Ocean Characteristics and Habitats

Total Page:16

File Type:pdf, Size:1020Kb

Ocean Characteristics and Habitats Ocean Ocean Characteristics Characteristics and Habitats ● Salinity ● Depth ● Temperature ● Pressure Ocean Characteristics - Salinity Ocean Characteristics - Salinity ● The ocean is the largest source of _________ on Earth ● Salinity is the _________ amount of _________ salts in water. ● The salt in oceans comes from: ○ Eroding land ○ Volcanic emissions ○ Chemical reactions on the ocean floor ○ The atmosphere Ocean Characteristics - Pressure Ocean Characteristics - Temperature ● Water pressure is the _________ of the water ● Temperature: the temperature _________ at above a specific depth of water different depths ● Pressure _________ as depth _________. ○ Deep ocean is _________ than shallower ● Pressure on the ocean floor is areas because _________ doesn’t reach ___ greater than pressure at deep areas. sea level. ○ Warm water is less _________ than cold ● A diver can safely withstand water and tends to stay at the surface pressure at 40m below sea level Life in the Ocean Ocean Habitats • Organisms that live in the ocean are • Life in the Ocean classified into three main groups based on – Examples of organisms: how the organisms _________ and where they generally make their home in the ocean. • _________ are organisms that live on or near the ocean bottom, sometimes attached to surfaces. • _________ are tiny organisms that are moved by ocean currents. • _________ are free-swimming organisms that can move independently of currents. Ocean Zones and Conditions Ocean Ecosystems • You can think of the ocean as a huge • Ocean Ecosystems _________________ that includes living and – Conditions of the ocean change greatly nonliving things. In some ways, the ocean with distance from the _________. For community resembles a human city or town. example, _________ easily penetrates the • Typically, cities and towns are divided into shallow ocean waters near the shoreline to several _________. Some zones consist light the ocean floor. mostly of houses and apartment buildings. Other zones have stores and shops or factories and office buildings. Ocean Ecosystems Ocean Ecosystems • The ocean is divided into three _________ life zones: intertidal zone, neritic zone, and • Water depth generally_________ with the oceanic zone. distance from the shoreline. • The main factors that determine the location of each life zone are water _________ and • Changes in depth are accompanied by distance from the shoreline. changes in conditions such as pressure, • Each life zone differs in conditions such as sunlight, and temperature. temperature, pressure, and the amount of • As the environment changes, the organisms sunlight it receives. able to _________ in each environment also • Organisms living in each zone are _________ to that region’s conditions. change. Ocean Habitats - Intertidal Zone Ocean Habitats - Zones • The intertidal zone is the • Ocean zones include the intertidal zone, the _________ area that falls neritic zone, and the open-ocean zone. between the high tidemark and the low tide mark. ● Most organisms living here are adapted to being _________ at high tide and exposed to air at low tide. ● Some, such as sea anemones and sea stars make their homes in tide _________, low areas that remain filled water at low tide. Ocean Habitats - Intertidal Zone • Many organisms of the Ocean Habitats - Intertidal Zone intertidal zone have ______________ to prevent them from being washed into the ocean by waves. ● Crabs and clams, for example, burrow into sand. Seaweeds have structures called holdfasts that help them stay rooted. Barnacles create tough shells that they cement to rock in order to withstand waves. Ocean Habitats - Neritic Zone Ocean Habitats - Neritic Zone • Water depth ranges from a few meters to about _________. • The shallow waters of the neritic zone allow light to penetrate almost to the ocean floor. • Temperatures and salinity also stay fairly • The _________ zone is the ocean area that _________. extends from the intertidal zone to the edge • These conditions allow the neritic zone to of the continental _________. provide home to _________ _________ of organisms than either of the other life zones. Ocean Habitats - Oceanic Zone Ocean Habitats - Neritic Zone ∙ The _________ zone is made up of the • Two major ecosystems within the neritic zone _________ waters of the ocean. ∙ This zone extends from the ocean’s are: _________ to its deepest waters. – Coral reefs – Kelp forests Ocean Habitats - Oceanic Zone ∙ Sunlight can penetrate only the top ________ Ocean Habitats - Oceanic Zone of the oceanic zone. ∙ Some organisms, ∙ Thus, all _________, such as phytoplankton, such as hatchet fish and most consumers live in these surface waters. and krill, _________ ∙ Whales, dolphins, squids, jellyfish, and fish between the surface live in the oceanic zone. and deep waters of this zone. ∙ Krill are tiny, shrimp-like animals that are an important food source for whales and other ocean animals. Ocean Habitats - Abyss Ocean Habitats - Abyss ∙ The floor of the deep ∙ Worms, bacteria, sea urchins, and some fish ocean is called the live in this zone. Many of these organisms survive by eating _________ material that _________. High rains down from the surface. Whole pressure, low ecosystems also survive on dead whales and temperature, and the other marine life that _________ to the ocean absence of floor. _________ characterize this area. Ocean Habitats - Abyss Upwelling • In some parts of the abyss are deep-sea • In most parts of the ocean, surface waters do ________________ vent communities. not usually _________ with deep ocean • Hydrothermal vents are cracks in the ocean waters. However, mixing sometimes occurs crust that release mineral-rich water that has when winds cause upwelling. been heated by Earth’s interior. – Upwelling is the movement of cold water • Water temperatures near hydrothermal vents upward from the deep ocean. As can reach up to 360oC (_________). _________ blow away the warm surface • Bacteria near the vents make food using water, cold water _________ to replace it. chemicals in the vent water. • Tubeworms and clams near the vents use these bacteria for food. Upwelling Where River Meets Ocean • Upwelling brings up tiny ocean organisms, • Other important environments along the _________, and other nutrients from the ocean’s edge are estuaries. ____________ deeper layers of the water. Without this are coastal inlets or bays where freshwater motion, the surface waters of the open ocean from rivers mixes with the salty ocean water. would be very scarce in _________. • Water that is partly salty and partly fresh is _________. • Coastal _________ are found in and around estuaries. Where River Meets Ocean • Along the coasts of the United States, most wetlands are either _________ forests or salt marshes. • Mangrove swamps are found in southern Florida and along the coast of the Gulf of Mexico. • Salt marshes are especially abundant along the east coast from Massachusetts to Florida..
Recommended publications
  • Grade 3 Unit 2 Overview Open Ocean Habitats Introduction
    G3 U2 OVR GRADE 3 UNIT 2 OVERVIEW Open Ocean Habitats Introduction The open ocean has always played a vital role in the culture, subsistence, and economic well-being of Hawai‘i’s inhabitants. The Hawaiian Islands lie in the Pacifi c Ocean, a body of water covering more than one-third of the Earth’s surface. In the following four lessons, students learn about open ocean habitats, from the ocean’s lighter surface to the darker bottom fl oor thousands of feet below the surface. Although organisms are scarce in the deep sea, there is a large diversity of organisms in addition to bottom fi sh such as polycheate worms, crustaceans, and bivalve mollusks. They come to realize that few things in the open ocean have adapted to cope with the increased pressure from the weight of the water column at that depth, in complete darkness and frigid temperatures. Students fi nd out, through instruction, presentations, and website research, that the vast open ocean is divided into zones. The pelagic zone consists of the open ocean habitat that begins at the edge of the continental shelf and extends from the surface to the ocean bottom. This zone is further sub-divided into the photic (sunlight) and disphotic (twilight) zones where most ocean organisms live. Below these two sub-zones is the aphotic (darkness) zone. In this unit, students learn about each of the ocean zones, and identify and note animals living in each zone. They also research and keep records of the evolutionary physical features and functions that animals they study have acquired to survive in harsh open ocean habitats.
    [Show full text]
  • Environmental Science
    LIVING THINGS AND THE ENVIRONMENT • Ecosystem: – All the living and nonliving things that ENVIRONMENTAL SCIENCE interact in a particular area – An organism obtains food, water, shelter, and other Populations and Communities things it needs to live, grow and reproduce from its surroundings – Ecosystems may contain many different habitats Science 7 Science 7 LIVING THINGS AND THE LIVING THINGS AND THEIR ENVIRONMENT ENVIRONMENT • Habitat: • Biotic Factors: – The place and organism – The living parts of any lives and obtains all the ecosystem things it needs to survive – Example: Prairie Dogs – Example: • Hawks • Prairie Dog • Ferrets • Needs: • Badgers – Food • Eagles – Water • Grass – Shelter • Plants – Etc. Science 7 Science 7 LIVING THINGS AND THEIR LIVING THINGS AND THEIR ENVIRONMENT ENVIRONMENT • Abiotic Factors: • Abiotic Factors con’t – Water: – Sunlight: • All living things • Necessary for require water for photosynthesis survival • Your body is 65% • Organisms which water use the sun form • A watermelon is the base of the 95% water food chain • Plants need water for photosynthesis for food and oxygen production Science 7 Science 7 1 LIVING THINGS AND THEIR LIVING THINGS AND THEIR ENVIRONMENT ENVIRONMENT • Abiotic Factors Con’t • Abiotic Factors con’t – Oxygen: – Temperature: • Necessary for most • The temperature of living things an area determines • Used by animals the type of for cellular organisms which respiration can live there • Ex: Polar Bears do not live in the tropics • Ex: piranha’s don’t live in the arctic Science 7 Science
    [Show full text]
  • HOLT Earth Science
    HOLT Earth Science Directed Reading Name Class Date Skills Worksheet Directed Reading Section: What Is Earth Science? 1. For thousands of years, people have looked at the world and wondered what shaped it. 2. How did cultures throughout history attempt to explain events such as vol- cano eruptions, earthquakes, and eclipses? 3. How does modern science attempt to understand Earth and its changing landscape? THE SCIENTIFIC STUDY OF EARTH ______ 4. Scientists in China began keeping records of earthquakes as early as a. 200 BCE. b. 480 BCE. c. 780 BCE. d. 1780 BCE. ______ 5. What kind of catalog did the ancient Greeks compile? a. a catalog of rocks and minerals b. a catalog of stars in the universe c. a catalog of gods and goddesses d. a catalog of fashion ______ 6. What did the Maya track in ancient times? a. the tides b. the movement of people and animals c. changes in rocks and minerals d. the movements of the sun, moon, and planets ______ 7. Based on their observations, the Maya created a. jewelry. b. calendars. c. books. d. pyramids. Copyright © by Holt, Rinehart and Winston. All rights reserved. Holt Earth Science 7 Introduction to Earth Science Name Class Date Directed Reading continued ______ 8. For a long time, scientific discoveries were limited to a. observations of phenomena that could be made with the help of scientific instruments. b. observations of phenomena that could not be seen, only imagined. c. myths and legends surrounding phenomena. d. observations of phenomena that could be seen with the unaided eye.
    [Show full text]
  • Lesson Plan – Ocean in Motion
    Lesson Plan – Ocean in Motion Summary This lesson will introduce students to how the ocean is divided into different zones, the physical characteristics of these zones, and how water moves around the earths ocean basin. Students will also be introduced to organisms with adaptations to survive in various ocean zones. Content Area Physical Oceanography, Life Science Grade Level 5-8 Key Concept(s) • The ocean consists of different zones in much the same way terrestrial ecosystems are classified into different biomes. • Water moves and circulates throughout the ocean basins by means of surface currents, upwelling, and thermohaline circualtion. • Ocean zones have distinguishing physical characteristics and organisms/ animals have adaptations to survive in different ocean zones. Lesson Plan – Ocean in Motion Objectives Students will be able to: • Describe the different zones in the ocean based on features such as light, depth, and distance from shore. • Understand how water is moved around the ocean via surface currents and deep water circulation. • Explain how some organisms are adapted to survive in different zones of the ocean. Resources GCOOS Model Forecasts Various maps showing Gulf of Mexico surface current velocity (great teaching graphic also showing circulation and gyres in Gulf of Mexico), surface current forecasts, and wind driven current forecasts. http://gcoos.org/products/index.php/model-forecasts/ GCOOS Recent Observations Gulf of Mexico map with data points showing water temperature, currents, salinity and more! http://data.gcoos.org/fullView.php Lesson Plan – Ocean in Motion National Science Education Standard or Ocean Literacy Learning Goals Essential Principle Unifying Concepts and Processes Models are tentative schemes or structures that 2.
    [Show full text]
  • A Database for Ocean Acidification Assessment in the Iberian Upwelling
    Earth Syst. Sci. Data, 12, 2647–2663, 2020 https://doi.org/10.5194/essd-12-2647-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. ARIOS: a database for ocean acidification assessment in the Iberian upwelling system (1976–2018) Xosé Antonio Padin, Antón Velo, and Fiz F. Pérez Instituto de Investigaciones Marinas, IIM-CSIC, 36208 Vigo, Spain Correspondence: Xosé Antonio Padin ([email protected]) Received: 13 March 2020 – Discussion started: 24 April 2020 Revised: 21 August 2020 – Accepted: 30 August 2020 – Published: 4 November 2020 Abstract. A data product of 17 653 discrete samples from 3343 oceanographic stations combining measure- ments of pH, alkalinity and other biogeochemical parameters off the northwestern Iberian Peninsula from June 1976 to September 2018 is presented in this study. The oceanography cruises funded by 24 projects were primarily carried out in the Ría de Vigo coastal inlet but also in an area ranging from the Bay of Biscay to the Por- tuguese coast. The robust seasonal cycles and long-term trends were only calculated along a longitudinal section, gathering data from the coastal and oceanic zone of the Iberian upwelling system. The pH in the surface waters of these separated regions, which were highly variable due to intense photosynthesis and the remineralization of organic matter, showed an interannual acidification ranging from −0:0012 to −0:0039 yr−1 that grew towards the coastline. This result is obtained despite the buffering capacity increasing in the coastal waters further inland as shown by the increase in alkalinity by 1:1±0:7 and 2:6±1:0 µmol kg−1 yr−1 in the inner and outer Ría de Vigo respectively, driven by interannual changes in the surface salinity of 0:0193±0:0056 and 0:0426±0:016 psu yr−1 respectively.
    [Show full text]
  • The Open Ocean
    THE OPEN OCEAN Grade 5 Unit 6 THE OPEN OCEAN How much of the Earth is covered by the ocean? What do we mean by the “open ocean”? How do we describe the open oceans of Hawai’i? The World’s Oceans The ocean is the world’s largest habitat. It covers about 70% of the Earth’s surface. Scientists divide the ocean into two main zones: Pelagic Zone: The open ocean that is not near the coast. pelagic zone Benthic Zone: The ocean bottom. benthic zone Ocean Zones pelagic zone Additional Pelagic Zones Photic zone Aphotic zone Pelagic Zones The Hawaiian Islands do not have a continental shelf Inshore: anything within 100 meters of shore Offshore : anything over 500 meters from shore Inshore Ecosystems Offshore Ecosystems Questions 1.) How much of the Earth is covered by the ocean? Questions 1.) How much of the Earth is covered by the ocean? Answer: 70% of the Earth is covered by ocean water. Questions 2.) What are the two MAIN zones of the ocean? Questions 2.) What are the two MAIN zones of the ocean? Answer: Pelagic Zone-the open ocean not near the coast. Benthic Zone-ocean bottom. Questions 3.) What are some other zones within the Pelagic Zone or Open Ocean? Questions 3.) What are some other zones within the Pelagic Zone or Open Ocean? Answer: Photic zone- where sunlight penetrates Aphotic zone- where sunlight cannot penetrate Neritic zone- over the continental shelf Oceanic zone- beyond the continental shelf Questions 4.) What is inshore? What is offshore? Questions 4.) What is inshore? What is offshore? Answer: Inshore: anything within 100 meters of shore Offshore: anything over 500 meters from shore .
    [Show full text]
  • Marine Science
    ICES Journal of Marine Science ICES Journal of Marine Science (2014), 71(4), 907–908. doi:10.1093/icesjms/fst219 Contribution to the Themed Section: ‘Larval Fish Conference’ Introduction The early life history of fish—there is still a lot of work to do! Howard I. Browman* and Anne Berit Skiftesvik Downloaded from Institute of Marine Research, Austevoll Research Station, 5392 Storebø, Norway *Corresponding author: tel: +47 9886 0778; e-mail: [email protected] Browman, H. I., and Skiftesvik, A. B. 2014. The early life history of fish—there is still a lot of work to do! – ICES Journal of Marine Science, 71: 907–908. http://icesjms.oxfordjournals.org/ Received 6 November 2013; accepted 16 November 2013; advance access publication 9 January 2014. The themed set of articles that follows this introduction contains a selection of the papers that were presented at the 36th Annual Larval Fish Conference (ALFC), convened in Osøyro, Norway, 2–6 July 2012. The conference was organized around four theme sessions, three of which are represented with articles in this collection: “Assessing the relative contribution of different sources of mortality in the early life stages of fishes”; “The contribution of mechanistic, behavioural, and physiological studies on fish larvae to ecosystem models”; “Effects of oil and natural gas surveys, extraction activity and spills on fish early life stages”. Looking back at the main themes of earlier conferences about the early life history of fish reveals that they were not very different from those of ALFC2012. Clearly, we still have a lot of work to do on these and other topics related to the biology and ecology of fish early life stages.
    [Show full text]
  • Herbivores Pelagic Food
    Oceanography 101, Richard Strickland Lecture 26 © 2006 University of Washington Oceanography 101, Richard Strickland Lecture 26 © 2006 University of Washington Pelagic Food Web: Review Pelagic Food Web: Herbivores • Primary Producers • Primary Consumers – Diatoms – Microzooplankton • www.ucl.ac.uk/GeolSci/micropal/foram.htm www.radiolaria.org – Crustaceans – Dinoflagellates • Copepods • Herbivorous krill – Pteropods – Microflagellates – Larvae – Chordates 1 2 Barnacle Oceanography 101, Richard Strickland Lecture 26 © 2006 University of Washington Oceanography 101, Richard Strickland Lecture 26 © 2006 University of Washington Pelagic Food Web: Carnivores Pelagic Food Web: Carnivores • Secondary consumers preying on zooplankton • Tertiary consumers preying on herbivorous & – Gelatinous zooplankton carnivorous zooplankton • Medusae – Fish (“baitfish,” “forage fish”) • Ctenophores • Herring • Siphonophores • Anchovy • Chaetognaths • Sardine – Crustaceans • Smelt • Carnivorous krill • Sand Lance – Amphipods & juveniles shrimp • Juvenile salmon • Predatory copepods – Invertebrates – Fish larvae & juveniles • Squid 3 4 http://jaffeweb.ucsd.edu/pages/celeste/copepods.html Oceanography 101, Richard Strickland Lecture 26 © 2006 University of Washington Oceanography 101, Richard Strickland Lecture 26 © 2006 University of Washington Pelagic Food Web: Carnivores Pelagic Food Web: Carnivores • Tertiary consumers preying on herbivorous & • Predators on krill zooplankton & small fish carnivorous zooplankton • Mammals – Planktivorous Fish – Baleen whales
    [Show full text]
  • Fungus Populations M Marine Waters and Coastal Sands of the Hawaiian, Line, and Phoenix Islands' CAROL WRIGHT STEE LE2
    Fungus Populations m Marine Waters and Coastal Sands of the Hawaiian, Line, and Phoenix Islands' CAROL WRIGHT STEE LE2 ABSTRACT: Saprophytic and facultative parasitic fungi present in the coastal waters and adjacent pelagic areas of the Hawaiian Islands, and in coastal sands of the H awaiian, Line, and Phoenix islands, were isolated by plating methods. Isolates from all areas sampled indicate that abundant and varied fungus popu­ lations do exist in these environments. The number of fungi obtained from the inshore neritic zone was seven times that obtained from the oceanic zone. The fungus Anreobasidium pltllttla11S ( De Bary) Arnaud was isolated repeatedly from oceanic waters. A comparison is made between the genera and the average number of isolates per liter of water known from the Atlantic Ocean with those found in this study of the Pacific Ocean. The number of fungi isolated from sand samples of the different islands ranged from 2 to 1,600 per gram. Species diversity was evident throughout the samples. The leeward Hawaiian islands had a higher aver­ age number of isolates per gram than any other island group. In conclusion the problems of defining a marine fungus are discussed. OCEA NIC AREAS in different parts of the world also are very limited. These include a few rec­ have been shown to be habitats for marine ords of higher fungi collected in the Marshall fungi (Johnson and Sparrow, 1961) . Investi­ Islands (Rogers, 1947) , the Society Islands gators, however, have usually concentrated on (Olive, 1957, 1958) , and Raroia in the Tua­ particular groups of fungi by use of selective motu Archipelago (Cooke, 1961); Phyco­ isolation methods ( Barghoorn and Linder, mycetes recovered by plating soils of the atolls 1944; Moore and Meyers, 1959; Jones, 1962) .
    [Show full text]
  • Central South Pacific Thermocline Water
    Central South Pacific thermocline water circulation from a high-resolution ocean model validated against satellite data: Seasonal variability and El Niño 1997-1998 influence Elodie Martinez, Alexandre Ganachaud, Jérôme Lefèvre, Keitapu Maamaatuaiahutapu To cite this version: Elodie Martinez, Alexandre Ganachaud, Jérôme Lefèvre, Keitapu Maamaatuaiahutapu. Central South Pacific thermocline water circulation from a high-resolution ocean model validated against satellite data: Seasonal variability and El Niño 1997-1998 influence. Journal of Geophysical Research. Oceans, Wiley-Blackwell, 2009, 114, pp.C05012. 10.1029/2008JC004824. hal-00406938 HAL Id: hal-00406938 https://hal.archives-ouvertes.fr/hal-00406938 Submitted on 20 Jun 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, C05012, doi:10.1029/2008JC004824, 2009 Central South Pacific thermocline water circulation from a high-resolution ocean model validated against satellite data: Seasonal variability and El Nin˜o 1997–1998 influence Elodie Martinez,1,2 Alexandre Ganachaud,3,4,5 Jerome Lefevre,3,4 and Keitapu Maamaatuaiahutapu1 Received 21 March 2008; revised 12 January 2009; accepted 28 January 2009; published 13 May 2009. [1] The oceanic circulation in French Polynesia, central South Pacific, is investigated based on a high-resolution model validated with satellite data.
    [Show full text]
  • 6.0 Biological Oceanography 7.0 Chemical Oceanography 8.0 Oceans and Climate Change 9.0 Conclusion
    OCEANOGRAPHY – AN OUTLINE BY PROF.A.BALASUBRAMANIAN Oceanography – an outline Table of Contents 1.0 Introduction 2.0 Scientific Curiosity 3.0 Oceanography -An inter-disciplinary subject 4.0 Geological Oceanography 5.0 Physical Oceanography 6.0 Biological Oceanography 7.0 Chemical Oceanography 8.0 Oceans and Climate change 9.0 Conclusion OBJECTIVES After attending this lesson, the user would be able to understand, basics of oceanography and the wide spectrum of studies carried out in the subject of oceanography. In addition, the concepts, methods, and developments of oceanography and its branches will also be understood. The role of oceanographers and the trends of research activities in the subject of oceanography will be known to progress further in this subject. 1.0 Introduction Oceanography is a science concerned with the physico-chemical characteristics of oceanic water, its depth, temperature, salinity, movements like tides, waves and currents, flora and fauna found at various zones of seas and oceans. As it deals with the distribution and processes of these water bodies, it comes under earth sciences in general. The subject deals with the physical, chemical and biological conditions of oceans. It is an inter-disciplinary subject and an emerging area for marine engineering. It is the science of seas and oceans. Ever since people started sailing the oceans, attempts have been made to map them. Ptolemy’s oldest map is an example. Ocean exploration began around 5000 B.C. with the first ocean diving and the first sailing vessels. Many advances that were made in the subject of oceanography, were all through the great ocean expeditions and explorations.
    [Show full text]
  • Algae Glossary
    COSEE-West Lecture and Workshop, November 30, 2011 & December 3, 2011 Some like it Hot…and Toxic and Investigations of the Deep Oceans Glossary A Abyssal zone: pelagic zone that contains the very deep benthic communities near the bottom of oceans. Aerobic: an organism requiring the presence of oxygen for life Anaerobic: an organism living in the absence of oxygen Anthropogenic: created by people or caused by human activity Aphotic zone: dark region of the ocean that lies below the surface sunlit waters Aquifer: A permeable region of rock or soil through which water can move. Archaea: A phylogenetic domain of prokaryotes consisting of those that can produce methane, organisms that require salt and those who live in extreme conditions such as temperatures above 80° C or higher. Assimilation: The conversion of nutrients into living tissue; constructive metabolism. Autotrophs: Organisms capable of making their own food from inorganic materials B Bacteria: All prokaryotes that are not members of the domain Archaea Basement rock: The rock layers that lie underneath layers of sediments Biogeography: The study of the distribution of species (biology) spatially (geography) and temporally (history) Biomass: the total weight of living organisms Biosphere: The biological component of earth systems, including all living organisms on earth together with the dead organic matter produced by them. From an ecological point of view, the biosphere is the "global ecosystem", comprising the totality of biodiversity on earth and performing all manner of biological functions, including photosynthesis, respiration, decomposition, nitrogen fixation and denitrification. (http://www.eoearth.org/article/Biosphere?topic=58074) C Chemocline: caused by a strong, vertical chemical gradient within a body of water Chemosynthetic bacteria: Bacteria are able to use chemical energy to produce organic compounds or food.
    [Show full text]