Mariners Weather Log Vol

Total Page:16

File Type:pdf, Size:1020Kb

Mariners Weather Log Vol Mariners Weather Log Vol. 46, No. 1 Spring/Summer 2002 “…and then we saw a Corpus Sant at our Main-top-mast Head, on the very Top of the Truck of the Spindle. This sight rejoiced our Men exceedingly, for the height of the Storm is commonly over when the Corpus Sant is seen aloft. But when they are seen lying on the Deck, it is generally accounted a bad Sign. “A Corpus Sant is a certain small glittering Light. When it appears, as this did, on the very Top of the Main-mast or at a Yard-arm, it is like a Star. But when it appears on the Deck, it resembles a great Glow-worm…” Additional Observations of a Seventeenth Century Seafarer: William Dampier (see page 16) Mariners Weather Log From the Editorial Supervisor Mariners Weather Log elcome to Spring. The birds are singing, flowers are blooming, and the sun’s W warmth is re-energizing the earth. So I happen to look at the world from a northern hemispheric perspective - sorry to my friends in the South. It is just that I get all excited as the warm weather of spring returns. Of course, living in southern Mississippi, it only lasts a few weeks until the sweltering heat and humidity of the deep south returns. When you add the fire ants, the overabundance of mosquitoes, and the intense, springtime U.S. DEPARTMENT OF COMMERCE thunderstorms, you wonder why anyone would want to live here at all. Donald L. Evans, Secretary Actually, I believe that being out at sea is the best you can National Oceanic and ask for in life. You get the warmth of the sun and the wind in your face to make you feel free and alive as you travel Atmospheric Administration all around this beautiful orb that we call home. Conrad C. Lautenbacher, Jr., Administrator As the seasons change, so does life. There will be good times as well as bad, and it is up to us as to how we read the clouds and weather our storms. National Weather Service John J. Kelly, Jr., In this issue, we have changed our issue date to reflect the Assistant Administrator for Weather Services seasons. We also say farewell to one of our own, Jim Nelson, our Houston PMO, who has retired and found his snug harbor. We get a valuable history lesson about the Editorial Supervisor Edmund Fitzgerald that can keep us safe in the future, Robert A. Luke and to reflect upon the past, the British Met Office donated an interesting article about the escapades and Editor observations of a seventeenth century seafarer named Bernadette T. Duet William Dampier. Layout/Design So, no matter on what bearing life has you traveling today, find a leeward shelter for awhile and enjoy our latest Bernadette Duet offering of the Mariners Weather Log. – Luke Stuart Hayes Patti Geistfeld Some Important Web Page Addresses Articles, photographs, and letters should be sent NOAA http://www.noaa.gov National Weather Service http://www.nws.noaa.gov to: National Data Buoy Center http://www.ndbc.noaa.gov AMVER Program http://www.amver.com Mr. Robert A. Luke, Editorial Supervisor VOS Program http://www.vos.noaa.gov Mariners Weather Log SEAS Program http://seas.nos.noaa.gov/seas/ NDBC (W/OPS 52) Mariners Weather Log http://www.nws.noaa.gov/om/ Bldg 1100, Room 353D mwl/mwl.htm Stennis Space Center, MS 39529-6000 Marine Dissemination http://www.nws.noaa.gov/om/ marine/home.htm Phone: (228) 688-1457 Fax: (228) 668-3153 U.S. Coast Guard http://www.navcen.uscg.gov/ Navigation Center marcomms/ E-mail: [email protected] See these Web pages for further links. 2 Mariners Weather Log Mariners Weather Log Table of Contents Edmund Fitzgerald Remembered .................................................................................................................. 4 Shipwreck - George Stone ........................................................................................................................... 11 The Beatrice Hurricane ...............................................................................................................................12 Houston PMO Retires .................................................................................................................................14 Seventeenth Century Seafarer, William Dampier .......................................................................................16 Marine Prediction Center Sets Sail on First Alliance ...................................................................................23 VOS Climate Project ...................................................................................................................................24 Attention Ship Owners, Ship Operators and Navigation Officers - We Need Obs South African Weather Service ..................................................................................................................37 New Great Lakes Weather Station .............................................................................................................79 Departments: Marine Weather Review North Atlantic, Sept.– Dec. 2001 ...................................................................................................38 North Pacific, Sept. - Dec. 2001 ....................................................................................................51 Tropical Atlantic and Tropical East Pacific, Sept. - Dec. 2001 .....................................................62 Coastal Forecast Office News ....................................................................................................................80 Alaskan Waters: Collecting Ships Observations.............................................................................80 Awards ...........................................................................................................................................83 VOS Program ..............................................................................................................................................86 VOS New Recruits ........................................................................................................................86 VOS Awards ..................................................................................................................................87 Meteorological Services Observations ...................................................................................................................................92 Spring/Summer 2002 3 Edmund Fitzgerald Great Lakes Storm November 9-11,1998: Edmund Fitzgerald Remembered Kirk Lombardy Marine Forecaster NWS, Cleveland, Ohio The author wishes to express his respect toward the Captains and crews of the Great Lakes shipping industry. The issue of the great tragedy of the Edmund Fitzgerald would rather be kept solemn by many. The intent of this article is to show how the interaction between the National Weather Service and marine interests has progressed in the last 24 years. n 10 November 1975, the Dock No. 1, in Superior, WI. The shore of Lake Superior. (Strong most notorious Great ship’s final voyage would carry northeast storm force winds OLakes shipping disaster taconite; destined for Detroit, MI caused extremely high waves at occurred. The SS Edmund (Figure 1). the end of the fetch on the south Fitzgerald sank and it’s crew of shore of the lake). 29 men perished in the deep Fitzgerald departed at full speed waters of Lake Superior during of approximately 14 Knots (16 Fitzgerald’s new course passed an intense storm which had mph). Two hours into the voyage, approximately half way between developed over the central United the ship arrived at a point near Isle Royal and the Keewanaw States and made a bee-line for Two Harbors, MN. The SS Peninsula. At this point, the ship the western Great Lakes. Arthur M. Anderson, owned by turned eastward to parallel the the United States Steel Corp., northern shore of Lake Superior Twenty-three years later, a case bound for Gary, IN proceeded and then southeast-ward along the of deja vu settled in on the eastward on a similar course as eastern shore. Fitzgerald reached anniversary of the SS Edmund Fitzgerald. The two ships were a point approximately 11 miles Fitzgerald. From 9 - 11 approximately 10 to 20 miles apart. Northwest of Michipicoten Island November 1998, a storm of equal at 1800 UTC (1300 EST), proportions developed over the Routine weather reports, via radio, 10 November. The ship passed to same area as the Fitzgerald were made at 0600 UTC (0100 the West of Michipicoten West storm and followed a similar path EST) and 1200 UTC (0700 EST) End Light. At this point, toward the western Great Lakes. by the Fitzgerald on 10 Fitzgerald changed course to However, this time there was an November. At 1220 UTC (0720 pass north and east of Caribou improved forecast, warning, and EST), a normal radio report was Island on a southeast heading dissemination system in place. made to the company office. The toward Whitefish Bay, MI. report indicated the estimated time Final Voyage of the SS of arrival was indefinite due to The SS Edmund Fitzgerald sank Edmund Fitzgerald weather. near the International Boundary Line some time after 0015 UTC On 9 November 1975, Fitzgerald headed northeast (1915 EST). Her final coordinates Fitzgerald began loading at away from the recommended were 46°59.9’N, 85°06.6’W. Burlington Northern Railroad shipping lanes along the south 4 Mariners Weather Log Edmund Fitzgerald SS Edmund Fitzgerald increasing the wind speed and forecast to build to 8 to 16 feet by Encountered Weather wave heights. Monday afternoon. The storm of historical proportions Gale warnings were issued in early
Recommended publications
  • Employing Small Unmanned Aircraft Systems to Improve Situational Awareness and Operational Physical Routines
    Proposal Title: Employing Small Unmanned Aircraft Systems to Improve Situational Awareness and Operational Physical Routines Used to Predict Tropical Cyclone Structure and Intensity A Proposal Submitted to NOAA Funding Opportunity: NOAA-OAR-WPO-2021-2006592 Competition Area: Observations Principal Investigator: Dr. Jun A. Zhang University of Miami 4600 Rickenbacker Causeway, Miami, FL 33149 (305) 361-4557 [email protected] Co-Principal Investigator Dr. Joseph J. Cione Hurricane Research Division, AOML/NOAA 4301 Rickenbacker Causeway, Miami, FL 33149 (305) 213-0886 [email protected] Institutional Representative Eva Leach Sponsored Programs Specialist, Research Administration Rosenstiel School of Marine and Atmospheric Science, University of Miami 4600 Rickenbacker Causeway, Miami, FL 33149 (305) 421-4635 [email protected] Proposed period: 2 years (August 1, 2021 – July 31, 2023) Requested budget: 1st Year: $299,182; 2nd Year: $299,173; Total budget: $598,355 Year 1 Year 2 Total U. Miami $288,415 $288,176 $576,591 (including the (including the (including the indirect cost indirect cost of indirect cost of of $59,514) $59,465) $118,979) HRD/AOML/NOAA $10,767 $10,997 $21,764 (field travel) (field travel) (field travel) Total Project Cost $299,182 $299,173 $598,355 1 Proposal Title: Employing Small Unmanned Aircraft Systems to Improve Situational Awareness and Operational Physical Routines Used to Predict Tropical Cyclone Structure and Intensity A Proposal Submitted to NOAA Funding Opportunity: NOAA-OAR-WPO-2021-2006592 Competition Area: Observations Principal Investigator: Dr. Jun A. Zhang, University of Miami Co-Principal Investigator: Dr. Joseph J. Cione, HRD/AOML/NOAA NOAA Collaborators: Dr.
    [Show full text]
  • (SCOOP) the Weather Buoy
    Poster 18, AMS 27th WAF/23rd NWP The Results of the Field Evaluation of NDBC's Prototype Self-Contained Ocean Observations Payload (SCOOP) Richard H. Bouchard1, Rex V. Hervey1, Walt McCall2, Ryan Beets3, Michael D. Robbie3, Chris Wills3, John Tancredi3, Michael Vasquez4, Steven DiNapoli4 1NOAA’s National Data Buoy Center (NDBC), Stennis Space Center, MS 39529 USA 2University of Southern Mississippi, Stennis Space Center, MS 39529 USA 3PAE at NDBC, 4NVision Solutions, Inc. at NDBC Abstract: The National Oceanic and Atmospheric Administration's (NOAA) National Data Buoy Center (NDBC) is undertaking a fundamental and broad transformation Table 1: Evaluation Locations Prototype Location Evaluation Start Evaluation End of its ocean observing systems on moored buoys. This transformation is necessary to gain efficiencies in maintaining operational ocean observation networks and to Comment Payload (See Figure 1) Date Date increase their reliability. The Self-Contained Ocean Observations Payload (SCOOP) takes advantage of the advances in communications and small, efficient, multi- SCP01 11 km West of 42003 11/7/2014 5/5/2015 *Vaisala misaligned purpose sensors to reduce the size and costs of systems and expand the suite of available real-time ocean observations. NDBC has successfully completed a 180-day Waves Failed SCP03 6 km North of 42003 11/7/2014 5/5/2015 11/20/2014 field evaluation of three prototype systems in the Gulf of Mexico (Table 1). The field evaluations indicate that SCOOP generally meets or exceeds NDBC's established 12 km South-Southwest SCP02 11/9/2014 5/7/2015 criteria for the accuracy of its marine measurements and the detailed results will be presented.
    [Show full text]
  • Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs.
    [Show full text]
  • Eyes on the Ocean NDBC Buoys Supporting Prediction, Forecast and Warning for Natural Hazards for Oceans in Action Stennis Space Center August 17, 2016
    Eyes on the Ocean NDBC Buoys Supporting Prediction, Forecast and Warning for Natural Hazards for Oceans In Action Stennis Space Center August 17, 2016 Helmut H. Portmann Director, National Data Buoy Center National Weather Service August 17, 2016 1 2016 Atlantic Hurricane Season Near to above-normal Atlantic hurricane season is most likely this year 70 percent likelihood of 12 to 17 named storms Hurricane Alex January TS Bonnie May TS Colin June TS Danielle June Hurricane Earl August Fiona Gaston Hermine Ian Julia Karl Lisa Matthew Nicole Otto Paula Richard Shary Tobias Virginie Walter NationalNational Weather Data Buoy Service Center 2 Influence of La Nina Typical influence of La Niña on Pacific and Atlantic seasonal hurricane activity. Map by NOAA Climate.gov, based on originals by Gerry Bell NationalNational Weather Data Buoy Service Center 3 NOAA’s National Data Buoy Center NationalNational Weather Data Buoy Service Center 4 www. ndbc.noaa.gov www. ndbc.noaa.gov NationalNational Weather Data Buoy Service Center NDBC Observing Platforms Tsunami Weather Buoys in Place for > 30 Years Wx TAO 106 met/ocean WX buoys 47 C-MAN stations 55 TAO Climate Monitoring buoys + 4 current profiler moorings 39 DART Tsunami Monitoring stations NationalNational Weather Data BuoyService Center 6 National Data Buoy Center Electronics Labs Facilities at SSC, MS MCC Operates 24/7/365 Sensor Testing & Cal High Bay Fabrication Paint & Sandblasting Wind Tunnel & Environmental Chambers In-Water Testing Machine Shops El Nino - La Nina Detection NDBC maintains an
    [Show full text]
  • Addressing Sensing Capability Gaps Using Economical Profiling Technology
    | FEATURE | ADDRESSING SENSING CAPABILITY GAPS USING ECONOMICAL PROFILING TECHNOLOGY By Michael Rufo, director of Boston Engineering’s Advanced Systems Group, and David Shane, project manager and business development lead at Boston Engineering’s Advanced Systems Group Figure 1 - NOAA Testing MASED in Alaska. The ability to collect oceanic data quickly, accurately, and economically sensor family of platforms to support a range of applications across has a significant impact on the success of commercial, military, and multiple industries. The platform’s “plug-and-play” capabilities enable maritime research operations. Requirements and applications for the rapid integration and use of a myriad of commercial sensors. oceanic sensing vary significantly based on the type of information Boston Engineering’s platforms are capable of being widely distributed targeted in specific weather patterns, climate regions, and oceanic at reduced cost. zones. Boston Engineering’s new sensing technology platform is addressing a breadth of maritime data collection needs by reducing MASED Overview barriers created by high costs and harsh environments. The following MASED overview highlights how Boston Engineering MARITIME SENSING TECHNOLOGY SNAPSHOT is applying its maritime sensor platform to address specific needs. MASED—a Multipurpose Above/Below Surface Expendable Buoys, unmanned vehicles (UxVs), and sondes each have their Dropsonde—is the first product to collect ocean data during advantages, but high costs and data collection limitations can make developing hurricanes via multiple submerge-and-surface cycles. The it prohibitive to deploy these technologies. As an example, the data collected by MASED will allow researchers to better understand, average price tag of a tethered weather buoy can reach $375,000.
    [Show full text]
  • National Data Buoy Center Command Briefing for Marine Technology Society Oceans in Action
    National Data Buoy Center Command Briefing For Marine Technology Society Oceans in Action August 21, 2014 Helmut H. Portmann, Director National Data Buoy Center To provide• a real-time, end-to-end capability beginning with the collection of marine atmospheric and oceanographic data and ending with its transmission, quality control and distribution. NDBC Weather Forecast Offices/ IOOS Partners Tsunami Warning & other NOAA River Forecast Centers Platforms Centers observations MADIS NWS Global NDBC Telecommunication Mission Control System (GTS) Center NWS/NCEP Emergency Managers Oil & Gas Platforms HF Radars Public NOAA NESDIS (NCDC, NODC, NGDC) DATA COLLECTION DATA DELIVERY NDBC Organization National Weather Service Office of Operational Systems NDBC Director SRQA Office 40 Full-time Civilians (NWS) Mission Control Operations Engineering Support Services Mission Mission Information Field Production Technology Logistics and Business Control Support Technology Operations Engineering Development Facilities Services Center Engineering 1 NOAA Corps Officer U.S. Coast Guard Liaison Office – 1 Lt & 4 CWO Bos’ns NDBC Technical Support Contract –90 Contractors Pacific Architects and Engineers (PAE) National Data Buoy Center NDBC is a cradle to grave operation - It begins with requirements and engineering design, then continues through purchasing, fabrication, integration, testing, logistics, deployment and maintenance, and then with observations ingest, processing, analysis, distribution in real time NDBC’s Ocean Observing Networks Wx DART Weather
    [Show full text]
  • Verification of National Hurricane Center Forecasts of Extratropical Transition
    10C.2 Verification of National Hurricane Center Forecasts of Extratropical Transition John L. Beven II NOAA/NWS/NCEP/National Hurricane Center I. Introduction become TCs in a process known as tropical transition (Davis and Bosart 2004). More A great variety of cyclonic circulations commonly, TCs leaving the tropical environment exist in the atmosphere, each with its characteristic interact with baroclinic systems in the westerlies. structure and driving energy (Beven 1997, Figure This causes the TCs to become frontal or 1). Of particular interest is the tropical cyclone extratropical cyclones with the driving energy (TC), which has a warm-core non-frontal thermal derived from air mass contrast and the strongest structure generated by diabatic heat release from winds typically more than 100 km from the center, convective activity near the center. The strongest accompanied by significantly changed winds and heaviest rains in a tropical cyclone are precipitation patterns. This process is known as typically within 100 km of the center with extratropical transition (ET). maximum sustained winds sometimes as high as 90 ms-1. There are several studies of ET which highlight the many ways a TC can interact with a baroclinic environment and the variety of resulting structures. These include the Thorncroft and Jones (2000) study of Hurricane Iris which became a powerful baroclinic cyclone with a warm-core structure, the Abraham et al. (2004) study of Hurricane Michael, and the Beven (2002) study of interrupted and failed transitions. These studies show the complexity of the process, which can pose a significant challenge to TC forecasters trying to predict ET.
    [Show full text]
  • Downloaded 10/01/21 04:51 PM UTC JULY 2003 ANNUAL SUMMARY 1455
    1454 MONTHLY WEATHER REVIEW VOLUME 131 ANNUAL SUMMARY Atlantic Hurricane Season of 2001 JOHN L. BEVEN II, STACY R. STEWART,MILES B. LAWRENCE,LIXION A. AVILA,JAMES L. FRANKLIN, AND RICHARD J. PASCH NOAA/NWS/Tropical Prediction Center/National Hurricane Center, Miami, Florida (Manuscript received 19 July 2002, in ®nal form 9 December 2002) ABSTRACT Activity during the 2001 hurricane season was similar to that of the 2000 season. Fifteen tropical storms developed, with nine becoming hurricanes and four major hurricanes. Two tropical depressions failed to become tropical storms. Similarities to the 2000 season include overall activity much above climatological levels and most of the cyclones occurring over the open Atlantic north of 258N. The overall ``lateness'' of the season was notable, with 11 named storms, including all the hurricanes, forming after 1 September. There were no hurricane landfalls in the United States for the second year in a row. However, the season's tropical cyclones were responsible for 93 deaths, including 41 from Tropical Storm Allison in the United States, and 48 from Hurricanes Iris and Michelle in the Caribbean. 1. Overview of the 2001 season cycleÐsimultaneously exhibiting characteristics of both tropical and extratropical cyclones (Hebert 1973). The National Hurricane Center (NHC) tracked 15 No hurricanes struck the United States during 2001. tropical cyclones (TCs) that achieved tropical storm or The season thus joins the 2000, 1990, and 1951 seasons hurricane strength in the Atlantic basin during 2001 as years in which eight or more hurricanes occurred (Table 1). Nine of these became hurricanes and four without a U.S.
    [Show full text]
  • Metocean Data Needs Assessment and Data Collection Strategy Development for the Massachusetts Wind Energy Area
    PREPARED FOR: Massachusetts Clean Energy Center Metocean Data Needs Assessment and Data Collection Strategy Development for the Massachusetts Wind Energy Area October 16, 2015 CLASSIFICATION CLIENT’S DISCRETION 463 NEW KARNER RD. | ALBANY, NY 12205 |www.awstruepower.com |[email protected] M etocean Data Needs Assessment and Data Collection Strategy Development i DISCLAIMER Acceptance of this document by the client is on the basis that AWS Truepower is not in any way to be held responsible for the application or use made of the findings and that such responsibility remains with the client. KEY TO DOCUMENT CLASSIFICATION STRICTLY CONFIDENTIAL For recipients only CONFIDENTIAL May be shared within client’s organization AWS TRUEPOWER ONLY Not to be distributed outside AWS Truepower CLIENT’S DISCRETION Distribution at the client’s discretion FOR PUBLIC RELEASE No restriction DOCUMENT AUTHORS AND CONTRIBUTORS Matthew V. Filippelli Mike Markus Matt Eberhard Bruce H. Bailey Lesley Dubois AWS TRUEPOWER LLC 463 New Karner Road Albany, New York 12205 www.awstruepower.com Massachusetts Clean Energy Center Metocean Data Needs Assessment and Data Collection Strategy Development ii TABLE OF CONTENTS 1. INTRODUCTION 2 2. SOURCES OF METOCEAN DATA 5 3. METOCEAN DATA NEEDS FOR OFFSHORE WIND DEVELOPMENT 13 4. METOCEAN DATA COLLECTION STRATEGIES TO ADDRESS GAPS 33 5. STAKEHOLDERS AND PARTNERSHIP OPPORTUNITIES 61 6. CONCLUSIONS AND RECOMMENDATIONS 70 APPENDIX: METOCEAN DATA INVENTORY 73 Massachusetts Clean Energy Center Metocean Data Needs Assessment and Data Collection Strategy Development Page 1 of 98 Executive Summary The objective of this report is to provide the Massachusetts Clean Energy Center (MassCEC) with an assessment of information sources regarding the meteorological and oceanographic (metocean) conditions within the Bureau of Ocean Energy Management’s (BOEM) designated Massachusetts Wind Energy Area (MAWEA) and the Rhode Island/Massachusetts (RI/MA) Wind Energy Area, collectively, the WEAs.
    [Show full text]
  • Mariner's Guide for Hurricane Awareness
    Mariner’s Guide For Hurricane Awareness In The North Atlantic Basin Eric J. Holweg [email protected] Meteorologist Tropical Analysis and Forecast Branch Tropical Prediction Center National Weather Service National Oceanic and Atmospheric Administration August 2000 Internet Sites with Weather and Communications Information Of Interest To The Mariner NOAA home page: http://www.noaa.gov NWS home page: http://www.nws.noaa.gov NWS marine dissemination page: http://www.nws.noaa.gov/om/marine/home.htm NWS marine text products: http://www.nws.noaa.gov/om/marine/forecast.htm NWS radio facsmile/marine charts: http://weather.noaa.gov/fax/marine.shtml NWS publications: http://www.nws.noaa.gov/om/nwspub.htm NOAA Data Buoy Center: http://www.ndbc.noaa.gov NOAA Weather Radio: http://www.nws.noaa.gov/nwr National Ocean Service (NOS): http://co-ops.nos.noaa.gov/ NOS Tide data: http://tidesonline.nos.noaa.gov/ USCG Navigation Center: http://www.navcen.uscg.mil Tropical Prediction Center: http://www.nhc.noaa.gov/ High Seas Forecasts and Charts: http://www.nhc.noaa.gov/forecast.html Marine Prediction Center: http://www.mpc.ncep.noaa.gov SST & Gulfstream: http://www4.nlmoc.navy.mil/data/oceans/gulfstream.html Hurricane Preparedness & Tracks: http://www.fema.gov/fema/trop.htm Time Zone Conversions: http://tycho.usno.navy.mil/zones.html Table of Contents Introduction and Purpose ................................................................................................................... 1 Disclaimer ...........................................................................................................................................
    [Show full text]
  • Nasa and Noaa Flew Unmanned Aircraft Into Hurricane Noel
    NASA News National Aeronautics and Space Administration Wallops Flight Facility Wallops Island, VA 23337-5099 _______________________________________________________________________________________ For Release: November 5, 2007 Rebecca Powell/Elizabeth Flowers NASA Wallops Flight Facility, Wallops Island, Va. (Phone: 757-824-1139/1584) Erica Rule/Jana Goldman NOAA, Atlantic Oceanographic and Meteorological Laboratory, Miami, Fla. (Phone: 305-361-4541/301-734-1123)) RELEASE NO: 07 - 09 NASA AND NOAA FLEW UNMANNED AIRCRAFT INTO HURRICANE NOEL NASA and the National Oceanic Atmospheric Administration (NOAA) opened a new chapter in the world of hurricane observation in making the first unmanned flight into Hurricane Noel. An unmanned aerial system, or UAS, flew into the eye wall of the hurricane at altitudes as low as 300 feet. Using the small, remotely piloted aircraft, scientists were able to make detailed observations of areas of hurricanes that are too dangerous for manned aircraft closing an important gap in obtaining real-time near-surface meteorological and oceanographic data. “NASA is pleased to partner with NOAA in achieving this long-time goal of boundary layer observations into an active hurricane.” said Randy Albertson, deputy manager of the Suborbital Science Program for the Science Mission Directorate at NASA Headquarters, Washington. “The Aerosonde Hurricane Boundary Layer Mission, combined with data from recent NASA and NOAA field missions using conventional aircraft and satellites, will provide a valuable new set of observations for air-sea interaction and tropical cyclone research.” The UAS was launched from NASA’s Wallops Flight Facility, Wallops Island, Va., at 2:08 p.m.(EDT), Friday, November 2. Detailed observations of the near-surface hurricane environment have been elusive because of the severe safety risks associated with low level manned flight missions.
    [Show full text]
  • Mariners Weather Log Vol
    Mariners Weather Log Vol. 43, No. 3 December 1999 Double eyewall structure of hurricane Gilbert on September 14, 1988, near Cozumel Island, Yucatan. The devastating peak wind and rainfall occurs in the hurricane eyewalls. The moat is an area of lesser wind and rainfall between the two eyewalls. Superimposed on the radar picture is the aircrafts track and wind at about 2600 meters (8500 feet) (wind barbs and flags in knots). See article on page 4. Mariners Weather Log Mariners Weather Log From the Editorial Supervisor This issue features a fascinating interview with Dr. Hugh Willoughby, head of the Hurricane Research Division of NOAA’s Atlantic Oceanographic and Meteorological Laboratories, on concentric (double) hurricane eyewalls. Hurricane eyewalls are the nearly circular ring of thunder- storm-like cloud towers surrounding the often clear, nearly U.S. Department of Commerce calm center or eye of the storm. The eyewalls contain the William M. Daley, Secretary devastating peak wind and rainfall of the hurricane and can extend up to 10 miles high in the atmosphere. While most National Oceanic and hurricanes have a single eyewall, many major category 3 or Atmospheric Administration stronger hurricanes (50 % or more) develop the double eye Dr. D. James Baker, Administrator wall structure.The double structure usually lasts a day or two, with the inner wall eventually dissipating as the outer National Weather Service wall contracts in to become the new single eyewall (going John J. Kelly, Jr., Assistant Administrator for Weather Services through an entire eyewall replacement). See the article for details. National Environmental Satellite, Data, and Information Service This issue also contains the AMVER rescue report for Robert S.
    [Show full text]