Fungus Populations M Marine Waters and Coastal Sands of the Hawaiian, Line, and Phoenix Islands' CAROL WRIGHT STEE LE2

Total Page:16

File Type:pdf, Size:1020Kb

Fungus Populations M Marine Waters and Coastal Sands of the Hawaiian, Line, and Phoenix Islands' CAROL WRIGHT STEE LE2 Fungus Populations m Marine Waters and Coastal Sands of the Hawaiian, Line, and Phoenix Islands' CAROL WRIGHT STEE LE2 ABSTRACT: Saprophytic and facultative parasitic fungi present in the coastal waters and adjacent pelagic areas of the Hawaiian Islands, and in coastal sands of the H awaiian, Line, and Phoenix islands, were isolated by plating methods. Isolates from all areas sampled indicate that abundant and varied fungus popu­ lations do exist in these environments. The number of fungi obtained from the inshore neritic zone was seven times that obtained from the oceanic zone. The fungus Anreobasidium pltllttla11S ( De Bary) Arnaud was isolated repeatedly from oceanic waters. A comparison is made between the genera and the average number of isolates per liter of water known from the Atlantic Ocean with those found in this study of the Pacific Ocean. The number of fungi isolated from sand samples of the different islands ranged from 2 to 1,600 per gram. Species diversity was evident throughout the samples. The leeward Hawaiian islands had a higher aver­ age number of isolates per gram than any other island group. In conclusion the problems of defining a marine fungus are discussed. OCEA NIC AREAS in different parts of the world also are very limited. These include a few rec­ have been shown to be habitats for marine ords of higher fungi collected in the Marshall fungi (Johnson and Sparrow, 1961) . Investi­ Islands (Rogers, 1947) , the Society Islands gators, however, have usually concentrated on (Olive, 1957, 1958) , and Raroia in the Tua­ particular groups of fungi by use of selective motu Archipelago (Cooke, 1961); Phyco­ isolation methods ( Barghoorn and Linder, mycetes recovered by plating soils of the atolls 1944; Moore and Meyers, 1959; Jones, 1962) . of Bikini, Eniwetok, Rongerik, and Ronggelap Only one extensive analysis of marine waters (Sparrow, 1948); and Ascomycetes and Fungi for a general fungus population is known, and Imperfecti from dung and soil samples col­ it was made in the northwestern subtropical lected by Olive in the Society Islands (Peter­ Atlantic Ocean (Roth et al., 1964) . References sen, 1960) . Consequently, as Cooke points out, to the occurrence of fungi in the Pacific Ocean the geographic distribution of fungi occurring are found (1 ) as incidental to studies of bac­ on the islands of the Pacific is poorly known. teria in marine water (ZoBell, 1946) ; (2) in Although studies have been initiated on the studies of specialized fungi such as lignicolous soils of the Hawaiian Islands ( Baker, 1964) fungi (Cribb and Cribb, 1955 , 1956, 1960; and the phyllosphere (Marsh, 1965) , no study Kohlmeyer, 1960; Meyers and Reynolds, 1960) has been made of fung i occurring in marine and those on algae (Cribb and Cribb, 1955 , waters and intertid al environments of these 1956, 1960); and (3) in studies of particular islands or elsewhere in the central Pacific. This kinds of fungi , e.g., Phycomycetes in Japanese investigation was undertaken to determine the waters (Kobayashi, 1953) and path ogenic spe­ occurrence and distribution of the saprophytic cies (Van Uden and Castelo Branco, 1961 ) . and facultative parasitic fungi which constitute Reports of fungi from terrestrial environments the fungal populations of these habitats. of islands in the central and southern Pacific 1 Prepared from a thesis submitted in partial ful ­ MATERIALS AND METHODS fillment of requireme nts for the Master of Science degree at the University of H awaii. Collection 2 Department of Botany, San D iego State College, San Di ego, Californ ia, 92115. Manuscript received Isolations for fungi were made from 59 June 20, 1966. water samples and 50 sand samples collected 317 318 PACIFIC SCIENCE, Vol. XXI, July 1967 from inshore areas of the Hawaiian Islands and the millipore filter method (Roth et al., and adjacent pelagic environments. Seventeen 1964) . sand samples were taken from the Phoenix and Standard materials and procedures were used Line islands. The water samples were taken in the pour-plate method. Amounts plated for from four zones: the surf or spray zone; the the water samples ranged from 0.5 ml to 5.0 inshore neritic zone, 2-200 m from shore; the ml. Dilutions of 1: 10 to 1: 100,000 were used offshore neritic zone, 300 m to 2 km from for sand samples. Some samples were plated shore; and the oceanic zone, 2 km or more off upon return to the laboratory; because of the shore. Of these water samples 56 were taken distance between most sampling sites and the at the surface and 3 were taken at depths laboratory, however, most of the plating was down to 600 m. The sand samples were done 24 to 48 hours after collection. All sam­ taken from a depth of 2 inches in the supra­ ples were kept under refrigeration until plated. tidal, intertidal, and subtidal zones as delimited A control plate, uninoculated, was set up for by Hedgpeth ( 1957) . The sample sites were each medium for every plating. Plates were selected to include a variety of shore environ­ also exposed to the air during plating opera­ ments: leeward, windward, or areas of special tions to determine the level of air contamina­ interest (e.g., South Point, Hawaii, the south­ tion in the laboratory. ernmost point in the Hawaiian Islands; W ai­ Materials for the millipore filter method kiki Beach, probably the most frequently used included sterile cellulose-ester membranes with beach on Oahu; and Midw ay Island, the north­ 0.45 !! porosity (Millipore Filter Corp., Bed­ ernmost inhabited island of the Hawaiian island ford, Massachusetts) . Th e samples were run chain.) Other samples were obtained as oppor­ through the millipore filter apparatus using a tunity offered : those from Kure Island, the vacuum pump. The membranes with retained Phoenix Islands, the Line Islands, and the fungal elements were cultured on selective me­ open ocean. Figure 1 gives the geographical dia in presterilized pastic petri dishes. The location of the water and sand collection sites. amount put through the filter ranged from The surface water samples were collected in 100 ml to 600 ml per sample. Controls were sterile 600-ml glass bottles with plastic screw included for testing agar sterility and air con­ caps. The closed bottles were immersed in the tamination. water, then opened and allowed to fill with Several kinds of media were used: sodium water, closed underwater and brought to the caseinate agar (BBL 01-549, Fred and Waks­ surface. The depth samples were taken by send­ man, 1928, modified by Potter, 1957), Roth's . ing a plastic water sampler of the van Dorn isolation medium (Roth et al., 1964), Fell's ( 1956) type to the designated depths. After yeast agar (Fell et al., 1960) and mycobiotic the sampler was brought to the deck of the agar ( DIFCO 0689-02) . All media except the ship, a sterile 600-ml bottle was filled with mycobiotic agar were made with sea water col­ water from the sampler. lected at the sample sites. Bacterial growth was All sand samples were collected with sterile controlled by the incorporation of 0.05% chlor­ implements and placed in sterile 100-ml jars amphenicol (Chloromycetin, Steri-Vial N o. 65, with plastic screw caps or in sterile poly­ Parke, Davis and Co.) . Dilutions were made ethylene bags (NASCO Whirl-Pak, Hydro Prod­ with McIlvaine's buffer solution, pH 7.0 ucts Co., San Diego, California) . (Machlis and Torrey, 1956). The mycobiotic Salinity measurements were obtained by use agar was made with 250 ml sea water and of Quantabs S051 (Linayer Corp., Detroit, 750 ml of distilled water in order to retain Michigan) . Temperature was determined by the selectivity of this medium in which chloro­ standard centigrade thermometer, and depth mycetin is already incorporated. by standard oceanographic methods. The plates were placed in paper bags, sealed with adhesive tape, and incubated at 20°_ Isolation 24°C. Pour-plates were incubated for three Two principle means of isolation were em­ weeks and the millipore filter plates for 10 ployed: the pour-plate method (Salle, 1954) days at room temperature (200-24°C). Marine Fungi from Central Pacific-STEELE 319 .,. 110' CENT RAL PACIFIC OC EA N 160" so- '"'"i ~ H IV K i"~ . ""A I. •M L I<>HE"'E. lEU f "i:l fv LISlA SKll ~LAY ANI . I I---~ .- ER NNAC Es () RENe FRO' n 5"0"1.5 ' NE KERl NIHO , ~AI P , ~J., pu' U' .....A ~ fi .; " 0 OK" In '" m~ .:- "A Ul KA. foLAwt 1 20' N' ~X 1-1 WAil . - --_.. i: ""NS e-. -$AN O l - - - 10" '0 ' I A~R K'N( EF -II '-0 . PALMYRA! - - -- I--- - I---I--- . i's "~TON ' r-- \. ANNING l . I - - I--- -- CH 15TM 5 1. " -I-- -- - - U' --- e-- - - - . - CI -;j;Q <\.' ii ,-- -- O. ER , 0" 0" 0 JARVIS l _. _- _ . 1-- -- ' -- -- -~- I--- - I- f---. - I--- - _._. ._._~ AN. .L - _. - --_. " I--- --- .- --- . ~N \ . IS 1- - --- - - - 1'1"1 TON, --_.. - 1-- -- 0 -"". ">T'e..,' ~ 0 _~--~_f~-__l 0 RNiE IC? .. N,. -- , ;.~, L , - <lYONE "Al """ - - ( .: _.. ..•_- .. .._- ---- ,- STA BUCKI. - --- - -_. __. " _...- ._.. - .. _-- ---- -- II> 1-'\SL/Wo -- . ' I ~\l '---- _ . • A AfUl TONG> EVA - - -- <f I--- - NU~ = ~H "iO' I ""'" IHEllO" ,0- TATUn: l5O"~JI-I ~WE5T - 'L , - FIG. 1. General geographical location of marine water and coastal sand collection sites. X , Marin e water collection sites; 0 , coastal sand collection sites. 320 PACIFIC SCIENCE, Vol. XXI, July 1967 Oth er methods of isolation, such as baiting successfully were Czapek-Dox agar (DIFCO (Johnson and Sparrow, 1961) , spread-plate 0339-01) and "V-S" juice agar (Wickerham technique (Bu ck and Cleverdon, 1960) and et aI., 1946).
Recommended publications
  • The Hidden Kingdom
    INTRODUCTION Fungi—The Hidden Kingdom OBJECTIVE • To provide students with basic knowledge about fungi Activity 0.1 BACKGROUND INFORMATION The following text provides an introduction to the fungi. It is written with the intention of sparking curiosity about this GRADES fascinating biological kingdom. 4-6 with a K-3 adaptation TEACHER INSTRUCTIONS TYPE OF ACTIVITY 1. With your class, brainstorm everything you know about fungi. Teacher read/comprehension 2. For younger students, hand out the question sheet before you begin the teacher read and have them follow along and MATERIALS answer the questions as you read. • copies of page 11 3. For older students, inform them that they will be given a • pencils brainteaser quiz (that is not for evaluation) after you finish reading the text. VOCABULARY 4. The class can work on the questions with partners or in groups bioremediation and then go over the answers as a class. Discuss any chitin particularly interesting facts and encourage further fungi independent research. habitat hyphae K-3 ADAPTATION kingdom 1. To introduce younger students to fungi, you can make a KWL lichens chart either as a class or individually. A KWL chart is divided moulds into three parts. The first tells what a student KNOWS (K) mushrooms about a subject before it is studied in class. The second part mycelium tells what the student WANTS (W) to know about that subject. mycorrhizas The third part tells what the child LEARNED (L) after studying nematodes that subject. parasitic fungi 2. Share some of the fascinating fungal facts presented in the photosynthesis “Fungi—The Hidden Kingdom” text with your students.
    [Show full text]
  • Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
    Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts).
    [Show full text]
  • Grade 3 Unit 2 Overview Open Ocean Habitats Introduction
    G3 U2 OVR GRADE 3 UNIT 2 OVERVIEW Open Ocean Habitats Introduction The open ocean has always played a vital role in the culture, subsistence, and economic well-being of Hawai‘i’s inhabitants. The Hawaiian Islands lie in the Pacifi c Ocean, a body of water covering more than one-third of the Earth’s surface. In the following four lessons, students learn about open ocean habitats, from the ocean’s lighter surface to the darker bottom fl oor thousands of feet below the surface. Although organisms are scarce in the deep sea, there is a large diversity of organisms in addition to bottom fi sh such as polycheate worms, crustaceans, and bivalve mollusks. They come to realize that few things in the open ocean have adapted to cope with the increased pressure from the weight of the water column at that depth, in complete darkness and frigid temperatures. Students fi nd out, through instruction, presentations, and website research, that the vast open ocean is divided into zones. The pelagic zone consists of the open ocean habitat that begins at the edge of the continental shelf and extends from the surface to the ocean bottom. This zone is further sub-divided into the photic (sunlight) and disphotic (twilight) zones where most ocean organisms live. Below these two sub-zones is the aphotic (darkness) zone. In this unit, students learn about each of the ocean zones, and identify and note animals living in each zone. They also research and keep records of the evolutionary physical features and functions that animals they study have acquired to survive in harsh open ocean habitats.
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • Perithecial Ascomycetes from the 400 Million Year Old Rhynie Chert: an Example of Ancestral Polymorphism
    Mycologia, 97(1), 2005, pp. 269±285. q 2005 by The Mycological Society of America, Lawrence, KS 66044-8897 Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism Editor's note: Unfortunately, the plates for this article published in the December 2004 issue of Mycologia 96(6):1403±1419 were misprinted. This contribution includes the description of a new genus and a new species. The name of a new taxon of fossil plants must be accompanied by an illustration or ®gure showing the essential characters (ICBN, Art. 38.1). This requirement was not met in the previous printing, and as a result we are publishing the entire paper again to correct the error. We apologize to the authors. T.N. Taylor1 terpreted as the anamorph of the fungus. Conidioge- Department of Ecology and Evolutionary Biology, and nesis is thallic, basipetal and probably of the holoar- Natural History Museum and Biodiversity Research thric-type; arthrospores are cube-shaped. Some peri- Center, University of Kansas, Lawrence, Kansas thecia contain mycoparasites in the form of hyphae 66045 and thick-walled spores of various sizes. The structure H. Hass and morphology of the fossil fungus is compared H. Kerp with modern ascomycetes that produce perithecial as- Forschungsstelle fuÈr PalaÈobotanik, Westfalische cocarps, and characters that de®ne the fungus are Wilhelms-UniversitaÈt MuÈnster, Germany considered in the context of ascomycete phylogeny. M. Krings Key words: anamorph, arthrospores, ascomycete, Bayerische Staatssammlung fuÈr PalaÈontologie und ascospores, conidia, fossil fungi, Lower Devonian, my- Geologie, Richard-Wagner-Straûe 10, 80333 MuÈnchen, coparasite, perithecium, Rhynie chert, teleomorph Germany R.T.
    [Show full text]
  • Protists/Fungi Station Lab Information
    Protists/Fungi Station Lab Information 1 Protists Information Background: Perhaps the most strikingly diverse group of organisms on Earth is that of the Protists, Found almost anywhere there is water – from puddles to sediments. Protists rely on water. Somea re marine (salt water), some are freshwater, some are terrestrial (land dwellers) in moist soil and some are parasites which live in the tissues of others. The Protist kingdom is made up of a wide variety of eukaryotic cells. All protist cells have nuclei and other characteristics eukaryotic features. Some protists have more than one nucleus and are called “multinucleated”. Cellular Organization: Protists show a variety in cellular organization: single celled (unicellular), groups of single cells living together in a close and permanent association (colonies or filaments) or many cells = multicellular organization (ex. Seaweed). Obtaining food: There is a variety in how protists get their food. Like plants, many protists are autotrophs, meaning they make their own food through photosynthesis and store it as starch. It is estimated that green protist cells chemically capture and process over a billion tons of carbon in the Earth’s oceans and freshwater ponds every year. Photosynthetic or “green” protists have a multitude of membrane-enclosed bags (chloroplasts) which contain the photosynthetic green pigment called chlorophyll. Many of these organisms’ cell walls are similar to that of plant cells and are made of cellulose. Others are “heterotrophs”. Like animals, they eat other organisms or, like fungi, receiving their nourishment from absorbing nutrient molecules from their surroundings or digest living things. Some are parasitic and feed off of a living host.
    [Show full text]
  • Biology of Fungi, Lecture 2: the Diversity of Fungi and Fungus-Like Organisms
    Biology of Fungi, Lecture 2: The Diversity of Fungi and Fungus-Like Organisms Terms You Should Understand u ‘Fungus’ (pl., fungi) is a taxonomic term and does not refer to morphology u ‘Mold’ is a morphological term referring to a filamentous (multicellular) condition u ‘Mildew’ is a term that refers to a particular type of mold u ‘Yeast’ is a morphological term referring to a unicellular condition Special Lecture Notes on Fungal Taxonomy u Fungal taxonomy is constantly in flux u Not one taxonomic scheme will be agreed upon by all mycologists u Classical fungal taxonomy was based primarily upon morphological features u Contemporary fungal taxonomy is based upon phylogenetic relationships Fungi in a Broad Sense u Mycologists have traditionally studied a diverse number of organisms, many not true fungi, but fungal-like in their appearance, physiology, or life style u At one point, these fungal-like microbes included the Actinomycetes, due to their filamentous growth patterns, but today are known as Gram-positive bacteria u The types of organisms mycologists have traditionally studied are now divided based upon phylogenetic relationships u These relationships are: Q Kingdom Fungi - true fungi Q Kingdom Straminipila - “water molds” Q Kingdom Mycetozoa - “slime molds” u Kingdom Fungi (Mycota) Q Phylum: Chytridiomycota Q Phylum: Zygomycota Q Phylum: Glomeromycota Q Phylum: Ascomycota Q Phylum: Basidiomycota Q Form-Phylum: Deuteromycota (Fungi Imperfecti) Page 1 of 16 Biology of Fungi Lecture 2: Diversity of Fungi u Kingdom Straminiplia (Chromista)
    [Show full text]
  • BASIDIOMYCOTINA and ITS CLASSIFICATION Dr
    BASIDIOMYCOTINA AND ITS CLASSIFICATION Dr. Vishnupriya Sharma Department of Botany B.Sc sem II, paper 2,Course code 2BOT T2 Title of the Paper- Mycology and Phytopathology Basidiomycotina Diagnostic features of Basidiomycotina 1. Basidiomycotina comprise of about 550 genera 15,000 species 2.Many of them are saprophytes while others are parasitic. These includes mushrooms, toad stools, puff balls, stink horns, shelf fungi, bracket fungi, rusts, and smuts. 3.They have Septate mycelium ,non motile spores and are characterised by the production of a club-shaped structure, known as Basidium 4. Basidium is a cell in which karyogamy and meiosis occurs. However, the basidium produces usually four spores externally known as basidiospores Vegetative structure: The vegetative body is well developed mycelium which consists of septate, branched mass of hyphae which grow on or in the substratum obtaining nourishment from host. Sometimes, a number of hyphae become interwoven to form thick strands of mycelium which are called rhizomorphs. In parasitic species the hyphae are either intercellular, sending haustoria into the cells or intracellular. The colour of the hyphae varies according to the species through three stages before the completion of life cycle. Three stages of development of mycelium The three stages are the primary, the secondary and the tertiary mycelium. The primary mycelium consists of hyphae with uninucleate cells. It develops from the germinating basidiospore. When young, the primary mycelium is multinucleate, but later on, due to the formation of septa, it divides into uninucleate cells. The primary mycelium constitutes the haplophase and never forms basidia and basidiospores. The primary mycelium may produce oidia which are uninucleate spores, formed on oidiophores.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • HOLT Earth Science
    HOLT Earth Science Directed Reading Name Class Date Skills Worksheet Directed Reading Section: What Is Earth Science? 1. For thousands of years, people have looked at the world and wondered what shaped it. 2. How did cultures throughout history attempt to explain events such as vol- cano eruptions, earthquakes, and eclipses? 3. How does modern science attempt to understand Earth and its changing landscape? THE SCIENTIFIC STUDY OF EARTH ______ 4. Scientists in China began keeping records of earthquakes as early as a. 200 BCE. b. 480 BCE. c. 780 BCE. d. 1780 BCE. ______ 5. What kind of catalog did the ancient Greeks compile? a. a catalog of rocks and minerals b. a catalog of stars in the universe c. a catalog of gods and goddesses d. a catalog of fashion ______ 6. What did the Maya track in ancient times? a. the tides b. the movement of people and animals c. changes in rocks and minerals d. the movements of the sun, moon, and planets ______ 7. Based on their observations, the Maya created a. jewelry. b. calendars. c. books. d. pyramids. Copyright © by Holt, Rinehart and Winston. All rights reserved. Holt Earth Science 7 Introduction to Earth Science Name Class Date Directed Reading continued ______ 8. For a long time, scientific discoveries were limited to a. observations of phenomena that could be made with the help of scientific instruments. b. observations of phenomena that could not be seen, only imagined. c. myths and legends surrounding phenomena. d. observations of phenomena that could be seen with the unaided eye.
    [Show full text]
  • Lesson Plan – Ocean in Motion
    Lesson Plan – Ocean in Motion Summary This lesson will introduce students to how the ocean is divided into different zones, the physical characteristics of these zones, and how water moves around the earths ocean basin. Students will also be introduced to organisms with adaptations to survive in various ocean zones. Content Area Physical Oceanography, Life Science Grade Level 5-8 Key Concept(s) • The ocean consists of different zones in much the same way terrestrial ecosystems are classified into different biomes. • Water moves and circulates throughout the ocean basins by means of surface currents, upwelling, and thermohaline circualtion. • Ocean zones have distinguishing physical characteristics and organisms/ animals have adaptations to survive in different ocean zones. Lesson Plan – Ocean in Motion Objectives Students will be able to: • Describe the different zones in the ocean based on features such as light, depth, and distance from shore. • Understand how water is moved around the ocean via surface currents and deep water circulation. • Explain how some organisms are adapted to survive in different zones of the ocean. Resources GCOOS Model Forecasts Various maps showing Gulf of Mexico surface current velocity (great teaching graphic also showing circulation and gyres in Gulf of Mexico), surface current forecasts, and wind driven current forecasts. http://gcoos.org/products/index.php/model-forecasts/ GCOOS Recent Observations Gulf of Mexico map with data points showing water temperature, currents, salinity and more! http://data.gcoos.org/fullView.php Lesson Plan – Ocean in Motion National Science Education Standard or Ocean Literacy Learning Goals Essential Principle Unifying Concepts and Processes Models are tentative schemes or structures that 2.
    [Show full text]
  • A Database for Ocean Acidification Assessment in the Iberian Upwelling
    Earth Syst. Sci. Data, 12, 2647–2663, 2020 https://doi.org/10.5194/essd-12-2647-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. ARIOS: a database for ocean acidification assessment in the Iberian upwelling system (1976–2018) Xosé Antonio Padin, Antón Velo, and Fiz F. Pérez Instituto de Investigaciones Marinas, IIM-CSIC, 36208 Vigo, Spain Correspondence: Xosé Antonio Padin ([email protected]) Received: 13 March 2020 – Discussion started: 24 April 2020 Revised: 21 August 2020 – Accepted: 30 August 2020 – Published: 4 November 2020 Abstract. A data product of 17 653 discrete samples from 3343 oceanographic stations combining measure- ments of pH, alkalinity and other biogeochemical parameters off the northwestern Iberian Peninsula from June 1976 to September 2018 is presented in this study. The oceanography cruises funded by 24 projects were primarily carried out in the Ría de Vigo coastal inlet but also in an area ranging from the Bay of Biscay to the Por- tuguese coast. The robust seasonal cycles and long-term trends were only calculated along a longitudinal section, gathering data from the coastal and oceanic zone of the Iberian upwelling system. The pH in the surface waters of these separated regions, which were highly variable due to intense photosynthesis and the remineralization of organic matter, showed an interannual acidification ranging from −0:0012 to −0:0039 yr−1 that grew towards the coastline. This result is obtained despite the buffering capacity increasing in the coastal waters further inland as shown by the increase in alkalinity by 1:1±0:7 and 2:6±1:0 µmol kg−1 yr−1 in the inner and outer Ría de Vigo respectively, driven by interannual changes in the surface salinity of 0:0193±0:0056 and 0:0426±0:016 psu yr−1 respectively.
    [Show full text]