaseiswellsuitedforthisstudy,asitrepresents sitesthatspantheentireconterminousUnitedStatesandencompassesalargenumberofspecies.

Ateachsite,speciesweredefinedasrareiftheymettwoofthethreefollowingcriteria:

1)<20individualsinthesample,2)relativeabundanceof<5%,and3)relativeabundanceof<1/ speciesrichness(PrittandFrimpong2010)Morethan200speciesintheNAWQAdatabase wererareatsomesitesandcommonatothers.Inordertoexaminemechanismsthatproduce rarityorcommonnessinindividualspecies,Ichoseasubsetofspeciesthatmetthefollowing criteria:1)rareat3070percentofsitesoccupied(toprovideenoughrareandcommon observationsforstatisticalmodeling),2)presentat30ormoresites(toprovideenoughpowerfor statisticalmodeling),and3)NAWQAsampleswelldistributedaroundthespecies’range centroid(centroidfoundfromFishTraitsdatabase(FrimpongandAngermeier2009);site distributionsvisuallyestimatedusingArcGIS).Ialsosoughttorepresentasmanyfamiliesas possibleintheanalysis.Atotalof23speciesrepresenting10familiesmetthesecriteriaand wereselectedforanalysis.Ithenclassifiedlandscapeandhabitatvariablesas1)regionalhabitat variablessuchasdistancetothespecies’rangecentroid,annualtemperature,annual precipitation,latitude,longitude,andstatusasnativeornonnativespecies,2)watershedvariables

73 suchasamountofwatersheddisturbance,watershedarea,roaddensity,slope,elevation,and3) assemblagevariablessuchastotalspeciesrichness,familylevelrichness,andgenuslevel richness(table3.2).Theseassemblagevariablesrepresentproxyvariablesforinterspecific competitionasspeciesthataremostcloselyrelatedhavethegreatestamountofnicheoverlap andarethereforemostlikelytocompeteforcommonresources.SomeoftheNAWQAsites

(508)alsohadavailableinstreamhabitatdataincludingpercentagepool,riffle,andrunhabitat, averagedepth,maximumdepth,wettedwidth,andthewidthtodepthration(table3.2).

IusedmultiplelogisticregressionwithstepwisemodelselectionandAkaike’s

InformationCriterion(AIC)toselectenvironmentalvariablesthatbestexplainedaspecies commonorrarestatusatagivensite.Themodelswereconstructedwiththebinaryresponse variables,“0”representingrarityand“1”representingcommonness,whichwereexplainedby thecontinuousvariablesfromtheNAWQAsitesdescribedabove.Thesignificance,effect,and magnitudeofthepredictorvariablesincludedineachmodelweredeterminedfromoddsratios.I thenvalidatedthelogisticregressionmodelderivedforeachspeciesusingreducedmodelsthat evaluatethepredictiveabilityofeachselectedmodel.Inthistechnique,observations(rareor commonstatusatasite)arewithheldfromthemodelandforwardlypredictedwiththeselected independentvariables.Iusedseveralfitandvalidationstatisticstogagethesuccessofthe logisticregressionmodels.Tomeasurefit,IobtainedthemaximumrescaledR 2andSomer’sD statisticwhichmeasuresthecorrelationbetweenpredictedandactualobservations.Tovalidate thepredictiveabilityofeachmodel,Iusedthepercentofobservationscorrectlypredicted, sensitivity,whichmeasuresthesuccessofpredictingcommonness,andspecificity,which measuresthesuccessofpredictingrarity.Ialsofoundthepercentoffalsepositives(incorrectly

74 predictedcommonness),andfalsenegatives(incorrectlypredictedrarity)foreachmodel.The validationstatisticswereobtainedusinga0.5probabilitycutoff.

Traits as mechanisms for rarity

Todeterminewhichbiologicaltraitsareassociatedwithrarity,traitsforNorthAmerican fishesweretakenfromtheFishTraitsdatabase(FrimpongandAngermeier2009)andincluded fecundity(numberofeggs),maximumtotallength(cm),ageatmaturity(years),maximumage

(years),andlarvalsize(mm).SpeciesfromFishTraitswereorganizedintotheframeworkof

PrittandFrimpong(2010)inwhichspecieswereplacedintooneofeightraritygroupsbasedon rangeextent,habitatbreadth,andsiteabundance(table3.1).Ithenconstructedboxplotsof biologicaltraitvaluesforeachraritygroupandanalyzedtheboxplotsvisuallytoexaminethe differencesindescriptivestatisticsintheabovebiologicaltraitsamongraritygroupsforthe399 speciesclassifiedbyPrittandFrimpong(2010).Ithenusedcorrelatesofnaturallog transformedbiologicaltraitswithadjustedrangevalues,habitatbreadthasgivenbyanindexof habitatbreadthscore(PrittandFrimpong2010),andsiteabundancetoexaminetherelationships betweenthesebiologicaltraitswiththethreedimensionsofrarityintheframework.

ReproductivetraitswerealsotakenfromFishTraitsandwereusedtoformreproductive groupsofnonguarders,guarders,serialspawners,andlivebearers.Thefrequencyofeachof thesetraitsamongspeciesineachraritygroupwasdetermined.Ithenanalyzedthedistribution ofthesebinaryscoredtraits(“1”ifpresent,“0”ifabsent)withintherarityframeworkwitha

Chisquaredtestofindependenceandcomparedthedistributionoftraitsinraritygroupstothe distributionoftraitsinallfishtounderstandwhichtraitsaremoreoftenassociatedwithrarity.

75

Results

Habitat and biotic predictors of site-level rarity

Instreamhabitatvariablesweresignificantexplanatoryvariableforonlyoneofthe23 speciesintheoriginallogisticregressionmodels(blacknosedaceraritywaspartiallyexplained bythepercentofrunhabitat).Becausetheseinstreamvariableshadlittlesignificance,and introducedcolinearitywithregionalandwatershedhabitatvariables,theywereremovedfrom themodels.TheAICandmaximumrescaledR 2fitstatisticindicatedthatremovingthese variablesandincludingonlyregionalhabitat,watershedhabitat,andinterspecificvariables providedabetterfit.

Ofthe23speciesusedforthelogisticregressionanalysis,19weresuccessfullyexplained asrareorcommonbyastatisticallysignificantlogisticregressionmodel;sandshiner( Notropis stramineus ),hogsucker( Hypentilium etowanum ),hornyheadchub( Nocomis biguttatus ),andgizzardshad( Dorosoma cepedianum )werenotsuccessfullymodeled.The significantmodelswereevaluatedforfitandpredictiveability.

ThefitofthelogisticregressionmodelsvariedamongspeciesasmaximumrescaledR 2 rangedfrom0.12(rockbass)to0.75(marginedmadtom)(table3.3).Inlogisticregression models,R 2tendstobemuchlowerthanvaluesinmorefamiliar,linearregression(evenavalue of0.2indicatesastrongfit)(Myers1990).Thepredictiveabilityofthelogisticregression modelsalsovariedamongspecies.Ingeneral,themodelshadgreaterspecificity(accuracy predictingrarity)thansensitivity(accuracypredictingcommonness)andthereweremorefalse positivesthanfalsenegatives(table3.3),indicatingthatthemodelspredictedraritymore accuratelythancommonness.Forspecieswithsignificantmodels,thelogisticmodelspredicted anaverageof72.6percentofobservationscorrectlywithstripedshinerhavingtheleastaccurate

76 model(54.1percentofobservationscorrectlypredicted)andmarginedmadtomhavingthemost accuratemodel(84.8percentofobservationscorrectlypredicted)(table3.3).Thesquareof

Somer’sDstatisticprovidesameasurementofcorrelationbetweentheobservedandpredicted responsesineachmodelandwasagainhighlyvariableamongspecies,rangingfrom0.15(rock bass)to0.85(marginedmadtom)(table3.3).

Regionalhabitatvariableswerethemostfrequentpredictorsofrareorcommonstatus amongspecies(table3.4).Decreasedmeanannualprecipitationsignificantlyexplainedrarityfor sixspeciesinthreefamilies(cyprinidae,centrarchidae,poeciliidae)andapositiveeffect

(explainedcommonness)foronecyprinid,thestripedshiner( Luxilus chrysocephalus ).Mean annualtemperaturewasasignificantexplanatoryvariablefortwospeciesofcyprinids.High meanannualtemperatureswererelatedtocommonnessinstripedshinerandrarityinblacknose dace( Rhynichthyes atratalus). Thecentralstoneroller( Campastoma anomalum )wasmostlikely toberareathigherlatitudeswhilethestripedshinerandpirateweremostlikelytoberare atlowlatitudes.

Watershedhabitatvariableswerealsoimportantformanyspecies(table3.4).Large watershedareawasassociatedwithrarityofblacknosedacecreekchub(Semotilus atromaculatum )andcommonnessforwesternmosquitofish.Highslopewasassociatedwith commonnessofthebandedsculpin( Cottus carolinae ),marginedmadtom( Noturus insignis ),and blacknosedaceandrarityforredbreastsunfishandwesternmosquitofish.Largescalesucker

(Catostomus macrocheilus )waslikelytobecommonathighelevationwhilestripedshinerand westernmosquitofish(Gambusia affinis )werelikelytoberareathighelevations.Highamounts ofripariandisturbanceexplainedcommonnessofwesternmosquitofishwhilehighwatershed disturbanceexplainedcommonnessofstripedshinerandblacknosedace.Conversly,high

77 watersheddisturbanceexplainedrarityofrosysidedace( Clinostomus funduloides ),margined madtomandrainbowdarter( Etheostoma caeruluem )whilehighroaddensityexplainedrarityof bandedsculpin.

Bioticvariablesweresignificantforonlyafewspecies(table3.4).Redbreastsunfish

(Lepomis auritus),longearsunfish( Lepomis megalotis ),andmarginedmadtomweremore commonatsiteswithhighrichnessofmembersofthetheirfamilyorgenus.Brooktrout

(Salvelinus fontinalis )andjohnnydarter( Etheostoma nigrum )werelikelytoberareastheir familylevelrichnessincreased,indicatingthatthesespeciesmaybenegativelyinfluencedby interspecificcompetitionfromcloselyrelatedspecies.

Traits as mechanisms of rarity

Thereweresubstantialdifferencesinbiologicaltraitsamongraritygroups.Longevity, ageatmaturity,maximumtotallengthandfecunditywereallgreateringroupswithlargerange sizesthaningroupswithsmallrangesizes(Figure3.1).Also,longevity,ageatmaturity,and maximumtotallengthweregreateringroupswithsmallsiteabundancesthaningroupswith largesiteabundances(Figure3.1).Thecorrelationanalysisshowedthatthenaturallogsof longevity(r=0.31;p<0.0001),fecundity(r=0.45;p<0.0001),ageatmaturity(r=0.30;p<0.0001), andmaximumtotallength(r=0.46;p<0.0001)werepositivelycorrelatedwithrangeextent

(Figure3.2).Similarly,thenaturallogsoflongevity(r=0.16;p<0.0001),fecundity(r=0.28; p<0.0001),ageatmaturity(r=0.16;p<0.0001),andmaximumtotallength(r=0.32;p<0.0001) werepositivelycorrelatedwithindexofhabitatofbreadthscores(Figure3.2).Thereweak correlationsbetweenbiologicaltraitsandsiteabundanceasfecundity(r=0.10;p=0.0419),

78 longevity(r=0.11;p=0.0257)andmaximumtotallength(r=0.10;p=0.0418)werepositively relatedtolargesiteabundance(Figure3.2).

TheChisquaredanalysisofreproductivetraitsshowedthatasignificantdifferencein spawningstrategiesamonggroups.Overall,morespecieswereconsiderednongaurdersthan gaurderswhileasmallproportionofthetotalspecieswerelivebearers(p<0.05).Therewas significantlygreaterproportionofnongaurdingspeciesingroupB(largeextent,widehabitat breadth,andsmallsiteabundance)andingroupsG(smallextent,narrowhabitatbreadth,large siteabundance)andgroupH(smallextent,narrowhabitatbreadth,smallsiteabundance)(Figure

3.3).Inaddition,therewasasignificantlygreaterproportionoflivebearingspeciesingroupH

(Figure3.3).Theseresultsindicatethatreproductivetraitsmayalsocontributetoaspecies’ rarityorcommonness.

Discussion

Themechanisticplausibilityofthelogisticregressionmodelsdifferedamongspeciesand islikelyaresultofadifferenceinbiologicalsignificanceamongthesemodels.Somespecies hadmodelswithsignificantpredictorsthatmadeintuitivesense.Forexample,theblacknose dace,whichisoftenfoundinheadwaterstreamsandinsmall,coldwatersystems(PageandBurr

1992),ispredictedtoberareinstreamswithlargewatershedareasandhighmeanannual temperatureswhileitispredictedtobecommoninstreamswithhighslope.Otherspecies characterizedasassociatesofsmallheadwaterstreams(PageandBurr1992)showsimilar patterns.Forexample,thecreekchubispredictedberareinstreamswithlargewatershedareas andmarginedmadtomandbandedsculpin,arepredictedtoberareinstreamswithlowslope.

Manyofthespeciesthatwerepredictedbestbyregressionmodelswereoftenassociated withsmallstreamsincludingspeciessuchastheblacknosedace,creekchub,andbandedsculpin.

79

AspredictedbytheRiverContinuumConcept(Vannoteetal.1980),thesesmallstreamshave themostinteractionwiththeadjacentlandscapeandasaresulttheirrarityorcommonnessmay beintimatelylinkedtolandscapeandwatershedvariablesmoresothanspeciesinlargersystems.

Inaddition,catchabilitydecreasesinlargesystems(BayleyandPeterson2001)andasaresult, rarityinlargestreamsmaybearesultofsamplinginefficienciesratherthanareflectionoftrue rarity.Inaddition,aspeciesthatistrulyrareinalargesystemmaynotbedetectedatalland henceobservedasabsentratherthanrare(seeagainfigure2.1).

Themodelsalsohighlightseveralspeciesthatmaybeabletotolerateanthropogenic disturbancebutarerarerindisturbedenvironments.Thesespeciesincludetherosysidedace, bandedsculpin,marginedmadtom,andrainbowdarter.Notsurprisingly,threeofthesespecies arebenthicspeciesandallarelithophilicintheirspawningrequirements;benthicandlithophilic specieshavebeenshowntobetypicallyvulnerabletoanthropogenicdisturbancessuchas agriculture,deforestation,andurbanization(Wangetal.2001).Relativelylittleinformationcan beascertainedbytheobservedabsenceofaspeciesandasaresult,thesespeciesmaybeuseful tobioassessmentastheirpresenceandstatusasrareorcommonmayindicateassemblages undergoingadjustmentsincompositioninresponsetoanthropogenicdisturbance.Forexample, rainbowdarterobservedinlowabundanceislikelytoindicatewatersheddisturbancewhilethe observedabsenceofanotherdarterspeciescanbeonlyindirectlyattributedtodisturbance.

Thebioticinteractionvariablesusedinthismodelingshowedsomemixedresults.

Countertomyinitialexpectations,somespecieshadpositiverelationshipswithcloselyrelated speciesthatcouldserveascompetitors.Ibelievethatthisobservationislikelytheresultof favorablehabitatconditionstomultiplespeciesinthefamilyorgenusandthegoodhabitat conditionsoverridethenegativeeffecttothatofinterspecificcompetition.Also,this

80 phenomenoncouldbeexplainedbycompetitivecoexistence,inwhichcoevolutionofsimilar speciesresultsinnichepartitioningandcoexistence(Amarasekare2003).Ididfindpossible evidencethatinterspecificcompetitionhasanegativeimpactontwospecies,brooktroutand johnnydarterthataremorelikelytoberareastherichnessofcloselyrelatedtaxaincreases.The brooktrouthasbeenshownbyseveralstudiestobeaninferiorcompetitorwithintroduced salmonids(DewaldandWilzbach1992).

Myresultsshowthatformostspecies,modelscanbederivedtoexplainandevenpredict rarityorcommonnessandthishasseveralimplicationstofishecologyandconservation.For example,takingpredictorsofrarityintoaccountcanhelpresearchersunderstandpatternsinfish assemblageswhileidentifyingsiteswhereaspeciesisrareorlikelytoberarecanstreamline conservationeffortstothosesites.Inaddition,thesemodelscanbeusedtopredictrarityor commonnessinstreamsitesthathavenotbeensampled.Inthisway,largescalemodelscanbe builttoformecologicalhypothesesandtohelpinformlandscapeandsitelevelconservation decisions.Predictingrarityalsohasapplicabilitytoharvestforresearch,captivebreeding,and translocationprograms.Forexample,ifresearcherswishtosacrificeindividualsofaspeciesfor furtherstudyorremoveindividualstostartabroodstockforcaptivebreeding,raritymodelscan helpresearchersidentifyareaswhereaspeciesismostlikelytobecommonandavoid unnecessarilyremovingindividualsfrom,andpossiblydamaging,asmallpopulation.Modelsof rarityandcommonnesscouldalsobeusedtoguidetranslocationbyidentifyingareasfavorable areasthatareintroducedspeciesmaybecomecommon,whichmayimprovethelikelihoodof successfortranslocationprograms.

Interestingly,thestatusasanativeortransplantedspeciesdidnotinfluencetherareor commonstatusofanyspeciesinthisanalysis.Ihadoriginallyexpectedthatsometransplanted

81 specieswouldbemorelikelytoberarebecausetheywouldfacecompetitionfornichesthatwere alreadyfilledandfaceconditionsdifferentfromthosethatthespeciesisadapted.Conversely, otherspeciesmaybemorecommoninnonnativeareasbecausetheyarereleasedfrom competitorsandpredatorsintheirnativeranges.Instead,neitherofthesescenariosisapparent.

ThiscouldbebecausemanytransplantationsofNorthAmericanfreshwaterfishspecieshave happenedsometimeago(JenkinsandBurkhead1993)andassuchmanygenerationshave passedandthesearenolongerrecentinvasions.Also,Ididnotexamineanyspeciesthatwere notnativetoNorthAmericaandasaresult,thespeciesusedinthisanalysiscanbeconsideredto beadaptedtoconditionsonthiscontinent.

Thelackofsignificanceoftheinstreamhabitatvariablescouldhaveseveralexplanations.

Ihadinstreamhabitatmeasurementsforabouthalfofthetotalsites,althoughmostofthespecies werestillrepresentedby>20sites,whichcouldreducethepowerofmodelsthatincludedthe instreamhabitatvariables.Also,thewatershedandlandscapevariablesusedinthisstudycan serveasproxiesforinstreamhabitat.Forexample,watershedarea,slope,andannual precipitationmaycontrolstreamwidthanddepth.Asaresult,theselargerscalevariablesmay bemoreusefulthaninstreamhabitatvariablesandarealsoadvantageousbecausetheycanbe easilymeasuredwithspatialsoftwareinsteadofrequiringfieldmeasurements.Theseresults suggestthatfuturemodelingeffortsshouldfocusonlandscapeandwatershedvariablesrather thaninstreamhabitatmeasurements.

Biologicaltraitsdifferedbetweenraritygroups.Thisindicatesthattherearebiological mechanismsdrivingrarity,whichisanimportantstepforunderstandingtherarityandthecauses ofrarityinfishes.Severalimportantdifferencesinbiologicalandreproductivetraitsamong rarityclassificationgroupsareapparent.First,themostraregroup,H(smallextent,narrow

82 habitatbreadth,smalllocalabundanceandgroupG(smallextent,narrowhabitatbreadth,large localabundance),haveamuchgreaterproportionofnonguardingspawningspeciesthanthe othergroup,afindingthatcorroboratespastraritybiologystudies(GastonandKunin1997).As aconsequence,thespeciesthatarealreadyinthetworarestgroupsmaybeatagreaterriskfrom anthropogenicdisturbanceassiltationhasbeenshowntohavethegreatesteffectonnon guardingbroadcastspawningspecies(Waltersetal.2002).However,incontradictiontothe hypothesisthatrarespeciesprovideminimalparentalcaretooffspring,groupHhadthegreatest abundanceoflivebearingspecies.Thisreproductivetraitrequiresagreatenergeticinputwhich couldindicatethattherelationshipbetweenparentalinvestmentandrarityisnonlinear.Asa result,speciesthathaveamoderateenergeticinvestmentmaybemorelikelytobecommon whilethoseofferinghighorlowlevelsofinvestmentaremorelikelytoberare.

Theassociationofcommonnesswithlongevity,highfecundity,andhighinvestmentin progenyindicatesthatcommonnessisacharacteristicofperiodicandequilibriumlifehistories

(seeWinemiller2005).Bycontrast,shortlongevity,lowfecundity,andlowparentalinvestment wereassociatedwithrarity,meaningthatraritycharacteristicoftheopportunisticlifehistory.

Themoderate,positiverelationshipbetweenrangeextentandbiologicaltraitssuchaslongevity, fecundity,ageatmaturity,andmaximumtotallengthindicatesthatspecieswiththesefeatures haveagreaterabilitytodispersethanotherspecies(Pyron1999).Thepositiverelationship betweenthesetraitsandtheindexofhabitatbreadth(habitatgeneralists)couldbeexplainedby theabilityoflarger,morefecundspeciestotakeadvantageofagreaterarrayofniches.

Thisstudyhasseverallimitations.First,thespecieslistusedformylogisticregression analysiswasdominatedbythosespecieswithlargerangesandahighnumberofoccurrencesand thisreflectsthestatisticalnecessityofchoosingsuchspecies.Also,becauseofmyuseofan

83 existingdatasetandalargenumberofsitesandvariablesforanarbitrarylistofspecies,itis likelythatIdidnotincludesomeimportantdatathatmayhaveservedtobetterpredictrarityor commonnessforsomespecies.Inthefuture,thisapproachcanbeusedforspeciesofinterest andcarefulconsiderationcanbetakentoincludethebestpossiblepredictorvariablesforthose speciestoachievethebestmodel.Futureresearchisneededtotesttheapplicabilityofthis approachtomorespeciesandalsototestifraritymodelingcanpredictrarityorcommonnessata siteknowntohaveaspeciesbutlackingavailablesamples.

Understandingthereasonsaspeciesiscommonorrareisimportanttoassessingthe statusof,ormakinganyconservationdecisionsabout,thatspecies.Thisstudyprovidesan exampleofmethodologylinkingbiologicaltraits,spatialandhabitatfeatures,andbiotic interactionstospeciesrarityandthismethodologycouldbereadilyappliedtoothertaxa.

Acknowledgments

ThisstudywassupportedbytheVirginiaAgriculturalExperimentStation.

Literature Cited

Amarasekare,P.2003.Competitivecoexistenceinspatiallystructuredenvironments:asynthesis.

EcologicalLetters6:11091122.

Angermeier,P.L.1995.Ecologicalattributesofextinctionpronespecies:lossof

freshwaterfishesinVirginia.ConservationBiology9:143158.

Baldi,A.2008.Habitatheterogeneityoverridesthespeciesarearelationship.Journalof

84

Biogeography35:675681.

Barbour,C.D.,andJ.H.Brown.1974.Fishspeciesdiversityinlakes.TheAmerican

Naturalist108:473489.

Balon,E.K.1975.Reproductiveguildsoffishes:aproposalanddefinition.

JournaloftheFisheriesResearchBoardofCanada32:821–864.

Bayley,P.B.andJ.T.Peterson.2001.Anapproachtoestimatingprobabilityofpresence

andspeciesrichnessoffishspecies.TransactionsoftheAmericanFisheriesSociety

130:620633

Bertuzzo,E.,R.Muneepeerakul,H.J.Lynch,W.F.Fagan,I.RodriguezIturbe,andA.Rinaldo.

2009.Onthegeographicrangeoffreshwaterfishinriverbasins,WaterResourses

Research45:111.

Brown,J.H.1984.Ontherelationshipbetweenabundanceanddistributionofspecies.The

AmericanMidlandNaturalist124:255279.

Burcher,C.L.,M.E.McTammany,E.F.Benfield,andG.S.Helfman.2008.Fish

assemblageresponsestoforestcover.EnvironmentalManagement41:336346.

Cofre,L.H.,K.BohningGaese,andP.A.Marquet.2007.RarityinChileanforestbirds:which

ecologicalandlifehistorytraitsmatter.DiversityandDistributions13:203212.

Cucherousset,J.,F.Santoula,J.Fiquerola,andR.Cereghino.2008.Howdobiodiversity

patternsofriveranimalsemergefromthedistributionsofcommonandrarespecies?

BiologicalConservation141:29842992.

Dewald,L.andM.A.Wilzbach.1992.Interactionsbetweennativebrooktroutandhatchery

browntrouteffectsonhabitatuse,feeding,andgrowth.TransactionsoftheAmerican

FisheriesSociety121:287296.

85

Eadie,J.M.,T.A.Hurly,R.D.Montgomerie,andK.L.Teather.1986.Lakesandrivers

asislandsspeciesarearelationshipsinthefishfaunasofOntario.Environmental

BiologyofFishes15:8189.

Fagan,W.F.,C.M.Kennedy,andP.J.Unmack.2005.Quantifyingrarity,losses,andrisks

fornativefishesofthelowerColoradoRiverbasin:implicationsforconservationlisting.

ConservationBiology19:18721882

Field,R.,B.A.Hawkins,H.V.Cornell,D.J.Currie,J.A.F.DinizFilho,J.F.Guegan,

D.M.Kaufman,J.T.Kerr,G.G.Mittelbach,T.Oberdorff,E.M.O'Brien,andJ.R.G.

Turner.2009.Spatialspeciesrichnessgradientsacrossscales:ametaanalysis.Journalof

Biogeography36:132147.

Frimpong,E.A.,andP.L.Angermeier.2010.Traitsbasedapproachesintheanalysisofstream

fishcommunities. AmericanFisheriesSocietySymposium73:000–000.

Gaston,K.G.,andW.E.Kershaw.1997.Rarecommondifferences:anoverview.Pages

1229inW.E.KuninandK.J.Gaston,editors.Thebiologyofrarity.ChapmanandHall,

Suffolk,UK.

Gido,K.B.,andJ.H.Brown.InvasionsofNorthAmericandrainagesbyalienfishspecies.

FreshwaterBiology42:387399.

Goldstein,R.M.,andM.R.Meador.2004.Comparisonoffishspeciestraitsfromsmallstreams

tolargerivers.TransactionsoftheAmericanFisheriesSociety133:971983.

Grubbs,S.A.,O.W.Meier,andA.J.Meier.2007.Longitudinalpatternsoffish

assemblagesinsmallunregulatedsubbasins:evaluatingreachandwatershedscale

parameters.Hydrobiologia592:211223.

Guenther,C.B.,andA.Spacie.2006.Changesinfishassemblagestructureupstreamof

86

impoundmentswithintheUpperWabashRiverBasin,Indiana.Transactionsofthe

AmericanFisheriesSociety135:570583.

Harcourt,A.H.2006.Rarityinthetropics:biogeographyandmacroecologyofthe

primates.JournalofBiogeography33:20772087.

Hartley,S.,andW.E.Kunin.2003.Scaledependencyofrarity,extinctionrisk,and

conservationpriority.ConservationBiology17:15591570.

Hayer,C.A.,S.S.Wall,andC.R.Berry.2008.Evaluationofpredictedfishdistribution

modelsforrarefishspeciesinSouthDakota.NorthAmericanJournalofFisheries

Management28:12591269.

Herder,F.,andJ.Freyhof.2006.Resourcepartitioninginatropicalstreamfish

assemblage.JournalofFishBiology69:571589.

Jackson,D.A.,P.R.PeresNeto,andJ.D.Olden.2001.Whatcontrolswhoiswherein

freshwaterfishcommunitiestherolesofbiotic,abiotic,andspatialfactors.Canadian

JournalofFisheriesandAquaticSciences58:157170.

Keane,R.M.,andM.J.Crawley.2002.Exoticplantinvasionsandtheenemyreleasehypothesis.

TrendsinEcologyandEvolution17:164170.

Kunin,W.E.,andK.J.Gaston.1993.Thebiologyofraritypatterns,causes,and

consequences.TrendsinEcology&Evolution8:298301.

Latta,W.C.,J.E.Breck,andE.R.M.Duchon.2008.Speciesareaandlatitudinal

patternsforMichiganfishes.AmericanMidlandNaturalist159:349363.

Lawler,J.J.,D.White,J.C.Sifneos,andL.L.Master.2003.Rarespeciesandtheuseof

indicatorgroupsforconservationplanning.ConservationBiology17:875882.

Mace,G.M.,andM.Kershaw.1997.Extinctionriskandrarityonanecologicaltimescale.Pages

87

130149inW.E.KuninandK.J.Gaston,editors.Thebiologyofrarity.Chapmanand

Hall,Suffolk,UK.

Muneepeerakul,R.,E.Bertuzzo,H.J.Lynch,W.F.Fagan,A.Rinaldo,I.RodriguezIturbe.2008.

Neutralmetacommunitymodelspredictfishdiversitypatternsin

basin.Nature453:220223.

Murray,B.R.,P.H.Thrall,A.M.Gill,andA.B.Nicotra.2002.Howplantlifehistory

andecologicaltraitsrelatetospeciesrarityandcommonnessatvaryingspatialscales.

AustralEcology27:291310.

Myers,R.H.1990.Classicalandmodernregressionwithapplications,secondedition.Duxbury

Press,Belmont.

Novotny,V.,andY.Basset.2000.Rarespeciesincommunitiesoftropicalinsect

herbivores:ponderingthemysteryofsingletons.Oikos89:564572.

Olden,J.D.,N.L.Poff,andK.R.Bestgen.2006.Lifehistorystrategiespredictfish

invasionsandextirpationsintheColoradoRiverBasin.EcologicalMonographs76:25

40.

Ostrand,K.G.,andG.R.Wilde.2002.Seasonalandspatialvariationinaprairiestream

fishassemblage.EcologyofFreshwaterFish11:137149.

Page,L.M.,andB.M.Burr.1991.Afieldguidetofreshwaterfishes.HoughtonMifflin

Company,NewYork.

Paine,M.D.1990.Lifehistorutacticsofdarters(Percidae:Etheostomantiini)andtheir

relationshipwithbodysize,reproductivebehavior,latitude,andrarity.JournalofFish

Biology37:473388.

PeresNeto,P.R.2004.Patternsinthecooccurrenceoffishspeciesinstreams:therole

88

ofsitesuitability,morphologyandphylogenyversusspeciesinteractions.Oecologia

140:352360.

Pritt,J.J.,andE.A.Frimpong.2010.Aquantitativeclassificationofrarityforfreshwater

fishesoftheUnitedStatesandimplicationsforimperiledspeciesdesignations.

ConservationBiology.

Pyron,M.1999.Relationshipsbetweengeographicalrangesize,bodysize,localabundance,and

habitatbreadthinNorthAmericansuckersandsunfishes.JournalofBiogeography

26:549559.

Rabinowitz,D.1981.Sevenformsofrarity.Pages205207 in H.Synge(editor).The

biologicalaspectsofrareplantconservation.JohnWileyandSons,Chichester,England.

Sakai,A.K.,etal.2001.Thepopulationbiologyofinvasivespecies.AnnualReviewofEcology

andSystematics32:305–332.

Santoul,F.,J.Figuerola,S.Mastrorillo,andR.Cereghino.2005.Patternsofrarefishand

aquaticinsectsinasouthwesternFrenchrivercatchmentinrelationtosimplephysical

variables.Ecography28:307314.

Schoener,T.W.1987.Thegeographicaldistributionofrarity.Oecologia74:161173

Smiley,P.C.,andE.D.Dibble.2005.Implicationsofahierarchicalrelationshipamong

channelform,instreamhabitat,andstreamcommunitiesforrestorationofchannelized

streams.Hydrobiologia548:279292.

Strange,E.M.,P.B.Moyle,andT.C.Foin.1993.Interactionsbetweenstochasticand

deterministicprocessesinastreamfishcommunityassembly.EnvironmentalBiologyof

Fishes36:115.

Strauss,S.Y.,C.O.Webb,andN.Salamin.2006.Exotictaxalessrelatedtonative

89

speciesaremoreinvasive.ProceedingsoftheNationalAcademyofSciencesofthe

UnitedStatesofAmerica103:58415845.

Taylor,C.M.1996.Abundanceanddistributionwithinaguildofbenthicstreamfishes:

Localprocessesandregionalpatterns.FreshwaterBiology36:385396

Thiollay.1999.DensityandrarityinanAmazonrainforestbirdcommunity.JournalofTropical

Ecology10:449481.

Ulrich,W.2005.Regionalspeciesrichnessoffamiliesandthedistributionofabundance

andrarityinalocalcommunityofforestHymenoptera.ActaOecologicaInternational

JournalofEcology28:7176.

UnitedStatesGeologicalSurvey(USGS).2008.Ecologydata.

http://water.usgs.gov/nawqa/ecology/.USGS,Reston,Virginia.

Vannote,R.L.,G.W.Minshall,K.W.Cummins,J.R.Sedell,andC.E.Cushing.1980.The

rivercontinuumconcept.CanadianJournalofFisheriesandAquaticSciences37:130

137.

Wang,L.Z.,J.Lyons,andP.Kanehl.2001.Impactsofurbanizationonstreamhabitat

andfishacrossmultiplespatialscales.EnvironmentalManagement28:255266.

WengerS.J.,andM.C.Freeman.2008.Estimatingspeciesoccurrence,abundance,and

detectionprobabilityusingzeroinflateddistributions.Ecology89:29532959.

Winemiller,K.O.2005.Lifehistorystrategies,populationregulation,andimplications

forfisheriesmanagement.CanadianJournalofFisheriesandAquaticSciences62:872

885.

90

Tables

Table3.1.EightpermutationsoftherarityclassificationframeworkofRabinowitz(1982)broken downbythreedimensionsofrarity:extent,habitatbreadth,andlocalpopulationsize.Sevenof theeightgroupsdisplayrarityonatleastonedimensionwhileonegroup(A)iscommonacross allthreedimensions.

RangeExtent LargeSmall

Habitatbreadth Wide Narrow Wide Narrow

Siteabundance Large A C E G

Small B D F H

Table3.2.Descriptionofregional,watershed,andinstreamhabitatvariablesusedtomodelthe rarityorcommonnessoffishes.

Category Variable Description Regional Annualtemperature Meanannualtemperature(Celsius) Annualprecipitation Meanannualprecipitation(com) Latitude Latitudeofsite Longitude Longitudeofsite Nativestatus Statusasanativeorintroducedspeciesatsite Distancetorange Distancefromsitetothecenterofaspecied'range centroid (km) Watershed Watersheddisturbance Percentofwatershedinagriculturalorurbanuse Roaddensity Densityofroadsinawatershed Watershedarea Thetotalareadrainedatasite(km2) Slope Amountofslopeatasite Elevation Elevationofasite Instream Pool Percentofpoolhabitatatasite Riffle Percentofrifflehabitatatasite Run Percentofrunhabitatatasite Averagedepth Averagedepthofasite(cm) Maximumdepth Maximumdepthatasite(cm) Averagewidth Averagewidthatasite(m) Depth/widthratio Averagedepthdividedbyaveragewidth

91

Table3.3.Modeldetailsofspeciessuccessfullypredictedasrareorcommonbylogistic

regressionmodels.Sensitivity,specificity,falsepositive,andfalsenegativestatisticswere

obtainedfroma0.5cutoffprobability.

rescaled Somer's %correctly false false Family Species pvalue n sensitivity specificity r2 D(2) predicted pos. neg. Aphredoderidae Pirateperch <0.0001 77 0.3387 0.430336 83.1 57.1 92.9 25 14.8 Catostomidae Alabamahogsucker 0.5884 50 0 Largescalesucker 0.0047 19 0.515524 84.2 66.7 92.3 20 14.3 Centrarchidae Longearsunfish 0.0002 95 0.1815 0.173889 62.1 76.5 45.5 38.1 37.7 Redbreastsunfish <0.0001 148 0.2091 0.186624 68.9 83.7 44.6 28.7 37.5 Rockbass 0.0003 62 0.1217 0.146689 66.1 30 83.3 53.8 28.6 Clupeidae Gizzardshad 0.4804 40 0 Cottidae Bandedsculpin <0.0001 52 0.5092 0.511225 73.1 80 63.6 25 30 Cyprinidae Blacknosedace 0.0031 63 0.3333 0.314721 65.1 80.8 54.1 44.7 20 Centralstoneroller 0.3738144 0 Creekchub <0.0001 95 0.2478 0.265225 70.5 66.7 72.3 47.4 17.5 Hornyheadchub 0.335616 0 Redsideshiner 0.004 55 0.2427 0.218089 63.6 63 64.3 37 35.7 Roseysidedace 0.0049 21 0.4272 0.427716 81 75 84.6 25 15.4 Sandshiner 0.357511 0 Spotfinshiner 0.0006 32 0.4552 0.501264 78.1 62.5 83.3 44.4 13 Stripedshiner 0.0021 61 0.3878 0.386884 54.1 80 36.1 53.5 27.8 Ictaluridae Marginedmadtom <0.0001 33 0.7511 0.850084 84.8 80 87 27.3 9.1 Percidae Blackbandeddarter 0.0012 77 0.1691 0.160801 67.5 72.5 62.2 32.6 32.4 Johnnydarter 0.0072 37 0.2574 0.265225 78.4 40 92.6 33.3 19.4 Rainbowdarter 0.0036 34 0.3322 0.3969 76.5 37.5 88.5 50 17.9 Western Poeciliidae mosquitofish <0.0001 121 0.4401 0.49 74.4 75.6 73.7 37 16.4 Salmonidae Brooktrout 0.0012 62 0.2047 0.206116 75.8 41.2 88.9 41.7 20 Umbridae Mudminnow 0.2414 18 0

92

Table4 . Significantexplanatoryvariablesoftherareorcommonstatusof19fishes

Family Species Variable pvalue Pointestimate LeftCL RightCL Aphredoderidae Pirateperch lat 0.1312 0.801 0.601 1.068 elevation 0.0016 0.973 0.957 0.99 Catostomidae Largescalesucker latitude 0.0125 1.002 1 1.004 Centrarchidae Longearsunfish familyrichness 0.0007 1.576 1.21 2.053 Redbreastsunfish Genusrichness 0.001 1.684 1.234 2.297 annual 0.0426 0.963 0.929 0.999 precipitation slope 0.0453 0.869 0.758 0.997 annual Rockbass 0.0205 0.981 0.966 0.997 precipitation Cottidae Bandedsculpin speciesrichness 0.0351 0.866 0.757 0.99 roaddensity 0.0024 0.177 0.058 0.542 slope 0.0181 1.472 1.068 2.028 Cyprinidae Blacknosedace Genusrichness 0.0138 5.641 1.424 22.35 watershed 0.0117 1.028 0.998 1.058 disturbance watershedarea 0.064 0.13 0.027 0.635 annualtemperature 0.0086 0.657 0.481 0.899 slope 0.0223 1.188 1.025 1.376 Creekchub watershedarea 0.0039 0.287 0.123 0.67 annual 0.0002 0.956 0.933 0.979 precipitation Redsideshiner longitude 0.0298 1.057 1.005 1.11 annual 0.0054 0.973 0.954 0.992 precipitation watershed Roseysidedace 0.047 0.905 0.82 0.999 disturbance annual Spotfinshiner 0.0201 0.942 0.896 0.991 precipitation Stripedshiner latitude 0.0143 1.554 1.075 2.245 watershed 0.0032 1.086 1.028 1.147 disturbance annual 0.0363 1.15 1.009 1.331 precipitation annualtemperature 0.0603 0.29 0.08 1.055 elevation 0.0216 0.984 0.97 0.998 slope 0.0047 1.76 1.189 2.606 Ictaluridae Marginedmadtom familyrichness 0.0469 7.297 1.027 51.822 watershed 0.0268 0.884 0.793 0.986 disturbance

93

slope 0.0299 1.865 1.324 2.452 Blackbanded Percidae latitude 0.0041 1.372 1.105 1.702 darter Percidae Johnnydarter familyrichness 0.0183 0.41 0.196 0.86 watershed Percidae Rainbowdarter 0.018 0.944 0.899 0.99 disturbance Western Poeciliidae longitude <0.0001 0.824 0.762 0.89 mosquitofish elevation <0.0001 0.994 0.99 0.997 Salmonidae Brooktrout familyrichness 0.0051 0.287 0.12 0.688

94

Figures

Figure3.1.a)Boxplotofmaximumtotallength,b)ageatmaturity,c)longevity,d)fecundity, ande)larvalsize,forspeciesineachoftheeightraritygroupsestablishedbyPrittandFrimpong (2010). Figure1a LargerangeextentSmallrangeextent Habitatbreadth:WideNarrowWideNarrow

A C E G 200

Largesite 150 abundance 100 50 0 B D F H 200 Smallsite abundance 150

Maximumtotallength(cm) 100

50

0

95 LargerangeextentSmallrangeextent 1b Habitatbreadth:WideNarrowWideNarrow A C E G 6.0

Largesite 4.5 abundance

3.0 1.5 0.0 B D F H 6.0 Smallsite abundance 4.5 AgeatMaturity(years)

3.0

1.5

0.0 1c LargerangeextentSmallrangeextent Habitatbreadth:WideNarrowWide Narrow A C E G 15

Largesite abundance 10 5

0 B D F H 15 Smallsite abundance Longevity(years) 10

5

0

96 1d LargerangeextentSmallrangeextent Habitatbreadth:WideNarrowWideNarrow A C E G 100000 Largesite abundance 75000 50000

25000

0 B D F H Smallsite 100000 abundance 75000 Fecundity(numberofeggs) 50000

25000

0 1e LargerangeextentSmallrangeextent Habitatbreadth:WideNarrowWideNarrow

A C E G

Largesite 12 abundance

9

6

3 Smallsite B D F H

abundance 12 Larvalsize(mm)

9

6

3

97

Figure3.2Scatterplotsoflifehistorytraitswithadjustedrangesize(ac),indexofhabitat breadthscores(df),andpercentofsitesatwhichaspeciesoccursasrare(gi).

98

Figure3.3.Percentofnongaurder,guarder,andbearerspeciesineachraritygroup(AH)andall species.

99

Summary/Conclusion Insummary,Ifirstdefinedraritybasedonaclassificationofspecies’rangeextents, habitatassociations,andsiteabundances,andusedthisclassificationtodescriberarityinfish andexaminehowrarityisassociatedwithspeciesimperilment.Ifoundthatthemostpopulated groupswerethegroupthatdisplayedcommonnessacrossallthreedimensionsofthe classificationandthegroupthatdisplayedrarityacrossallthreedimensionsoftheclassification.

However,specieswithextremelysmallrangesizeswerelikelyunderrepresentedbythe databasesIused.Asaresult,thelargenumberofspeciesappearinginthemostcommongroup mayhaveresultedfromsamplingbias.SpeciesthatwereontheimperiledspecieslistofJelkset al.(2008)werethemostlikelytofallintothemostraregroup.Ialsoidentified30speciesthat wererareacrossallthreedimensionsoftheclassificationbutwerenotontheJelksetal.(2008) list.

Next,Iexaminedtheinfluenceofsamplingintensityonobservedrarityandcommunity assessmentofstreamfish.Icomparedasingleversusamultiplepasselectrofishingprotocol,a oneversustwobackpackelectrofishingprotocol,andincreasingthestreamlengthsampledas meansofincreasingsamplingintensity.Ifoundthatproportionalabundanceraritycriteriawere increasedbyanincreaseinsamplingintensitywhilenumericalabundanceraritycriteriawerenot affectedbysamplingintensity.Taxonomicrichnesscommunityassessmentmetrics,suchas speciesrichnessandthenumberofminnowspecies,wereincreasedwithincreasingnumberof electrofishingpassandincreasingpassesledtoagreaterobservedabundanceandoccurrenceof endemicspeciesintheNewRiverbasin.Also,increasingsamplingintensityincreasedthe numberofspeciesthatmetmydefinitionofsiteabundancerarityfromChapter1.Thisindicates

100 thatsamplingintensitymustbeconsideredbeforeapplyingthatdefinitiontoothersampling protocols.

Finally,Iexaminedspeciestraitsthatcouldserveasmechanismsofrarityandthe macroecological,habitattemplate,instreamhabitat,andbioticinteractionfactorsthatcould explainsitelevelrarityinthosespeciesthatexhibitdiffusiverarity(rareatsomesitesbut commonatothers).Ifoundthatspecieswithsmallrangeextentswerelikelytohaveshorterlife spans,smallerbodysize,lowerfecundity,andlowerageatmaturity.Also,speciesthatwere rareatthesitelevelwerealsomorelikelytobenongaurders.Thelimitedparentalinvestment corroboratesthefindingsofotherresearchers(GastonandKunin1997).Therareorcommon statusofspeciesthatdisplayeddiffusiveraritywasmostfrequentlyexplainedby macroecologicalvariablessuchastemperatureandprecipitationorhabitattemplatevariables suchaselevation,slope,watershedarea,orwatersheddisturbance.Instreamhabitatvariables andbioticinteractionvariablesweresignificantforonlyafewspecies.Theseresultsshowthat thevariablespredictingrareorcommonstatusvariesgreatlyamongspeciesbutraritycanbe successfullypredictedformostspecies.

Inconclusion,Iwasabletodefinerarityanddescriberarityinstreamfishes.However,I alsodemonstratedthatsamplingintensitycouldplayanimportantroleinspeciesoccurrenceand statusasrareorcommonatasite.Specifically,Ideterminedthatthenumberofrarespeciesata siteincreasesbetweensinglepassandmultiplepasselectrofishing.Inaddition,thenumberof occurrencesforNewRiverendemicspeciesincreasedwhenmultiplepasseswereused.This effectshouldbeconsideredforfutureresearchofrarespecies.Theprotocolsusedfordefining rarity(Chapter1)werethesameasthoseusedtopredictsiteabundancerarity(Chapter3)and thussamplingintensitywasconstantforthosetwocomponentsofthisstudy.

101

Finally,Iconcludethatdifferencesinbiologicalandreproductivetraitsamongspecies influence,butnotexclusively,theirrarityorcommonnessatextent,habitatrequirements,and siteabundances.Also,regionalandwatershedhabitatfactorsheavilyinfluencethesitelevelrare orcommonstatusofspeciesthatexhibitdiffusiverarity.Understandingrarityisacrucialstep towardsconservingfishbiodiversity.Theresultsofthisstudyshowthatmostfishesarerarein someway,andmechanismsofraritycanbeattributedtobiologicaltraits,regionalhabitat factors,andwatershedhabitatfactors.Thesefactorscanbeusedtoinformconservation programssuchascaptivebreedingandtranslocationefforts.

Additional References Baker,J.A.,andS.A.Foster.1994.Observationsonforagingassociationsbetweentwo

freshwaterstreamfishes.EcologyofFreshwaterFish3:137139.

Fagan,W.F.,andA.J.Stephens.2006.Howlocalextinctionchangesrarity:anexample

withinSonoranDesertfishes.Ecography29:845852.

Gaston,K.J.1997.Whatisrarity?Pages3047inW.E.KuninandK.J.Gaston,editors.The

biologyofrarity.ChapmanandHall,Suffolk,UK.

Gaston,K.J.,andW.E.Kunin.1997.Rarecommondifferences:anoverview.Pages

1229inW.E.KuninandK.J.Gaston,editors.Thebiologyofrarity.ChapmanandHall,

Suffolk,UK.

Hartley,S.,andW.E.Kunin.2003.Scaledependencyofrarity,extinctionrisk,and

conservationpriority.ConservationBIology17:15591570.

Helfman,G.S.2007.Fishconservation:aguidetounderstandingandrestoringglobal

aquaticbiodiversityandfisheryresources.IslandPress,Washington,D.C.

102

Jelks,H.L.,S.J.Walsh,N.M.Burkhead,S.ContrerasBalderas,E.DiazPardo,D.A.

Hendrickson,J.Lyons,N.E.Mandrak,F.McCormick,J.S.Nelson,S.P.Platania,B.A.

Porter,C.B.Renaud,J.J.SchmitterSoto,E.B.Taylor,andM.L.Warren.2008.

ConservationstatusofimperiledNorthAmericanfreshwateranddiadromousfishes.

Fisheries33:372407.

Kunin,W.E.,andK.J.Gaston.1993.Thebiologyofraritypatterns,causes,and

consequences.TrendsinEcology&Evolution8:298301.

Lyons,K.G.,C.A.Brigham,B.H.Traut,andM.W.Schwartz.2005.Rarespeciesand

ecosystemfunctioning.ConservationBiology19:10191024.

Mace,G.M.,andM.Kershaw.1997.Extinctionriskandrarityonanecologicaltimescale.Pages

130149inW.E.KuninandK.J.Gaston,editors.Thebiologyofrarity.Chapmanand

Hall,Suffolk,UK.

McKee,J.K.,P.W.Sciulli,C.D.Fooce,andT.A.Waite.2003.Forecastingglobalbiodiversity

threatsassociatedwithhumanpopulationgrowth.Biologicalconservation115:161164.

Moyle,P.B.,andR.A.Leidy.1992.Lossofbiodiversityinaquaticecosystems:

evidencefromfishfaunas.Pages127169inP.L.FielderandS.K.Jain,editors.

Conservationbiology:thetheoryandpracticeofnatureconservation,preservation,and

management.Chapman

andHall,NewYork.

Murray,B.R.,P.H.Thrall,A.M.Gill,andA.B.Nicotra.2002.Howplantlifehistory

andecologicaltraitsrelatetospeciesrarityandcommonnessatvaryingspatialscales.

AustralEcology27:291310.

Prendergast,J.R.,R.M.Quinn,J.H.Lawton,B.C.Eversham,andD.W.Gibbons.1993.Rare

103

species,thecoincidenceofdiversityhotspotsandconservationstrategies.Nature

365:335337.

Ricciardi,A.,andJ.B.Rasmussen.1999.ExtinctionratesofNorthAmericanfreshwaterfauna.

ConservationBiology13:12201222.

Sala,O.E.,F.S.Chapin,J.J.Armesto,E.Berlow,J.Bloomfield,R.Dirzo,E.HuberSanwald,

L.F.Huenneke,R.B.Jackson,A.Kinzig.R.Leemans,D.M.Lodge,H.A.Mooney,M.

Oesterheld,N.L.Poff,M.T.Sykes,B.H.Walker,M.Walker,andD.H.Wall.2000.

Globalbiodiversityscenariosfortheyear2100.Science287:17701774.

Santoul,F.,J.Figuerola,S.Mastrorillo,andR.Cereghino.2005.Patternsofrarefishand

aquaticinsectsinasouthwesternFrenchrivercatchmentinrelationtosimplephysical

variables.Ecography28:307314.

Scharff,N.,J.A.Coddington,C.E.Griswold,G.Hormiga,andP.PBjorn.2003.Whento

quit?EstimatingspiderspeciesrichnessinanorthernEuropeandeciduousforest.The

JournalofArachnology31:246273.

Schlosser,I.J.1987.Theroleofpredationinageandsizerelatedhabitatusebystreamfishes.

Ecology68:651659.

Schoener,T.W.1987.Thegeographicaldistributionofrarity.Oecologia74:161173

104

Appendix

AppendixA.Speciesusedfortherarityclassificationoffreshwaterfishesoftheconterminous

US.ListedstatusfromJelksetal.(2008)butexcludingspeciesthathavelistedsubspecies.

Rare Rare Rare Scientificname Commonname Listed Extent Habitat Local Acantharchus pomotis mudsunfish No No No Yes Acipenser brevirostrum shortnosesturgeon Yes No No Acipenser fulvescens lakesturgeon Yes No No Yes Acipenser medirostris greensturgeon Yes No Yes Acipenser oxyrinchus Atlanticsturgeon No No No Acipenser transmontanus whitesturgeon Yes No No Acrocheilus alutaceus chiselmouth No No No No Agosia chrysogaster longfindace Yes No Yes No Alosa aestivalis bluebackherring No No No Yes Alosa alabamae Alabamashad Yes No No Alosa chrysochloris skipjackherring No No No Yes Alosa mediocris hickoryshad No No Yes Alosa pseudoharengus alewife No No No No Alosa sapidissima AmericanShad No No No No Ambloplites ariommus shadowbass No No No No Ambloplites cavifrons Roanokebass Yes Yes No Yes Ambloplites constellatus Ozarkbass No Yes No Yes Ambloplites rupestris rockbass No No No No Amblyopsis rosae Ozarkcavefish Yes Yes Amblyopsis spelaea northerncavefish Yes Yes Yes Ameiurus brunneus* snailbullhead Yes No No No Ameiurus catus whitecatfish No No No No Ameiurus melas blackbullhead No No No No Ameiurus natalis yellowbullhead No No No No Ameiurus nebulosus brownbullhead No No No No Ameiurus platycephalus flatbullhead Yes No No Yes Ameiurus serracanthus spottedbullhead Yes Yes Amia calva bowfin No No No Yes beanii nakedsanddarter No No Yes Ammocrypta bifascia Floridasanddarter No Yes Yes Ammocrypta clara westernsanddarter Yes No Yes Yes Ammocrypta meridiana southernsanddarter No Yes Yes Ammocrypta pellucida easternsanddarter Yes No Yes Yes

105

Ammocrypta vivax scalysanddarter No No Yes No Apeltes quadracus fourspinestickleback No No Aphredoderus sayanus pirateperch No No No No Aplodinotus grunniens freshwaterdrum No No No No Archoplites interruptus Sacramentoperch Yes Yes No Astronotus ocellatus oscar No Yes Astyanax mexicanus Mexicantetra No No No Atractosteus spatula alligatorGar Yes No No Yes Belonesox belizanus pikekillifish No No Betta splendens Siamesefightingfish No Brachydanio rerio zebradanio No Callichthys callichthys cascarudo No Yes Campostoma anomalum centralstoneroller No No No No Campostoma oligolepis largescalestoneroller No No Yes No Campostoma ornatum Mexicanstoneroller Yes No No Campostoma pauciradii bluefinstoneroller No Yes No No Carassius auratus goldfish No No Carpiodes carpio rivercarpsucker No No Yes No Carpiodes cyprinus quillback No No No No Carpiodes velifer highfincarpsucker No No Yes No Catostomus ardens Utahsucker No Yes No No Catostomus bernardini Yaquisucker Yes Yes No Catostomus catostomus longnosesucker No No No No Catostomus clarkii desertsucker No No No No Catostomus columbianus bridgelipsucker No No No No Catostomus commersonii whitesucker No No No No Catostomus discobolus blueheadsucker No No No No Catostomus fumeiventris Owenssucker No Yes No Catostomus insignis Sonorasucker Yes Yes No Yes Catostomus latipinnis flannelmouthsucker No No No No Catostomus macrocheilus largescalesucker No No No No Catostomus microps Modocsucker Yes Yes Yes Catostomus platyrhynchus mountainsucker No No No No Catostomus plebeius RioGrandesucker Yes Yes No No Catostomus rimiculus Klamathsmallscalesucker No Yes No Catostomus santaanae SantaAnasucker Yes Yes No No Catostomus snyderi KlamathLargescalesucker Yes Yes No Catostomus sp. Salishsucker Yes Yes Catostomus sp. WallCanyonsucker Yes Yes No Catostomus sp. LittleColoradoRiversucker No Yes Yes Catostomus tahoensis Tahoesucker No Yes No No Catostomus warnerensis Warnersucker Yes Yes Yes

106

Centrarchus macropterus flier No No No No Channa argus snakehead No Channa maculata blotchedsnakehead No Channa marulius greatsnakehead No Channa micropeltes giantsnakehead No Chasmistes brevirostris shortnosesucker Yes Yes Yes Chasmistes cujus cuiui Yes Yes Yes Chasmistes liorus Junesucker No Yes Yes Chasmistes muriei SnakeRiversucker Yes Yes Chitala ornata clownknifefish No Chologaster cornuta swampfish No No No Yes Cichlasoma bimaculatum blackacara No Cichlasoma citrinellum midascichlid No Cichlasoma RioGrandecichlid No Yes No cyanoguttatum Cichlasoma managuense jaguarguapote No Cichlasoma meeki firemouth No Cichlasoma convictcichlid No nigrofasciatum Cichlasoma ocellaris butterflypeacockbass No Cichlasoma octofasciatum JackDempsey No Cichlasoma severum bandedcichlid No Yes Cichlasoma urophthalmus Mayancichlid No Clarias batrachus walkingcatfish No Yes Clinostomus elongatus redsidedace Yes No Yes No Clinostomus funduloides rosysidedace No No Yes No Colisa fasciata bandedgourami No Colossoma macropomum Tambaqui No Coregonus albula vendace No Coregonus artedi cisco No No Yes Coregonus clupeaformis lakewhitefish No No Yes Coregonus hoyi bloater No No Yes Coregonus kiyi kiyi No No Coregonus lavaretus Balticwhitefish No Coregonus nigripinnis blackfincisco No Coregonus reighardi shortnosecisco No Yes Coregonus zenithicus shortjawcisco Yes No Yes Cottus aleuticus coastrangesculpin No No Yes Cottus asper pricklysculpin No No No Cottus asperrimus roughsculpin Yes Yes No Cottus baileyi* blacksculpin No Yes Yes Yes Cottus bairdii mottledsculpin No No No No

107

Cottus beldingii Paiutesculpin No No Yes No Cottus carolinae bandedsculpin No No No No Cottus cognatus slimysculpin No No No No Cottus confusus shortheadsculpin No No No No Cottus echinatus UtahLakesculpin Yes Yes Cottus extensus BearLakesculpin Yes Yes Cottus girardi Potomacsculpin No Yes No No Cottus greenei Shoshonesculpin Yes Yes No Cottus gulosus rifflesculpin No No No No Cottus hypselurus Ozarksculpin No Yes Yes No Cottus klamathensis marbledsculpin No Yes Yes Cottus leiopomus WoodRiversculpin Yes Yes Yes No Cottus marginatus marginedsculpin Yes Yes Cottus paulus pygmysculpin Yes Yes Yes Cottus perplexus reticulatesculpin No Yes No No Cottus pitensis Pitsculpin No Yes Yes Cottus princeps KlamathLakesculpin No Yes Yes Cottus rhotheus torrentsculpin No No Yes No Cottus ricei spoonheadsculpin No No Yes Cottus tenuis slendersculpin Yes Yes No Couesius plumbeus lakechub No No No No Crenichthys baileyi WhiteRiverspringfish No Yes Yes Crenichthys nevadae RailroadValleyspringfish Yes Yes Yes Cromileptes altivelis humpbackgrouper No Crystallaria asprella crystaldarter Yes No Yes Ctenopharyngodon idella grasscarp No Yes Culaea inconstans brookstickleback No No No Cycleptus elongatus bluesucker No No Yes Yes Cyprinella analostana satinfinshiner No No No No Cyprinella caerulea blueshiner Yes Yes No Cyprinella callisema Ocmulgeeshiner No Yes No No Cyprinella callistia Alabamashiner No Yes No Yes Cyprinella callitaenia bluestripeshiner Yes Yes No Cyprinella camura bluntfaceshiner No No No No Cyprinella chloristia greenfinshiner No Yes No Cyprinella formosa beautifulshiner Yes Yes No Cyprinella galactura whitetailshiner No No No No Cyprinella gibbsi Tallapoosashiner No Yes Yes Cyprinella labrosa thicklipchub No Yes Yes Cyprinella leedsi bannerfinshiner No Yes Yes No Cyprinella lepida Plateaushiner Yes Yes Yes Cyprinella lutrensis redshiner No No No No

108

Cyprinella proserpina proserpineshiner Yes Yes Yes Cyprinella pyrrhomelas fieryblackshiner No Yes No Yes Cyprinella spiloptera spotfinshiner No No Yes No Cyprinella trichroistia tricolorshiner No Yes No No Cyprinella venusta blacktailshiner No No No No Cyprinella whipplei steelcolorshiner No No No No Cyprinella xaenura Altamahashiner Yes Yes Yes Yes Cyprinella zanema Santeechub No Yes Yes Cyprinidae . sawfinshiner No Yes No Cyprinodon bovinus LeonSpringspupfish Yes Yes Yes Cyprinodon diabolis DevilsHolepupfish Yes Yes No Cyprinodon elegans ComancheSpringspupfish Yes Yes Yes Cyprinodon eximius Conchospupfish No Yes No Cyprinodon macularius desertpupfish Yes Yes No Cyprinodon nevadensis Amargosapupfish No Yes Cyprinodon pecosensis Pecospupfish Yes Yes Yes Cyprinodon pisteri Palomaspupfish No Yes No Cyprinodon radiosus Owenspupfish Yes Yes No Cyprinodon RedRiverpupfish No Yes Yes rubrofluviatilis Cyprinodon salinus SaltCreekpupfish No Yes No Cyprinodon tularosa WhiteSandspupfish Yes Yes Yes Cyprinodon variegatus sheepsheadminnow No Yes Cyprinus carpio commoncarp No No Deltistes luxatus LostRiversucker Yes Yes Yes Dionda diaboli Devilsriverminnow Yes Yes Yes Dionda episcopa roundnoseminnow No No No Dorosoma cepedianum gizzardshad No No No No Dorosoma petenese threadfinshad No No No No Elassoma alabamae springpygmysunfish Yes Yes Yes Elassoma boehlkei Carolinapygmysunfish No Yes Yes Elassoma evergladei Evergladespygmysunfish No No Yes No Elassoma okatie bluebarredpygmysunfish No Yes No Elassoma okefenokee Okefenokeepygmysunfish No Yes Yes Elassoma zonatum bandedpygmysunfish No No Yes No Empetrichthys latos Pahrumppoolfish No Yes Yes Empetrichthys merriami AshMeadowspoolfish Yes Yes Yes Enneacanthus chaetodon blackbandedsunfish Yes No Yes No Enneacanthus gloriosus bluespottedsunfish No No No No Enneacanthus obesus bandedsunfish No No Yes No Eremichthys acros desertdace Yes Yes Yes Erimonax monachus spotfinchub Yes Yes Yes

109

Erimystax cahni slenderchub Yes Yes Yes Erimystax dissimilis streamlinechub No No Yes Yes Erimystax harryi Ozarkchub Yes Yes No Erimystax insignis* blotchedchub No Yes Yes Yes Erimystax x-punctatus gravelchub No No Yes No Erimyzon oblongus creekchubsucker No No No No Erimyzon sucetta lakechubsucker No No No Yes Erimyzon tenuis sharpfinchubsucker No Yes Esox americanus redfinpickerel No No No No Esox lucius northernpike No No Yes Yes Esox masquinongy muskellunge No No Yes Yes Esox niger chainpickerel No No No No Esox reicherti Amurpike No Redsnubnose(firebelly) Etheostoma . No darter Etheostoma acuticeps sharpheaddarter Yes Yes Yes Etheostoma akatulo jeweldarter,bluemaskdarter No Yes Yes Etheostoma aquali coppercheekdarter Yes Yes Yes Yes Etheostoma asprigene muddarter No No Yes Yes Etheostoma baileyi emeralddarter No Yes Yes Etheostoma barbouri teardropdarter No Yes Yes Etheostoma barrenense splendiddarter No Yes Yes Etheostoma bellator Warriordarter No Yes Yes Etheostoma bellum orangefindarter No Yes Yes Etheostoma blennioides greensidedarter No No No No Etheostoma blennius blennydarter No Yes Yes No Etheostoma boschungi slackwaterdarter Yes Yes No Yes Etheostoma brevirostrum holidaydarter No Yes No Etheostoma caeruleum rainbowdarter No No No No Etheostoma camurum bluebreastdarter No No Yes Yes Etheostoma greenfindarter No Yes Yes chlorobranchium Etheostoma chlorosoma bluntnosedarter No No Yes No Etheostoma cinereum ashydarter No Yes Yes Etheostoma collettei creoledarter No Yes Yes Etheostoma collis Carolinadarter Yes Yes Yes Etheostoma colorosum coastaldarter No Yes Yes Etheostoma coosae Coosadarter No Yes Yes No Etheostoma corona crowndarter Yes Yes Yes Etheostoma cragini Arkansasdarter Yes Yes Yes Etheostoma crossopterum fringeddarter No Yes No Yes Etheostoma davisoni Choctawhatcheedarter No Yes Yes

110

Etheostoma denoncourti goldendarter Yes Yes Yes Etheostoma ditrema coldwaterdarter No Yes Yes Etheostoma duryi blacksidesnubnosedarter No Yes No No Etheostoma edwini* browndarter No Yes Yes Yes Etheostoma etnieri cherrydarter No Yes Yes Etheostoma euzonum* Arkansassaddleddarter No Yes Yes Yes Etheostoma exile Iowadarter No No No No Etheostoma flabellare fantaildarter No No Yes No Etheostoma flavum saffrondarter No Yes Yes No Etheostoma fonticola fountaindarter Yes Yes No Etheostoma fricksium Savannahdarter No Yes No Yes Etheostoma fusiforme swampdarter No No No Yes sloughdarter No No Yes Yes Etheostoma grahami RioGrandedarter Yes Yes No Etheostoma histrio harlequindarter No No No Yes Etheostoma hopkinsi* Christmasdarter No Yes Yes Yes Etheostoma inscriptum turquoisedarter No Yes No No Etheostoma jessiae bluesidedarter No Yes Yes Etheostoma jordani* greenbreastdarter No Yes Yes Yes Etheostoma juliae* yokedarter No Yes Yes Yes Etheostoma kanawhae Kanawhadarter No Yes No Yes Etheostoma kennicotti* stripetaildarter No Yes Yes Yes Etheostoma lepidum greenthroatdarter Yes Yes Yes Etheostoma longimanum* longfindarter No Yes Yes Yes Etheostoma luteovinctum redbanddarter No Yes No Etheostoma lynceum brighteyedarter No Yes Yes Etheostoma maculatum spotteddarter Yes Yes Yes Etheostoma mariae pinewoodsdarter Yes Yes Yes Etheostoma microlepidum smallscaledarter Yes Yes Yes Etheostoma microperca leastdarter No No No Yes Etheostoma moorei yellowcheekdarter Yes Yes Yes Etheostoma neopterum lollypopdarter Yes Yes Yes Etheostoma nianguae Nianguadarter Yes Yes Yes Etheostoma nigripinne* blackfindarter No Yes Yes Yes Etheostoma nigrum johnnydarter No No No No Etheostoma nivea whitefinshiner No Yes No Etheostoma nuchale watercressdarter No Yes Yes Etheostoma obeyense barcheekdarter No Yes Yes Etheostoma okaloosae Okaloosadarter Yes Yes Yes Etheostoma olivaceum dirtydarter No Yes Yes Etheostoma olmstedi tessellateddarter No No No No Etheostoma oophylax* guardiandarter No Yes Yes Yes

111

Etheostoma osburni candydarter Yes Yes No Yes Etheostoma pallididorsum palebackdarter Yes Yes No Etheostoma parvipinne goldstripedarter No No No Etheostoma percnurum duskytaildarter No Yes Yes Etheostoma perlongum Waccamawdarter Yes Yes Yes Etheostoma podostemone riverweeddarter No Yes Yes Etheostoma proeliare cypressdarter No No Yes Yes Etheostoma punctulatum* stippleddarter No Yes Yes Yes Etheostoma pyrrhogaster firebellydarter Yes Yes Etheostoma radiosum orangebellydarter No Yes Yes Etheostoma rafinesquei darter No Yes Yes Etheostoma ramseyi Alabamadarter No Yes Yes No Etheostoma raneyi Yazoodarter Yes Yes Etheostoma rubrum bayoudarter Yes Yes No Etheostoma rufilineatum redlinedarter No Yes Yes No Etheostoma rupestre* rockdarter No Yes Yes Yes Etheostoma sagitta arrowdarter No Yes Yes Etheostoma sanguifluum bloodfindarter No Yes Yes Etheostoma scotti Cherokeedarter No Yes Yes Etheostoma sellare Marylanddarter Yes Yes Yes Etheostoma serrifer sawcheekdarter No No Yes No Etheostoma simoterum snubnosedarter No Yes Yes No Etheostoma smithi slabrockdarter No Yes Yes Etheostoma sp. sunburstdarter No Yes Etheostoma spectabile orangethroatdarter No No Yes No Etheostoma squamiceps spottaildarter No Yes Yes Etheostoma stigmaeum speckleddarter No No No No Etheostoma striatulum striateddarter Yes Yes Yes Etheostoma swaini Gulfdarter No No Yes Yes Etheostoma swannanoa Swannanoadarter No Yes Yes Etheostoma tecumsehi Tallapoosadarter Yes Yes Yes Etheostoma tetrazonum Missourisaddleddarter No Yes Yes Etheostoma thalassinum seagreendarter No Yes Yes No Etheostoma tippecanoe Tippecanoedarter Yes Yes Yes Yes Etheostoma trisella trispotdarter Yes Yes Yes Etheostoma tuscumbia Tuscumbiadarter Yes Yes Yes Etheostoma variatum variegatedarter No No No No Etheostoma virgatum stripeddarter No Yes Yes No Etheostoma vitreum glassydarter No Yes No Etheostoma vulneratum woundeddarter Yes Yes Yes Etheostoma wapiti boulderdarter Yes Yes Yes Etheostoma whipplei redfindarter No No No No

112

Etheostoma zonale bandeddarter No No No No Etheostoma zonifer backwaterdarter No Yes Yes No Etheostoma zonistium bandfindarter No Yes Yes Eucyclogobius newberryi tidewatergoby Yes Yes No Exoglossum laurae* tonguetiedminnow No Yes Yes Yes Exoglossum maxillingua cutlipsminnow No No No No Forbesichthys agassizii springcavefish Yes Yes Yes Yes Fundulus albolineatus whitelinetopminnow Yes Yes Yes Fundulus bifax stippledstudfish Yes Yes No Fundulus blairae westernstarheadtopminnow No No Yes Fundulus catenatus northernstudfish No No No Yes Fundulus chrysotus goldentopminnow No No No Yes Fundulus cingulatus bandedtopminnow No No No Fundulus confluentus marshkillifish No Yes Yes Fundulus diaphanus bandedkillifish No No No No Fundulus dispar starheadtopminnow No No Yes Fundulus escambiae* russetfintopminnow No Yes Yes Yes Fundulus euryzonus broadstripetopminnow Yes Yes Yes Fundulus heteroclitus mummichog No No No No Fundulus julisia Barrenstopminnow Yes Yes Yes Fundulus lineolatus linedtopminnow No No No Yes Fundulus luciae spotfinkillifish No Yes Fundulus majalis stripedkillifish No Yes Fundulus notatus blackstripetopminnow No No No No Fundulus notti southernstarheadtopminnow No Yes Yes Fundulus olivaceus blackspottedtopminnow No No No No Fundulus rathbuni speckledkillifish No Yes Yes No Fundulus sciadicus plainstopminnow No No Yes Yes Fundulus seminolis Seminolekillifish No Yes No Yes Fundulus stellifer southernstudfish No Yes No No Fundulus waccamensis Waccamawkillifish Yes Yes Fundulus zebrinus plainskillifish No No No No Gambusia affinis westernmosquitofish No No No No Gambusia amistadensis Amistadgambusia Yes Yes Yes Gambusia gaigei BigBendgambusia No Yes Yes Gambusia geiseri largespringgambusia No Yes Yes Gambusia georgei SanMarcosgambusia Yes Yes Yes Gambusia heterochir ClearCreekgambusia Yes Yes No Gambusia holbrooki easternmosquitofish No Yes Gambusia nobilis Pecosgambusia Yes Yes Yes Gambusia senilis blotchedgambusia Yes Yes No Gasterosteus aculeatus threespinestickleback No No No No

113

Geophagus surinamensis redstripedeartheater No Gila alvordensis Alvordchub Yes Yes No Gila atraria Utahchub No No No Yes Gila bicolor tuichub No No No Gila boraxobius BoraxLakechub Yes Yes No Gila coerulea bluechub No Yes Yes Gila crassicauda thicktailchub Yes Yes Yes Gila cypha humpbackchub Yes Yes Yes Gila ditaenia Sonorachub Yes Yes Yes Gila elegans bonytailchub Yes No No Gila intermedia Gilachub Yes Yes No Gila nigrescens Chihuahuachub Yes Yes Yes Gila orcuttii arroyochub Yes Yes No No Gila pandora* RioGrandechub Yes No No No Gila purpurea Yaquichub Yes Yes No Gila robusta roundtailchub No No No No Gobionellus oceanicus highfingoby No cernuus ruffe No No Hemichromis bimaculatus jewelfish No Hemichromis letourneuxi Africanjewelfish No Yes Hemitremia flammea flamechub Yes Yes No Yes Hesperoleucus Californiaroach No No No No symmetricus Heterandria formosa leastkillifish No No No Yes Hiodon alosoides goldeye No No No No Hiodon tergisus mooneye No No Yes Yes Hoplosternum littorale brownhoplo No Hybognathus amarus RioGrandesilveryminnow Yes Yes No Yes Hybognathus argyritis westernsilveryminnow Yes No Yes No Hybognathus hankinsoni brassyminnow No No No No Hybognathus hayi cypressminnow No No Yes Yes Hybognathus nuchalis Mississippisilveryminnow No No Yes No Hybognathus placitus* plainsminnow Yes No No No Hybognathus regius easternsilveryminnow No No No No Hybopsis amblops bigeyechub No No Yes No Hybopsis amnis pallidshiner Yes No Yes Yes Hybopsis hypsinotus highbackchub No Yes Yes Hybopsis lineapunctata linedchub Yes Yes No Hybopsis rubrifrons rosyfacechub No Yes Yes Hybopsis winchelli clearchub No No No Hypentelium etowanum Alabamahogsucker No Yes Yes No Hypentelium nigricans northernhogsucker No No No No

114

Hypentelium roanokense RoanokeHogsucker No Yes No Yes Hypomesus nipponensis wakasagi No Hypomesus transpacificus deltasmelt Yes Yes Hypophthalmichthys silvercarp No Yes molitrix Hypophthalmichthys bigheadcarp No Yes nobilis Hypostomus plecostomus suckermouthcatfish No No Hypsoblennius ionthas freckledblenny No Hysterocarpus traskii tuleperch No Yes No No Ichthyomyzon bdellium Ohiolamprey No No No Yes Ichthyomyzon castaneus chestnutlamprey No No Yes Yes Ichthyomyzon fossor northernbrooklamprey No No No Yes Ichthyomyzon gagei southernbrooklamprey No No No Yes Ichthyomyzon greeleyi mountainbrooklamprey No No No Yes Ichthyomyzon unicuspis silverlamprey No No No Yes Ictaluridae . broadtailmadtom Yes Yes No Ictalurus furcatus bluecatfish No No Yes No Ictalurus lupus headwatercatfish No Yes No Ictalurus pricei Yaquicatfish Yes Yes No Ictalurus punctatus channelcatfish No No No No Ictiobus bubalus smallmouthbuffalo No No Yes No Ictiobus cyprinellus bigmouthbuffalo No No No No Ictiobus niger blackbuffalo No No Yes No Iotichthys phlegethontis leastchub Yes Yes No Jordanella floridae flagfish No Yes No No Labidesthes sicculus brooksilverside No No No No Lampetra aepyptera leastbrooklamprey No No No No Lampetra appendix AmericanbrookLamprey No No No No Lampetra ayresii riverlamprey Yes No No Lampetra hubbsi Kernbrooklamprey Yes Yes No Yes Lampetra lethophaga PitKlamathbrookLamprey Yes Yes Lampetra macrostoma Vancouverlamprey Yes Yes Yes Lampetra minima MillerLakelamprey Yes Yes No Lampetra richardsoni westernbrooklamprey No No No Yes Lampetra tridentata Pacificlamprey Yes No No Yes Lavinia exilicauda hitch No Yes No No Lepidomeda albivallis WhiteRiverspinedace Yes Yes No Lepidomeda altivelis Pahranagatspinedace Yes Yes Yes Lepidomeda mollispinis Virginspinedace No Yes No Lepidomeda vittata LittleColoradospinedace Yes Yes Yes Lepisosteus oculatus spottedgar No No Yes No

115

Lepisosteus osseus longnosegar No No No No Lepisosteus platostomus shortnosegar No No Yes No Lepisosteus platyrhincus Floridagar No No No Lepomis auritus redbreastsunfish No No No No Lepomis cyanellus greensunfish No No No No Lepomis gibbosus pumpkinseed No No No No Lepomis gulosus warmouth No No No No Lepomis humilis orangespottedsunfish No No No No Lepomis macrochirus bluegill No No No No Lepomis marginatus dollarsunfish No No No No Lepomis megalotis longearsunfish No No No No Lepomis microlophus redearsunfish No No No No Lepomis miniatus redspottedsunfish No No Yes No Lepomis punctatus spottedsunfish No No No No Lepomis symmetricus bantamsunfish No No Yes Yes Leptolucania ommata pygmykillifish No No Yes Leuciscus idus ide No Yes Lota lota No No No No Lucania goodei bluefinkillifish No No No No Lucania parva rainwaterkillifish No No No Luxilus albeolus whiteshiner No Yes Yes No Luxilus cardinalis cardinalshiner No Yes No No Luxilus cerasinus crescentshiner No Yes No No Luxilus chrysocephalus stripedshiner No No No No Luxilus coccogenis warpaintshiner No Yes No No Luxilus cornutus commonshiner No No No No Luxilus pilsbryi duskystripeshiner No Yes No No Luxilus zonatus bleedingshiner No Yes No No Luxilus zonistius bandfinshiner No Yes No No Lythrurus ardens rosefinshiner No No No Yes Lythrurus atrapiculus* blacktipshiner No Yes Yes Yes Lythrurus bellus prettyshiner No Yes Yes No Lythrurus fasciolaris scarletshiner No No Yes No Lythrurus fumeus ribbonshiner No No Yes No Lythrurus lirus mountainshiner No Yes No No Lythrurus matutinus pinewoodsshiner No Yes Yes Lythrurus roseipinnis cherryfinshiner No Yes Yes Lythrurus snelsoni Ouachitashiner Yes Yes No Lythrurus umbratilis redfinshiner No No No No Macrhybopsis aestivalis speckledchub No No No Yes Macrhybopsis gelida sturgeonchub Yes No No Yes Macrhybopsis meeki sicklefinchub Yes No Yes

116

Macrhybopsis storeriana silverchub No No Yes No Margariscus margarita pearldace No No No No Meda fulgida spikedace Yes Yes No Menidia beryllina inlandsilverside No No No No Menidia conchorum keysilverside Yes Yes Menidia extensa Waccamawsilverside Yes Yes Microphis brachyurus opossumpipefish No No Micropterus cataractae shoalbass Yes Yes No Micropterus coosae redeyebass No Yes No No Micropterus dolomieu smallmouthbass No No No No Micropterus notius Suwanneebass No Yes No Micropterus punctulatus spottedbass No No No Yes Micropterus salmoides largemouthbass No No No No Micropterus treculii Guadalupebass Yes Yes No No Minytrema melanops spottedsucker No No No No Misgurnus orientalweatherfish No anguillicaudatus Moapa coriacea Moapadace Yes Yes Yes Monopterus albus Asianswampeel No No Morone americana whiteperch No No No No Morone chrysops whitebass No No Yes No Morone mississippiensis yellowbass No No Yes No Morone saxatilis stripedbass No No No No Moxosoma sp. grayfinredhorse No Yes Yes Moxostoma anisurum silverredhorse No No No No Moxostoma ariommum bigeyejumprock No Yes Yes Moxostoma austrinum Mexicanredhorse Yes Yes Yes Moxostoma carinatum riverredhorse No No Yes No Moxostoma cervinum blacktipjumprock No Yes No Yes Moxostoma congestum grayredhorse Yes No No Moxostoma duquesnei blackredhorse No No No No Moxostoma erythrurum goldenredhorse No No No No Moxostoma hubbsi copperredhorse Yes Yes Moxostoma lacerum harelipsucker Yes Yes Yes Moxostoma lachneri greaterjumprock No Yes Yes Moxostoma shortheadredhorse No No No No macrolepidotum Moxostoma occidentalis Sacramentosucker No Yes No Moxostoma pappillosum* Vlipredhorse No Yes Yes Yes Moxostoma poecilurum blacktailredhorse No No No No Moxostoma robustum robustredhorse No Yes No Moxostoma rupiscartes stripedjumprock No Yes Yes

117

Moxostoma valenciennesi greaterredhorse Yes No Yes No Myleus rubripinnis redhookmyleus No Mylocheilus caurinus peamouth No No Yes Mylopharodon hardhead No Yes No No conocephalus Myoxocephalus deepwatersculpin No No thompsonii Neogobius melanostomus roundgoby No Nocomis asper redspotchub No Yes No No Nocomis biguttatus hornyheadchub No No No No Nocomis effusus redtailchub No Yes No Yes Nocomis leptocephalus blueheadchub No No No No Nocomis micropogon riverchub No No No No Nocomis platyrhynchus bigmouthchub No Yes No No Nocomis raneyi bullchub No Yes No No Notemigonus crysoleucas goldenshiner No No No No Notropis albizonatus palezoneshiner Yes Yes Yes Notropis alborus whitemouthshiner No Yes Yes No Notropis altipinnis highfinshiner No Yes No No Notropis amabilis Texasshiner No Yes No Notropis ammophilus orangefinshiner No Yes No Yes Notropis amoenus comelyshiner No No Yes No Notropis anogenus pugnoseshiner Yes No No Notropis ariommus popeyeshiner Yes No Yes Notropis asperifrons* burrheadshiner No Yes Yes Yes Notropis atherinoides emeraldshiner No No No No Notropis atrocaudalis blackspotshiner No Yes No Notropis baileyi roughshiner No Yes No No Notropis bairdi RedRivershiner No Yes Yes Notropis bifrenatus bridleshiner Yes No No Yes Notropis blennius rivershiner No No No No Notropis boops bigeyeshiner No No No No Notropis braytoni Tamaulipasshiner Yes No No Notropis buccatus silverjawminnow No No No Yes Notropis buccula smalleyeshiner Yes Yes No Notropis buchanani ghostshiner No No Yes No Notropis cahabae Cahabashiner Yes Yes Yes Notropis candidus silversideshiner No Yes Yes No Notropis chalybaeus ironcolorshiner Yes No No Notropis chihuahua Chihuahuashiner Yes Yes Notropis chiliticus redlipshiner No Yes Yes Notropis chlorocephalus greenheadshiner No Yes Yes

118

Notropis chrosomus rainbowshiner No Yes No No Notropis cummingsae duskyshiner No No No No Notropis dorsalis bigmouthshiner No No No No Notropis edwardraneyi fluvialshiner No Yes Yes No Notropis girardi ArkansasRivershiner Yes No Yes Notropis greenei* wedgespotshiner No Yes Yes Yes Notropis harperi redeyechub No Yes No No Notropis heterodon blackchinshiner No No No No Notropis heterolepis blacknoseshiner No No No No Notropis hudsonius spottailshiner No No No No Notropis hypsilepis highscaleshiner Yes Yes No No Notropis jemezanus RioGrandeshiner Yes No No Notropis leuciodus shiner No Yes No No Notropis longirostris longnoseshiner No No No No Notropis lutipinnis yellowfinshiner No Yes No No Notropis maculatus taillightshiner No No No Yes Notropis mekistocholas CapeFearshiner Yes Yes Yes Notropis melanostomus blackmouthshiner Yes Yes No Notropis nubilus Ozarkminnow No No Yes No Notropis orca phantomshiner Yes No Yes Notropis ortenburgeri Kiamichishiner Yes Yes Yes Notropis oxyrhynchus sharpnoseshiner Yes Yes Yes Notropis ozarcanus Ozarkshiner Yes Yes No Yes Notropis perpallidus pepperedshiner Yes Yes No Notropis petersoni coastalshiner No No No No Notropis photogenis silvershiner No No No No Notropis potteri chubshiner No No Yes Notropis procne swallowtailshiner No No No No Notropis rubellus rosyfaceshiner No No No No Notropis rubricroceus saffronshiner No Yes No No Notropis rupestris bedrockshiner Yes Yes Yes Notropis sabinae Sabineshiner No Yes Yes No Notropis scabriceps NewRivershiner No Yes No Yes Notropis scepticus sandbarshiner No Yes No Yes Notropis semperasper Roughheadshiner Yes Yes No Notropis shumardi silverbandshiner No No Yes Notropis simus bluntnoseshiner No Yes No Notropis spectrunculus mirrorshiner No Yes Yes Notropis stilbius silverstripeshiner No Yes No Yes Notropis stramineus sandshiner No No No No Notropis telescopus telescopeshiner No No No No Notropis texanus weedshiner No No No No

119

Notropis topeka Topekashiner Yes No Yes Notropis uranoscopus* skygazershiner No Yes Yes Yes Notropis volucellus mimicshiner No No No No Notropis xaenocephalus Coosashiner No Yes Yes No Noturus albater* Ozarkmadtom No Yes Yes Yes Noturus baileyi smokymadtom Yes Yes Yes Noturus elegans* elegantmadtom No Yes Yes Yes Noturus eleutherus mountainmadtom No No Yes Yes Noturus exilis slendermadtom No No Yes No Noturus flavater checkeredmadtom Yes Yes Noturus flavipinnis yellowfinmadtom Yes Yes Yes Noturus flavus stonecat No No No Yes Noturus funebris blackmadtom No Yes No Yes Noturus furiosus Carolinamadtom Yes Yes No Yes Noturus gilberti orangefinmadtom Yes Yes Yes Yes Noturus gyrinus tadpolemadtom No No No No Noturus hildebrandi leastmadtom No Yes Noturus insignis marginedmadtom No No No No Noturus lachneri Ouachitamadtom Yes Yes Yes Noturus leptacanthus speckledmadtom No No No No Noturus miurus brindledmadtom No No No Yes Noturus munitus frecklebellymadtom No Yes No Noturus nocturnus freckledmadtom No No No No Noturus phaeus brownmadtom No Yes Noturus placidus Neoshomadtom Yes Yes Yes Noturus stanauli pygmymadtom Yes Yes No Noturus stigmosus northernmadtom Yes No No Noturus taylori Caddomadtom Yes Yes Yes Noturus trautmani Sciotomadtom Yes Yes Yes Novumbra hubbsi Olympicmudminnow Yes Yes No Oncorhynchus clarkii cutthroattrout No No No No Oncorhynchus gilae Gilatrout No Yes Yes Oncorhynchus gorbuscha pinksalmon No No No Oncorhynchus keta chumsalmon No No No Oncorhynchus kisutch cohosalmon No No No No Oncorhynchus mykiss rainbowtrout No No No No Oncorhynchus nerka sockeyesalmon No No No No Oncorhynchus Chinooksalmon No No No No tshawytscha Opsopoeodus emiliae pugnoseminnow No No No Yes Oregonichthys crameri Oregonchub Yes Yes No Oreochromis aureus bluetilapia No No

120

Oreochromis mossambicus Mozambiquetilapia No Oreochromis niloticus Niletilapia No Oreochromis urolepis Wamitilapia No Orthodon microlepidotus Sacramentoblackfish No Yes No No Oryzias latipes Japanesericefish No Yes Osmerus mordax rainbowsmelt No No No Osteoglossum bicirrhosum arawana No Yes Perca flavescens yellowperch No No No No Percina antesella amberdarter Yes Yes No Percina aurantiaca tangerinedarter No Yes No Yes Percina aurolineata goldlinedarter Yes Yes Yes Percina aurora pearldarter Yes Yes Yes Percina brevicauda coaldarter Yes Yes Yes Percina burtoni blotchsidedarter Yes Yes Yes Yes Percina caprodes logperch No No No No Percina carbonaria* Texaslogperch No Yes Yes Yes Percina copelandi channeldarter No No No Percina crassa* piedmontdarter No Yes Yes Yes Percina cymatotaenia bluestripedarter Yes Yes Yes Percina evides giltdarter No No Yes No Percina gymnocephala Appalachiadarter No Yes Yes Percina jenkinsi Conasaugalogperch Yes Yes Yes Percina kathae Mobilelogperch No Yes No No Percina lenticula freckleddarter Yes Yes Yes Percina macrocephala longheaddarter Yes No No Yes Percina macrolepida bigscalelogperch No No No No Percina maculata blacksidedarter No No No No Percina nasuta longnosedarter No Yes No Percina nigrofasciata blackbandeddarter No No No No Percina notogramma stripebackdarter No Yes Yes Percina oxyrhynchus sharpnosedarter No Yes No No Percina palmaris bronzedarter No Yes Yes Percina pantherina leoparddarter Yes Yes No Percina peltata shielddarter No No No Yes Percina phoxocephala slenderheaddarter No No Yes No Percina rex Roanokelogperch Yes Yes Yes Yes Roanokedarter No Yes No No Percina sciera duskydarter No No Yes Yes Percina shumardi riverdarter No No Yes Yes Percina smithvanizi Muscadinedarter No Yes Yes Percina sp. Warriorbrindleddarter No Percina squamata olivedarter Yes Yes Yes Yes

121

Percina stictogaster frecklebellydarter No Yes Yes Percina tanasi snaildarter Yes Yes Yes Percina uranidea stargazingdarter Yes Yes Yes Percina vigil saddlebackdarter No No Yes Percopsis omiscomaycus troutperch No No No No Percopsis transmontana* sandroller No Yes Yes Yes Petromyzon marinus sealamprey No No No Yes Phenacobius catostomus riffleminnow No Yes No Yes Phenacobius fatlipsminnow No Yes Yes Yes crassilabrum* Phenacobius mirabilis suckermouthminnow No No No Yes Phenacobius teretulus* Kanawhaminnow No Yes Yes Yes Phenacobius uranops* stargazingminnow No Yes Yes Yes Phoxinus cumberlandensis blacksidedace Yes Yes Yes Phoxinus eos northernredbellydace No No No Yes Phoxinus erythrogaster southernredbellydace No No Yes No Phoxinus neogaeus finescaledace No No No Phoxinus oreas mountainredbellydace No Yes No No Phoxinus tennesseensis Tennesseedace Yes Yes Yes Yes Piaractus brachypomus pirapitinga No Pimephales notatus bluntnoseminnow No No No No Pimephales promelas fatheadminnow No No No No Pimephales tenellus slimminnow No No Pimephales vigilax bullheadminnow No No No No Plagopterus argentissimus woundfin Yes Yes No Platygobio gracilis flatheadchub No No No No Poecilia formosa Amazonmolly No Yes Yes No Poecilia latipinna sailfinmolly No No No Poecilia mexicana shortfinmolly No Poecilia reticulata guppy No Poeciliopsis gracilis portholelivebearer No No Poeciliopsis occidentalis Gilatopminnow No No No Yes Pogonichthys ciscoides ClearLakesplittail Yes Yes Pogonichthys splittail Yes Yes Yes Yes macrolepidotus Polyodon spathula paddlefish Yes No Yes Yes Pomoxis annularis whitecrappie No No No No Pomoxis nigromaculatus blackcrappie No No No Yes Prosopium abyssicola BearLakewhitefish Yes Yes Prosopium coulterii pygmywhitefish No No Yes Prosopium cylindraceum roundwhitefish No No No Prosopium gemmifer Bonnevillecisco Yes Yes

122

Prosopium williamsoni mountainwhitefish No No No No Pterois volitans/miles redlionfish No Pteronotropis euryzonus broadstripeshiner Yes Yes Yes Pteronotropis hubbsi blueheadshiner Yes Yes Yes Yes Pteronotropis sailfinshiner No No Yes No hypselopterus Pteronotropis signipinnis flagfinshiner No Yes No Yes Pteronotropis welaka bluenoseshiner Yes No Yes Pterygoplichthys anisitsi southernsailfincatfish No Pterygoplichthys vermiculatedsailfincatfish No disjunctivus Pterygoplichthys Orinocosailfincatfish No multiradiatus Pterygoplichthys pardalis Amazonsailfincatfish No Ptychocheilus grandis Sacramentopikeminnow No Yes No No Ptychocheilus lucius Coloradopikeminnow Yes No Yes Yes Ptychocheilus oregonensis northernpikeminnow No No No No Ptychocheilus umpquae Umpquapikeminnow No Yes Yes Pungitius pungitius ninespinestickleback No No Yes Pygocentrus nattereri redpiranha No Yes Pylodictis olivaris flatheadcatfish No No No Yes Relictus solitarius relictdace Yes Yes No Rhinichthys atratulus easternblacknosedace No No No No Rhinichthys cataractae longnosedace No No No No Rhinichthys cobitis loachminnow Yes Yes No Rhinichthys deaconi LasVegasdace Yes Yes Rhinichthys evermanni Umpquadace Yes Yes Yes Rhinichthys falcatus leoparddace No No No Rhinichthys osculus speckleddace No No No No Rhinichthys umatilla Umatilladace Yes No Yes Rhodeus sericeus bitterling No Yes Richardsonius balteatus redsideshiner No No No No Richardsonius egregius Lahontanredside No Yes No No Rivulus marmoratus mangroverivulus No Yes No Salmo salar Atlanticsalmon No No No No Salmo trutta browntrout No No Salvelinus alpinus Articcharr No No No Salvelinus aureolus Sunapeetrout No Salvelinus confluentus bulltrout No No No Yes Salvelinus fontinalis brooktrout No No No No Salvelinus malma DollyVarden No No Salvelinus namaycush laketrout No No Yes

123

Sander canadensis sauger No No No No lucioperca zander No Sander vitreus No No No No Sarotherodon blackchintilapia No Yes melanotheron Satan eurystomus widemouthblindcat Yes Yes Scaphirhynchus albus pallidsturgeon Yes No Yes Scaphirhynchus shovelnosesturgeon No No Yes platorynchus Scaphirhynchus suttkusi Alabamasturgeon Yes Yes Yes Scardinius rudd No No erythrophthalmus Scartomyzon cervinus blackjumprock No No Yes Yes Semotilus atromaculatus creekchub No No No No Semotilus corporalis fallfish No No No No Semotilus lumbee sandhillschub Yes Yes Yes Semotilus thoreauianus Dixiechub No Yes No Serrasalmus rhombeus redeyepiranha No Snyderichthys copei leathersidechub No Yes Yes Speoplatyrhinus poulsoni Alabamacavefish Yes Yes Spirinchus thaleichthys longfinsmelt No No Yes Strongylura marina AtlanticNeedlefish No No Yes Yes Telmatochromis bifrenatus dwardcichlid No Thaleichthys pacificus eulachon No No Yes Thoburnia atripinnis blackfinsucker Yes Yes Yes Thoburnia hamiltoni rustysidesucker Yes Yes Yes Thoburnia rhothoeca torrentsucker No Yes Yes No Thymallus arcticus Articgrayling No No No Tilapia buttikoferi zebratilapia No Tilapia mariae spottedtilapia No Tilapia zillii redbellytilapia No No Yes Tinca tinca tench No Yes Trichopsis vittata croakinggourami No Trogloglanis pattersoni toothlessblindcat Yes Yes Typhlichthys subterraneus southerncavefish Yes No Umbra limi centralmudminnow No No No No Umbra pygmaea easternmudminnow No No No No Xiphophorus hellerii greenswordtail No Xiphophorus maculatus southernplatyfish No Xiphophorus variatus variableplatyfish No Xyrauchen texanus razorbacksucker Yes No No *SpeciesthatarerareatalllevelsoftheclassificationbutarenotlistedbyJelksetal.(2008)

124

125