Fundamental Governing Equations of Motion in Consistent Continuum Mechanics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Statics FE Review 032712.Pptx
FE Stacs Review h0p://www.coe.utah.edu/current-undergrad/fee.php Scroll down to: Stacs Review - Slides Torch Ellio [email protected] (801) 587-9016 MCE room 2016 (through 2000B door) Posi'on and Unit Vectors Y If you wanted to express a 100 lb force that was in the direction from A to B in (-2,6,3). A vector form, then you would find eAB and multiply it by 100 lb. rAB O x rAB = 7i - 7j – k (units of length) B .(5,-1,2) e = (7i-7j–k)/sqrt[99] (unitless) AB z Then: F = F eAB F = 100 lb {(7i-7j–k)/sqrt[99]} Another Way to Define a Unit Vectors Y Direction Cosines The θ values are the angles from the F coordinate axes to the vector F. The θY cosines of these θ values are the O θx x θz coefficients of the unit vector in the direction of F. z If cos(θx) = 0.500, cos(θy) = 0.643, and cos(θz) = - 0.580, then: F = F (0.500i + 0.643j – 0.580k) TrigonometrY hYpotenuse opposite right triangle θ adjacent • Sin θ = opposite/hYpotenuse • Cos θ = adjacent/hYpotenuse • Tan θ = opposite/adjacent TrigonometrY Con'nued A c B anY triangle b C a Σangles = a + b + c = 180o Law of sines: (sin a)/A = (sin b)/B = (sin c)/C Law of cosines: C2 = A2 + B2 – 2AB(cos c) Products of Vectors – Dot Product U . V = UVcos(θ) for 0 <= θ <= 180ο ( This is a scalar.) U In Cartesian coordinates: θ . -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
On the Geometric Character of Stress in Continuum Mechanics
Z. angew. Math. Phys. 58 (2007) 1–14 0044-2275/07/050001-14 DOI 10.1007/s00033-007-6141-8 Zeitschrift f¨ur angewandte c 2007 Birkh¨auser Verlag, Basel Mathematik und Physik ZAMP On the geometric character of stress in continuum mechanics Eva Kanso, Marino Arroyo, Yiying Tong, Arash Yavari, Jerrold E. Marsden1 and Mathieu Desbrun Abstract. This paper shows that the stress field in the classical theory of continuum mechanics may be taken to be a covector-valued differential two-form. The balance laws and other funda- mental laws of continuum mechanics may be neatly rewritten in terms of this geometric stress. A geometrically attractive and covariant derivation of the balance laws from the principle of energy balance in terms of this stress is presented. Mathematics Subject Classification (2000). Keywords. Continuum mechanics, elasticity, stress tensor, differential forms. 1. Motivation This paper proposes a reformulation of classical continuum mechanics in terms of bundle-valued exterior forms. Our motivation is to provide a geometric description of force in continuum mechanics, which leads to an elegant geometric theory and, at the same time, may enable the development of space-time integration algorithms that respect the underlying geometric structure at the discrete level. In classical mechanics the traditional approach is to define all the kinematic and kinetic quantities using vector and tensor fields. For example, velocity and traction are both viewed as vector fields and power is defined as their inner product, which is induced from an appropriately defined Riemannian metric. On the other hand, it has long been appreciated in geometric mechanics that force should not be viewed as a vector, but rather a one-form. -
Newtonian Mechanics Is Most Straightforward in Its Formulation and Is Based on Newton’S Second Law
CLASSICAL MECHANICS D. A. Garanin September 30, 2015 1 Introduction Mechanics is part of physics studying motion of material bodies or conditions of their equilibrium. The latter is the subject of statics that is important in engineering. General properties of motion of bodies regardless of the source of motion (in particular, the role of constraints) belong to kinematics. Finally, motion caused by forces or interactions is the subject of dynamics, the biggest and most important part of mechanics. Concerning systems studied, mechanics can be divided into mechanics of material points, mechanics of rigid bodies, mechanics of elastic bodies, and mechanics of fluids: hydro- and aerodynamics. At the core of each of these areas of mechanics is the equation of motion, Newton's second law. Mechanics of material points is described by ordinary differential equations (ODE). One can distinguish between mechanics of one or few bodies and mechanics of many-body systems. Mechanics of rigid bodies is also described by ordinary differential equations, including positions and velocities of their centers and the angles defining their orientation. Mechanics of elastic bodies and fluids (that is, mechanics of continuum) is more compli- cated and described by partial differential equation. In many cases mechanics of continuum is coupled to thermodynamics, especially in aerodynamics. The subject of this course are systems described by ODE, including particles and rigid bodies. There are two limitations on classical mechanics. First, speeds of the objects should be much smaller than the speed of light, v c, otherwise it becomes relativistic mechanics. Second, the bodies should have a sufficiently large mass and/or kinetic energy. -
Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time. -
Chapter 04 Rotational Motion
Chapter 04 Rotational Motion P. J. Grandinetti Chem. 4300 P. J. Grandinetti Chapter 04: Rotational Motion Angular Momentum Angular momentum of particle with respect to origin, O, is given by l⃗ = ⃗r × p⃗ Rate of change of angular momentum is given z by cross product of ⃗r with applied force. p m dl⃗ dp⃗ = ⃗r × = ⃗r × F⃗ = ⃗휏 r dt dt O y Cross product is defined as applied torque, ⃗휏. x Unlike linear momentum, angular momentum depends on origin choice. P. J. Grandinetti Chapter 04: Rotational Motion Conservation of Angular Momentum Consider system of N Particles z m5 m 2 Rate of change of angular momentum is m3 ⃗ ∑N l⃗ ∑N ⃗ m1 dL d 훼 dp훼 = = ⃗r훼 × dt dt dt 훼=1 훼=1 y which becomes m4 x ⃗ ∑N dL ⃗ net = ⃗r훼 × F dt 훼 Total angular momentum is 훼=1 ∑N ∑N ⃗ ⃗ L = l훼 = ⃗r훼 × p⃗훼 훼=1 훼=1 P. J. Grandinetti Chapter 04: Rotational Motion Conservation of Angular Momentum ⃗ ∑N dL ⃗ net = ⃗r훼 × F dt 훼 훼=1 Taking an earlier expression for a system of particles from chapter 1 ∑N ⃗ net ⃗ ext ⃗ F훼 = F훼 + f훼훽 훽=1 훽≠훼 we obtain ⃗ ∑N ∑N ∑N dL ⃗ ext ⃗ = ⃗r훼 × F + ⃗r훼 × f훼훽 dt 훼 훼=1 훼=1 훽=1 훽≠훼 and then obtain 0 > ⃗ ∑N ∑N ∑N dL ⃗ ext ⃗ rd ⃗ ⃗ = ⃗r훼 × F + ⃗r훼 × f훼훽 double sum disappears from Newton’s 3 law (f = *f ) dt 훼 12 21 훼=1 훼=1 훽=1 훽≠훼 P. -
Twisting Couple on a Cylinder Or Wire
Course: US01CPHY01 UNIT – 2 ELASTICITY – II Introduction: We discussed fundamental concept of properties of matter in first unit. This concept will be more use full for calculating various properties of mechanics of solid material. In this unit, we shall study the detail theory and its related experimental methods for determination of elastic constants and other related properties. Twisting couple on a cylinder or wire: Consider a cylindrical rod of length l radius r and coefficient of rigidity . Its upper end is fixed and a couple is applied in a plane perpendicular to its length at lower end as shown in fig.(a) Consider a cylinder is consisting a large number of co-axial hollow cylinder. Now, consider a one hollow cylinder of radius x and radial thickness dx as shown in fig.(b). Let is the twisting angle. The displacement is greatest at the rim and decreases as the center is approached where it becomes zero. As shown in fig.(a), Let AB be the line parallel to the axis OO’ before twist produced and on twisted B shifts to B’, then line AB become AB’. Before twisting if hollow cylinder cut along AB and flatted out, it will form the rectangular ABCD as shown in fig.(c). But if it will be cut after twisting it takes the shape of a parallelogram AB’C’D. The angle of shear From fig.(c) ∠ ̼̻̼′ = ∅ From fig.(b) ɑ ̼̼ = ͠∅ ɑ BB = xθ ∴ ͠∅ = ͬ Page 1 of 20 ͬ ∴ ∅ = … … … … … … (1) The modules of͠ rigidity is ͍ℎ͙͕ͦ͛͢͝ ͙ͧͤͦͧͧ ̀ = = ͕͙͛͢͠ ͚ͣ ͧℎ͙͕ͦ & ͬ ∴ ̀ = ∙ ∅ = The surface area of this hollow cylinder͠ = 2ͬͬ͘ Total shearing force on this area ∴ ͬ = 2ͬͬ͘ ∙ ͠ ͦ The moment of this force= 2 ͬ ͬ͘ ͠ ͦ = 2 ͬ ͬ͘ ∙ ͬ ͠ 2 ͧ Now, integrating between= theͬ limits∙ ͬ͘ x = 0 and x = r, We have, total twisting couple͠ on the cylinder - 2 ͧ = ǹ ͬ ͬ͘ * ͠ - 2 ͧ = ǹ ͬ ͬ͘ ͠ * ͨ - 2 ͬ = ʨ ʩ Total twisting couple ͠ 4 * ∴ ͨ ͦ = … … … … … … (3) Then, the twisting couple2͠ per unit twist ( ) is = 1 ͨ ͦ ̽ = … … … … … … (4) This twisting couple per unit twist 2͠is also called the torsional rigidity of the cylinder or wire. -
Analytical Mechanics
A Guided Tour of Analytical Mechanics with animations in MAPLE Rouben Rostamian Department of Mathematics and Statistics UMBC [email protected] December 2, 2018 ii Contents Preface vii 1 An introduction through examples 1 1.1 ThesimplependulumàlaNewton ...................... 1 1.2 ThesimplependulumàlaEuler ....................... 3 1.3 ThesimplependulumàlaLagrange.. .. .. ... .. .. ... .. .. .. 3 1.4 Thedoublependulum .............................. 4 Exercises .......................................... .. 6 2 Work and potential energy 9 Exercises .......................................... .. 12 3 A single particle in a conservative force field 13 3.1 The principle of conservation of energy . ..... 13 3.2 Thescalarcase ................................... 14 3.3 Stability....................................... 16 3.4 Thephaseportraitofasimplependulum . ... 16 Exercises .......................................... .. 17 4 TheKapitsa pendulum 19 4.1 Theinvertedpendulum ............................. 19 4.2 Averaging out the fast oscillations . ...... 19 4.3 Stabilityanalysis ............................... ... 22 Exercises .......................................... .. 23 5 Lagrangian mechanics 25 5.1 Newtonianmechanics .............................. 25 5.2 Holonomicconstraints............................ .. 26 5.3 Generalizedcoordinates .......................... ... 29 5.4 Virtual displacements, virtual work, and generalized force....... 30 5.5 External versus reaction forces . ..... 32 5.6 The equations of motion for a holonomic system . ... -
Total Angular Momentum
Total Angular momentum Dipanjan Mazumdar Sept 2019 1 Motivation So far, somewhat deliberately, in our prior examples we have worked exclusively with the spin angular momentum and ignored the orbital component. This is acceptable for L = 0 systems such as filled shell atoms, but properties of partially filled atoms will depend both on the orbital and the spin part of the angular momentum. Also, when we include relativistic corrections to atomic Hamiltonian, both spin and orbital angular momentum enter directly through terms like L:~ S~ called the spin-orbit coupling. So instead of focusing only on the spin or orbital angular momentum, we have to develop an understanding as to how they couple together. One of the ways is through the total angular momentum defined as J~ = L~ + S~ (1) We will see that this will be very useful in many cases such as the real hydrogen atom where the eigenstates after including the fine structure effects such as spin-orbit interaction are eigenstates of the total angular momentum operator. 2 Vector model of angular momentum Let us first develop an intuitive understanding of the total angular momentum through the vector model which is a semi-classical approach to \add" angular momenta using vector algebra. We shall first ask, knowing L~ and S~, what are the maxmimum and minimum values of J^. This is simple to answer us- ing the vector model since vectors can be added or subtracted. Therefore, the extreme values are L~ + S~ and L~ − S~ as seen in figure 1.1 Therefore, the total angular momentum will take up values between l+s Figure 1: Maximum and minimum values of angular and jl − sj. -
Energy and Equations of Motion in a Tentative Theory of Gravity with a Privileged Reference Frame
1 Energy and equations of motion in a tentative theory of gravity with a privileged reference frame Archives of Mechanics (Warszawa) 48, N°1, 25-52 (1996) M. ARMINJON (GRENOBLE) Abstract- Based on a tentative interpretation of gravity as a pressure force, a scalar theory of gravity was previously investigated. It assumes gravitational contraction (dilation) of space (time) standards. In the static case, the same Newton law as in special relativity was expressed in terms of these distorted local standards, and was found to imply geodesic motion. Here, the formulation of motion is reexamined in the most general situation. A consistent Newton law can still be defined, which accounts for the time variation of the space metric, but it is not compatible with geodesic motion for a time-dependent field. The energy of a test particle is defined: it is constant in the static case. Starting from ”dust‘, a balance equation is then derived for the energy of matter. If the Newton law is assumed, the field equation of the theory allows to rewrite this as a true conservation equation, including the gravitational energy. The latter contains a Newtonian term, plus the square of the relative rate of the local velocity of gravitation waves (or that of light), the velocity being expressed in terms of absolute standards. 1. Introduction AN ATTEMPT to deduce a consistent theory of gravity from the idea of a physically privileged reference frame or ”ether‘ was previously proposed [1-3]. This work is a further development which is likely to close the theory. It is well-known that the concept of ether has been abandoned at the beginning of this century. -
Learning the Virtual Work Method in Statics: What Is a Compatible Virtual Displacement?
2006-823: LEARNING THE VIRTUAL WORK METHOD IN STATICS: WHAT IS A COMPATIBLE VIRTUAL DISPLACEMENT? Ing-Chang Jong, University of Arkansas Ing-Chang Jong serves as Professor of Mechanical Engineering at the University of Arkansas. He received a BSCE in 1961 from the National Taiwan University, an MSCE in 1963 from South Dakota School of Mines and Technology, and a Ph.D. in Theoretical and Applied Mechanics in 1965 from Northwestern University. He was Chair of the Mechanics Division, ASEE, in 1996-97. His research interests are in mechanics and engineering education. Page 11.878.1 Page © American Society for Engineering Education, 2006 Learning the Virtual Work Method in Statics: What Is a Compatible Virtual Displacement? Abstract Statics is a course aimed at developing in students the concepts and skills related to the analysis and prediction of conditions of bodies under the action of balanced force systems. At a number of institutions, learning the traditional approach using force and moment equilibrium equations is followed by learning the energy approach using the virtual work method to enrich the learning of students. The transition from the traditional approach to the energy approach requires learning several related key concepts and strategy. Among others, compatible virtual displacement is a key concept, which is compatible with what is required in the virtual work method but is not commonly recognized and emphasized. The virtual work method is initially not easy to learn for many people. It is surmountable when one understands the following: (a) the proper steps and strategy in the method, (b) the displacement center, (c) some basic geometry, and (d ) the radian measure formula to compute virtual displacements. -
Application of Newton's Second
Chapter 8 Applications of Newton’s Second Law 8.1 Force Laws ............................................................................................................... 1 8.1.1 Hooke’s Law ..................................................................................................... 1 8.2.2 Principle of Equivalence: ................................................................................ 5 8.2.3 Gravitational Force near the Surface of the Earth ....................................... 5 8.2.4 Electric Charge and Coulomb’s Law ............................................................. 6 Example 8.1 Coulomb’s Law and the Universal Law of Gravitation .................. 7 8.3 Contact Forces ......................................................................................................... 7 8.3.1 Free-body Force Diagram ................................................................................... 9 Example 8.2 Tug-of-War .......................................................................................... 9 8.3.3 Normal Component of the Contact Force and Weight ............................... 11 8.3.4 Static and Kinetic Friction ............................................................................ 14 8.3.5 Modeling ......................................................................................................... 16 8.4 Tension in a Rope .................................................................................................. 16 8.4.1 Static Tension in a Rope ...............................................................................