Continuum Mechanics of Space Seen from the Aspect of General Relativity—An Interpretation of the Gravity Mechanism

Total Page:16

File Type:pdf, Size:1020Kb

Continuum Mechanics of Space Seen from the Aspect of General Relativity—An Interpretation of the Gravity Mechanism Journal of Earth Science and Engineering 5 (2015) 188-202 doi: 10.17265/2159-581X/2015. 03. 004 D DAVID PUBLISHING Continuum Mechanics of Space Seen from the Aspect of General Relativity—An Interpretation of the Gravity Mechanism Yoshinari Minami Advanced Science-Technology Research Organization (Formerly NEC Space Development Division), Yokohama 220-0062, Japan Received: February 15, 2015 / Accepted: March 05, 2015 / Published: March 20, 2015. Abstract: A mechanical structure of space is suggested. On the supposition that a space as vacuum has a physical fine structure like continuum, it enables us to apply a continuum mechanics to the so-called “vacuum” of space. A space is an infinite continuum and its structure is determined by Riemannian geometry. Assuming that space is an infinite continuum, the pressure field derived from the geometrical structure of space is newly obtained by applying both continuum mechanics and General Relativity to space. A fundamental concept of space-time is described that focuses on theoretically innate properties of space including strain and curvature. As a trial consideration, gravity can be explained as a pressure field induced by the curvature of space. Key words: General Relativity, continuum mechanics, curvature, strain, space-time, gravity. 1. Introduction expansion, contraction, elongation, torsion and bending. The latest expanding universe theories Given a priori assumption that space as a vacuum (Friedmann, de Sitter, inflationary cosmological has a physical fine structure like continuum, it enables model) support this assumption. Space can be us to apply a continuum mechanics to the so-called regarded as an elastic body like rubber. This “vacuum” of space. Minami proposed a hypothesis for conveniently coincides with the precondition of a mechanical property of space-time in 1988 [1]. A mechanical structure of space. primary motive was research in the realm of space General relativity implies that space is curved by propulsion theory. His propulsion principle using the the existence of energy (mass energy or substantial physical structure of space-time is based electromagnetic energy etc.). General relativity is on this hypothesis [2-10]. based on Riemannian geometry. If we admit this space In this paper, a fundamental concept of space-time curvature, space is assumed as an elastic body. is described that focuses on theoretically innate According to continuum mechanics, the elastic body properties of space including strain and curvature. has the property of the motion of deformation such as Assuming that space as vacuum is an infinite expansion, contraction, elongation, torsion and continuum, space can be considered as a kind of bending. General relativity uses only the curvature of transparent elastic field. That is, space as a vacuum space. Expansion and contraction of space are used in performs the motions of deformation such as cosmology, and a theory using torsion has also been studied by Hayasaka [11] and twistor theory as Corresponding author: Yoshinari Minami, administrative proposed by Roger Penrose [12] to the torsion of director, research fields: satellite design and engineering, propulsion theory and propulsion physics, laser propulsion, space. interstellar navigation theory. E-mail: [email protected]. Continuum Mechanics of Space Seen from the Aspect of General Relativity—An 189 Interpretation of the Gravity Mechanism 2. Mechanical Concept of Space (2) The spatial strain is defined as a localized geometrical structural change of space. It implies a When we make a comparison between the space on change from flat space involved in zero curvature the Earth and outer space throughout the universe, components to curved Riemann space involved in although there seems to be no difference, obviously a non-zero curvature components. different phenomenon occurs. Simply put, an object (3) Space has the only strain-free natural state, and moves radially inward, that is, drops straight down on space always returns to the strain-free natural state, the Earth, but in the universe, the object floats and i.e., flat space, when an external physical action does not move. causing spatial strain is removed. The difference between the two phenomena can be (4) Spatial strain means some kinds of structural explained as whether space is curved or not, that is, deformation of space, and a body filling up space is whether 20 independent components of a Riemann affected by the action from its spatial strain. We must curvature tensor is zero or not. In essence, the distinguish space from an isolated body. An isolated existence of spatial curvature (and curved extent) body occupies an area of space by its movement. determines whether the object drops straight down or Basically, an isolated body can move in space and also not. Although the spatial curvature at the surface of can change its position. −23 2 the Earth is very small value, i.e.,3.42 ×10 (1/ m ) , (5) In order to keep the continuity of space, the 2 it is of enough value to produce 1G (9.8 m/s ) velocity of body filling up space cannot exceed the acceleration. Conversely, the spatial curvature in the strain rate of space itself. universe is zero, therefore any acceleration is not Since the subject of our study is a four-dimensional produced. Accordingly, if the spatial curvature of a Riemann space as a curved space, we ascribe a great localized area including object is controlled to deal of importance to the curvature of space. We a −23 2 curvature 3.42 ×10 (1/ m )with an extent, the object priori accept that the nature of actual physical space is moves and receives 1G acceleration in the universe. a four-dimensional Riemann space, that is, three Of course, we are required to control both the dimensional space (x=x1, y=x2, z=x3) and one magnitude and extent of curvature. dimensional time (w=ct=x0), where c is the velocity of light. These four coordinate axes are denoted as xi (i = 2.1 Fundamental Concept of Space 0, 1, 2, 3). Space is an infinite continuum and its structure is The square of the infinitesimal distance “ds” determined by Riemannian geometry. Space satisfies between two infinitely proximate points xi and xi+dxi the following conditions: is given by equation of the form: (1) When the infinitesimal distance regulating the ds 2 = g dxi dx j distance between the two points changes by a certain ij (1) physical action, the change is continuous, and the where gij is a metric tensor. space maintains a continuum even after its change. The metric tensor gij determines all the geometrical Now, the concept of strain of continuum mechanics is properties of space and it is a function of this space ij very important in order to relate a spatial curvature to coordinate. In Riemann space, the metric tensor g i a practical force. Because the spatial curvature is a determines a Riemannian connection coefficient Γ jk , purely geometrical quantity. A strain field is required and furthermore determines the Riemann curvature p for the conversion of geometrical quantity to a tensor R ijk or Rpijk , thus the geometry of space is practical force. determined by a metric tensor. 190 Continuum Mechanics of Space Seen from the Aspect of General Relativity—An Interpretation of the Gravity Mechanism i Riemannian geometry is a geometry which provides original vase vector g and the gij′ is the a tool to describe curved Riemann space, therefore a transformed metric tensor from the original metric Riemann curvature tensor is the principal quantity. All tensor g ij . Since the degree of deformation can be the components of Riemann curvature tensor are zero expressed as the change of distance between the two for flat space and non-zero for curved space. If a points, we get: non-zero component of Riemann curvature tensor 22 ij ij ds′′−= ds gij dx dx − g ij dx dx exists, the space is not flat space, but curved space. In (4) =−()g′ g dxij dx = r dx ij dx curved space, it is well known that the result of the ij ij ij parallel displacement of vector depends on the choice Hence the degree of geometrical and structural of the path. Further, the components of a vector differ deformation can be expressed by the quantity denoted from the initial value, after we displace a vector change of metric tensor, i.e. parallel along a closed curve until it returns to the r = g′ − g (5) starting point. ij ij ij An external physical action such as the existence of On the other hand, the state of deformation can be mass energy or electromagnetic energy yields the also expressed by the displacement vector “u” (Fig. 1). structural deformation of space. In the deformed space From the continuum mechanics [13-16], using the region, the infinitesimal distance is given by: following equations: ′2 ′ i j i j ds = gij dx dx (2) du = g ui: j dx (6) i j where gij′ the metric tensor of deformed space ds′ = ds + du = ds + g ui: j dx (7) region, and we use the convected coordinates We use the usual notation “:” for covariant ( x′i = x i ). As shown in Fig. 1, if the line element between the differentiation. From the usual continuum mechanics, arbitrary two near points (A and B) in space region S the infinitesimal distance after deformation becomes (before structural deformation) is defined as [13] (see Appendix A): i 22 ij ds = gi dx , the infinitesimal distance between the ds′ −= ds r dx dx ij (8) two near points is given by Eq. (1): kij =++()uij:::: u ji u i u kj dx dx 2 i j ds = gij dx dx k The terms of higher order than second u :i u k: j Let us assume that a space region S is structurally can be neglected if the displacement is of small deformed by an external physical action and enough value.
Recommended publications
  • On the Geometric Character of Stress in Continuum Mechanics
    Z. angew. Math. Phys. 58 (2007) 1–14 0044-2275/07/050001-14 DOI 10.1007/s00033-007-6141-8 Zeitschrift f¨ur angewandte c 2007 Birkh¨auser Verlag, Basel Mathematik und Physik ZAMP On the geometric character of stress in continuum mechanics Eva Kanso, Marino Arroyo, Yiying Tong, Arash Yavari, Jerrold E. Marsden1 and Mathieu Desbrun Abstract. This paper shows that the stress field in the classical theory of continuum mechanics may be taken to be a covector-valued differential two-form. The balance laws and other funda- mental laws of continuum mechanics may be neatly rewritten in terms of this geometric stress. A geometrically attractive and covariant derivation of the balance laws from the principle of energy balance in terms of this stress is presented. Mathematics Subject Classification (2000). Keywords. Continuum mechanics, elasticity, stress tensor, differential forms. 1. Motivation This paper proposes a reformulation of classical continuum mechanics in terms of bundle-valued exterior forms. Our motivation is to provide a geometric description of force in continuum mechanics, which leads to an elegant geometric theory and, at the same time, may enable the development of space-time integration algorithms that respect the underlying geometric structure at the discrete level. In classical mechanics the traditional approach is to define all the kinematic and kinetic quantities using vector and tensor fields. For example, velocity and traction are both viewed as vector fields and power is defined as their inner product, which is induced from an appropriately defined Riemannian metric. On the other hand, it has long been appreciated in geometric mechanics that force should not be viewed as a vector, but rather a one-form.
    [Show full text]
  • Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
    Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time.
    [Show full text]
  • Fundamental Governing Equations of Motion in Consistent Continuum Mechanics
    Fundamental governing equations of motion in consistent continuum mechanics Ali R. Hadjesfandiari, Gary F. Dargush Department of Mechanical and Aerospace Engineering University at Buffalo, The State University of New York, Buffalo, NY 14260 USA [email protected], [email protected] October 1, 2018 Abstract We investigate the consistency of the fundamental governing equations of motion in continuum mechanics. In the first step, we examine the governing equations for a system of particles, which can be considered as the discrete analog of the continuum. Based on Newton’s third law of action and reaction, there are two vectorial governing equations of motion for a system of particles, the force and moment equations. As is well known, these equations provide the governing equations of motion for infinitesimal elements of matter at each point, consisting of three force equations for translation, and three moment equations for rotation. We also examine the character of other first and second moment equations, which result in non-physical governing equations violating Newton’s third law of action and reaction. Finally, we derive the consistent governing equations of motion in continuum mechanics within the framework of couple stress theory. For completeness, the original couple stress theory and its evolution toward consistent couple stress theory are presented in true tensorial forms. Keywords: Governing equations of motion, Higher moment equations, Couple stress theory, Third order tensors, Newton’s third law of action and reaction 1 1. Introduction The governing equations of motion in continuum mechanics are based on the governing equations for systems of particles, in which the effect of internal forces are cancelled based on Newton’s third law of action and reaction.
    [Show full text]
  • CONTINUUM MECHANICS (Lecture Notes)
    CONTINUUM MECHANICS (Lecture Notes) Zdenekˇ Martinec Department of Geophysics Faculty of Mathematics and Physics Charles University in Prague V Holeˇsoviˇck´ach 2, 180 00 Prague 8 Czech Republic e-mail: [email protected]ff.cuni.cz Original: May 9, 2003 Updated: January 11, 2011 Preface This text is suitable for a two-semester course on Continuum Mechanics. It is based on notes from undergraduate courses that I have taught over the last decade. The material is intended for use by undergraduate students of physics with a year or more of college calculus behind them. I would like to thank Erik Grafarend, Ctirad Matyska, Detlef Wolf and Jiˇr´ıZahradn´ık,whose interest encouraged me to write this text. I would also like to thank my oldest son Zdenˇekwho plotted most of figures embedded in the text. I am grateful to many students for helping me to reveal typing misprints. I would like to acknowledge my indebtedness to Kevin Fleming, whose through proofreading of the entire text is very much appreciated. Readers of this text are encouraged to contact me with their comments, suggestions, and questions. I would be very happy to hear what you think I did well and I could do better. My e-mail address is [email protected]ff.cuni.cz and a full mailing address is found on the title page. ZdenˇekMartinec ii Contents (page numbering not completed yet) Preface Notation 1. GEOMETRY OF DEFORMATION 1.1 Body, configurations, and motion 1.2 Description of motion 1.3 Lagrangian and Eulerian coordinates 1.4 Lagrangian and Eulerian variables 1.5 Deformation gradient 1.6 Polar decomposition of the deformation gradient 1.7 Measures of deformation 1.8 Length and angle changes 1.9 Surface and volume changes 1.10 Strain invariants, principal strains 1.11 Displacement vector 1.12 Geometrical linearization 1.12.1 Linearized analysis of deformation 1.12.2 Length and angle changes 1.12.3 Surface and volume changes 2.
    [Show full text]
  • Ch.9. Constitutive Equations in Fluids
    CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS Multimedia Course on Continuum Mechanics Overview Introduction Fluid Mechanics Lecture 1 What is a Fluid? Pressure and Pascal´s Law Lecture 3 Constitutive Equations in Fluids Lecture 2 Fluid Models Newtonian Fluids Constitutive Equations of Newtonian Fluids Lecture 4 Relationship between Thermodynamic and Mean Pressures Components of the Constitutive Equation Lecture 5 Stress, Dissipative and Recoverable Power Dissipative and Recoverable Powers Lecture 6 Thermodynamic Considerations Limitations in the Viscosity Values 2 9.1 Introduction Ch.9. Constitutive Equations in Fluids 3 What is a fluid? Fluids can be classified into: Ideal (inviscid) fluids: Also named perfect fluid. Only resists normal, compressive stresses (pressure). No resistance is encountered as the fluid moves. Real (viscous) fluids: Viscous in nature and can be subjected to low levels of shear stress. Certain amount of resistance is always offered by these fluids as they move. 5 9.2 Pressure and Pascal’s Law Ch.9. Constitutive Equations in Fluids 6 Pascal´s Law Pascal’s Law: In a confined fluid at rest, pressure acts equally in all directions at a given point. 7 Consequences of Pascal´s Law In fluid at rest: there are no shear stresses only normal forces due to pressure are present. The stress in a fluid at rest is isotropic and must be of the form: σ = − p01 σδij =−∈p0 ij ij,{} 1, 2, 3 Where p 0 is the hydrostatic pressure. 8 Pressure Concepts Hydrostatic pressure, p 0 : normal compressive stress exerted on a fluid in equilibrium. Mean pressure, p : minus the mean stress.
    [Show full text]
  • Chapter 1 Continuum Mechanics Review
    Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte and Schubert (2002). However, here is a short and extremely simplified review of basic contin- uum mechanics as it pertains to the remainder of the class. You may wish to refer to our math review if notation or concepts appear unfamiliar, and consult chap. 1 of Spiegelman (2004) for some clean derivations. TO BE REWRITTEN, MORE DISCUSSION ADDED. 1.1 Definitions and nomenclature • Coordinate system. x = fx, y, zg or fx1, x2, x3g define points in 3D space. We will use the regular, Cartesian coordinate system throughout the class for simplicity. Note: Earth science problems are often easier to address when inherent symmetries are taken into account and the governing equations are cast in specialized spatial coordinate systems. Examples for such systems are polar or cylindrical systems in 2-D, and spherical in 3-D. All of those coordinate systems involve a simpler de- scription of the actual coordinates (e.g. fr, q, fg for spherical radius, co-latitude, and longitude, instead of the Cartesian fx, y, zg) that do, however, lead to more compli- cated derivatives (i.e. you cannot simply replace ¶/¶y with ¶/¶q, for example). We will talk more about changes in coordinate systems during the discussion of finite elements, but good references for derivatives and different coordinate systems are Malvern (1977), Schubert et al. (2001), or Dahlen and Tromp (1998). • Field (variable). For example T(x, y, z) or T(x) – temperature field – temperature varying in space.
    [Show full text]
  • Euler, Newton, and Foundations for Mechanics
    Euler, Newton, and Foundations for Mechanics Oxford Handbooks Online Euler, Newton, and Foundations for Mechanics Marius Stan The Oxford Handbook of Newton Edited by Eric Schliesser and Chris Smeenk Subject: Philosophy, History of Western Philosophy (Post-Classical) Online Publication Date: Mar 2017 DOI: 10.1093/oxfordhb/9780199930418.013.31 Abstract and Keywords This chapter looks at Euler’s relation to Newton, and at his role in the rise of Newtonian mechanics. It aims to give a sense of Newton’s complicated legacy for Enlightenment science and to point out that key “Newtonian” results are really due to Euler. The chapter begins with a historiographical overview of Euler’s complicated relation to Newton. Then it presents an instance of Euler extending broadly Newtonian notions to a field he created: rigid-body dynamics. Finally, it outlines three open questions about Euler’s mechanical foundations and their proximity to Newtonianism: Is his mechanics a monolithic account? What theory of matter is compatible with his dynamical laws? What were his dynamical laws, really? Keywords: Newton, Euler, Newtonian, Enlightenment science, rigid-body dynamics, classical mechanics, Second Law, matter theory Though the Principia was an immense breakthrough, it was also an unfinished work in many ways. Newton in Book III had outlined a number of programs that were left for posterity to perfect, correct, and complete. And, after his treatise reached the shores of Europe, it was not clear to anyone how its concepts and laws might apply beyond gravity, which Newton had treated with great success. In fact, no one was sure that they extend to all mechanical phenomena.
    [Show full text]
  • From Continuum Mechanics to General Relativity
    From continuum mechanics to general relativity Christian G. B¨ohmer∗ and Robert J. Downes† ∗Department of Mathematics, †Centre for Advanced Spatial Analysis, University College London, Gower Street, London, WC1E 6BT, UK 19 May 2014 This essay received a honorable mention in the 2014 essay competition of the Gravity Research Foundation. Abstract Using ideas from continuum mechanics we construct a theory of gravity. We show that this theory is equivalent to Einstein’s theory of general relativity; it is also a much faster way of reaching general relativity than the conventional route. Our approach is simple and natural: we form a very general model and then apply two physical assumptions supported by experimental evidence. This easily reduces our construction to a model equivalent to general relativity. Finally, arXiv:1405.4728v1 [gr-qc] 19 May 2014 we suggest a simple way of modifying our theory to investigate non- standard space-time symmetries. ∗[email protected][email protected] 1 Einstein himself, of course, arrived at the same Lagrangian but without the help of a developed field theory, and I must admit that I have no idea how he guessed the final result. We have had troubles enough arriving at the theory - but I feel as though he had done it while swimming underwater, blindfolded, and with his hands tied behind his back! Richard P. Feynman, Feynman lectures on gravitation, 1995. 1 Introduction Einstein’s theory of general relativity is one of the crowning achievements of modern science. However, the route from a special-relativistic mind game to a fully-fledged theory capable of producing physical predictions is long and tortuous.
    [Show full text]
  • General Overview of Continuum Mechanics – Jose Merodio and Anthony D.Rosato
    CONTINUUM MECHANICS – General Overview of Continuum Mechanics – Jose Merodio and Anthony D.Rosato GENERAL OVERVIEW OF CONTINUUM MECHANICS Jose Merodio Department of Continuum Mechanics and Structures, Universidad Politécnica de Madrid, Madrid, Spain Anthony D. Rosato Department of Mechanical Engineering, New Jersey Institute of Technology University Heights, Newark, NJ 0710, USA Keywords: Deformation, Motion, Balance Laws, Constitutive Equations, Stress, Strain, Energy, Entropy, Solids, Fluids Contents 1. Preliminary concepts: Definitions and theoretical framework 2. Kinematics of deformation 2.1. The continuum setting: Mathematical description 2.2. Displacement, deformation and motion 2.3. Stretch, shear and strain 2.4. Change of reference frame and objective tensors 3. Balance laws 3.1. Mass and conservation of mass 3.2. Force, torque and theory of stress 3.3. Euler’s laws of motion 3.4. Energy 3.5. Summary of equations and unknowns 4. Constitutive behavior 4.1. Basic concepts of constitutive theories 4.2. Isothermal Solid Mechanics 4.3. Isothermal Fluid Mechanics Glossary Bibliography Biographical Sketches SummaryUNESCO – EOLSS This chapter presents the essential concepts of continuum mechanics – starting from the basic notion ofSAMPLE deformation kinematics and CHAPTERS progressing to a sketch of constitutive behavior of simple materials. We intend neither to develop it with the mathematical sophistication used in the different topics related to this subject nor to develop every mathematical tool. On the contrary, we try to put in words the ideas behind this analysis as an initial approximation prior to further reading. This chapter is a general overview of the topic, an outline that covers the main and basic ideas. Our attempt is to develop a pedagogical approach accessible to a wide audience by introducing at every step the necessary mathematical machinery in conjunction with a physical interpretation.
    [Show full text]
  • Introduction to Continuum Mechanics
    Introduction to Continuum Mechanics David J. Raymond Physics Department New Mexico Tech Socorro, NM Copyright C David J. Raymond 1994, 1999 -2- Table of Contents Chapter1--Introduction . 3 Chapter2--TheNotionofStress . 5 Chapter 3 -- Budgets, Fluxes, and the Equations of Motion . ......... 32 Chapter 4 -- Kinematics in Continuum Mechanics . 48 Chapter5--ElasticBodies. 59 Chapter6--WavesinanElasticMedium. 70 Chapter7--StaticsofElasticMedia . 80 Chapter8--NewtonianFluids . 95 Chapter9--CreepingFlow . 113 Chapter10--HighReynoldsNumberFlow . 122 -3- Chapter 1 -- Introduction Continuum mechanics is a theory of the kinematics and dynamics of material bodies in the limit in which matter can be assumed to be infinitely subdividable. Scientists have long struggled with the question as to whether matter consisted ultimately of an aggregate of indivisible ‘‘atoms’’, or whether any small parcel of material could be subdivided indefinitely into smaller and smaller pieces. As we all now realize, ordinary matter does indeed consist of atoms. However, far from being indivisible, these atoms split into a staggering array of other particles under sufficient application of energy -- indeed, much of modern physics is the study of the structure of atoms and their constituent particles. Previous to the advent of quantum mechanics and the associated experimen- tal techniques for studying atoms, physicists tried to understand every aspect of the behavior of matter and energy in terms of continuum mechanics. For instance, attempts were made to characterize electromagnetic waves as mechani- cal vibrations in an unseen medium called the ‘‘luminiferous ether’’, just as sound waves were known to be vibrations in ordinary matter. We now know that such attempts were misguided. However, the mathematical and physical techniques that were developed over the years to deal with continuous distributions of matter have proven immensely useful in the solution of many practical problems on the macroscopic scale.
    [Show full text]
  • Leonhard Euler: the First St. Petersburg Years (1727-1741)
    HISTORIA MATHEMATICA 23 (1996), 121±166 ARTICLE NO. 0015 Leonhard Euler: The First St. Petersburg Years (1727±1741) RONALD CALINGER Department of History, The Catholic University of America, Washington, D.C. 20064 View metadata, citation and similar papers at core.ac.uk brought to you by CORE After reconstructing his tutorial with Johann Bernoulli, this article principally investigates provided by Elsevier - Publisher Connector the personality and work of Leonhard Euler during his ®rst St. Petersburg years. It explores the groundwork for his fecund research program in number theory, mechanics, and in®nitary analysis as well as his contributions to music theory, cartography, and naval science. This article disputes Condorcet's thesis that Euler virtually ignored practice for theory. It next probes his thorough response to Newtonian mechanics and his preliminary opposition to Newtonian optics and Leibniz±Wolf®an philosophy. Its closing section details his negotiations with Frederick II to move to Berlin. 1996 Academic Press, Inc. ApreÁs avoir reconstruit ses cours individuels avec Johann Bernoulli, cet article traite essen- tiellement du personnage et de l'oeuvre de Leonhard Euler pendant ses premieÁres anneÂes aÁ St. PeÂtersbourg. Il explore les travaux de base de son programme de recherche sur la theÂorie des nombres, l'analyse in®nie, et la meÂcanique, ainsi que les reÂsultats de la musique, la cartographie, et la science navale. Cet article attaque la theÁse de Condorcet dont Euler ignorait virtuellement la pratique en faveur de la theÂorie. Cette analyse montre ses recherches approfondies sur la meÂcanique newtonienne et son opposition preÂliminaire aÁ la theÂorie newto- nienne de l'optique et a la philosophie Leibniz±Wolf®enne.
    [Show full text]
  • History of Continuum Mechanics – Robert W
    CONTINUUM MECHANICS – History of Continuum Mechanics – Robert W. Soutas-Little HISTORY OF CONTINUUM MECHANICS Robert W. Soutas-Little Professor Emeritus of Engineering Mechanics, College of Engineering, Michigan State University, USA Keywords: Statics, Dynamics, Fluid Mechanics, Solid Mechanics, Hydrology, Hydrostatics, Hydrodynamics, Elasticity, Aerodynamics, Plasticity, Viscoelasticity, Rheology Contents 1. History of general theories and fundamental equations 2. History of constitutive equations; rheology 3. Development of mathematical methods of solution of equations Glossary Bibliography Biographical Sketch Summary The history of Continuum Mechanics is traced from the early work of the Hellenic period up to the present century. This history is based upon early work in statics, deformable solids, dynamics, fluid mechanics and aerodynamics. The unifying theory of continuum mechanics came in the 1900s combined with the advances in thermodynamics and rheology. Truesdell was the major force to develop this unifying theory. This history has tried to summarize the major contributes to the development of continuum mechanics but so many contributed to the field that many have been over looked and only the individuals who made major contributions are listed. Many of the advances in new analytical methods that have their birth in the study of continuum mechanics have not been referenced. 1. History of the General Theories and Fundamental Equations First, the readerUNESCO is referred to “A History of Mechanics”– EOLSS by Rene’ Dugas, 1955 [1]. This text gives an excellent historical review of Mechanics from the Hellenic period up to the 19th century. The early developments of mechanics focused on rigid bodies and the movement of particles. Mass points were defined to explain inertia.
    [Show full text]