The Introduction, Multiplication and Evaluation of New
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of Medicinal Plants Within the Apocynaceae Family Using ITS2 and Psba-Trnh Barcodes
Available online at www.sciencedirect.com Chinese Journal of Natural Medicines 2020, 18(8): 594-605 doi: 10.1016/S1875-5364(20)30071-6 •Special topic• Identification of medicinal plants within the Apocynaceae family using ITS2 and psbA-trnH barcodes LV Ya-Na1, 2Δ, YANG Chun-Yong1, 2Δ, SHI Lin-Chun3, 4, ZHANG Zhong-Lian1, 2, XU An-Shun1, 2, ZHANG Li-Xia1, 2, 4, LI Xue-Lan1, 2, 4, LI Hai-Tao1, 2, 4* 1 Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical Col- lege, Jinghong 666100, China; 2 Key Laborartory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China; 3 Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Re- public of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical Col- lege, Beijing, 100193, China; 4 Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant De- velopment, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China Available online 20 Aug., 2020 [ABSTRACT] To ensure the safety of medications, it is vital to accurately authenticate species of the Apocynaceae family, which is rich in poisonous medicinal plants. We identified Apocynaceae species by using nuclear internal transcribed spacer 2 (ITS2) and psbA- trnH based on experimental data. The identification ability of ITS2 and psbA-trnH was assessed using specific genetic divergence, BLAST1, and neighbor-joining trees. For DNA barcoding, ITS2 and psbA-trnH regions of 122 plant samples of 31 species from 19 genera in the Apocynaceae family were amplified. -
Natural Heritage Program List of Rare Plant Species of North Carolina 2016
Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate. -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
ORNAMENTAL GARDEN PLANTS of the GUIANAS: an Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana
f ORNAMENTAL GARDEN PLANTS OF THE GUIANAS: An Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana Vf•-L - - •• -> 3H. .. h’ - — - ' - - V ' " " - 1« 7-. .. -JZ = IS^ X : TST~ .isf *“**2-rt * * , ' . / * 1 f f r m f l r l. Robert A. DeFilipps D e p a r t m e n t o f B o t a n y Smithsonian Institution, Washington, D.C. \ 1 9 9 2 ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Table of Contents I. Map of the Guianas II. Introduction 1 III. Basic Bibliography 14 IV. Acknowledgements 17 V. Maps of Guyana, Surinam and French Guiana VI. Ornamental Garden Plants of the Guianas Gymnosperms 19 Dicotyledons 24 Monocotyledons 205 VII. Title Page, Maps and Plates Credits 319 VIII. Illustration Credits 321 IX. Common Names Index 345 X. Scientific Names Index 353 XI. Endpiece ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Introduction I. Historical Setting of the Guianan Plant Heritage The Guianas are embedded high in the green shoulder of northern South America, an area once known as the "Wild Coast". They are the only non-Latin American countries in South America, and are situated just north of the Equator in a configuration with the Amazon River of Brazil to the south and the Orinoco River of Venezuela to the west. The three Guianas comprise, from west to east, the countries of Guyana (area: 83,000 square miles; capital: Georgetown), Surinam (area: 63, 037 square miles; capital: Paramaribo) and French Guiana (area: 34, 740 square miles; capital: Cayenne). Perhaps the earliest physical contact between Europeans and the present-day Guianas occurred in 1500 when the Spanish navigator Vincente Yanez Pinzon, after discovering the Amazon River, sailed northwest and entered the Oyapock River, which is now the eastern boundary of French Guiana. -
Vascular Plants of Williamson County Sesbania Drummondii − RATTLEBUSH, POISON-BEAN, RATTLEBOX, DRUMMOND’S SESBANIA (Fabaceae)
Vascular Plants of Williamson County Sesbania drummondii − RATTLEBUSH, POISON-BEAN, RATTLEBOX, DRUMMOND’S SESBANIA (Fabaceae) Sesbania drummondii (Rydb.) Cory, RATTLEBUSH, POISON-BEAN, RATTLEBOX, DRUMMOND’S SESBANIA. Shrub, unarmed, with ascending branches, 120–350 cm tall; shoots with only cauline leaves to 230 mm long, leaflets having sleep movements, foliage bluish green and somewhat glaucous, initially soft-hairy aging glabrescent, not gland- dotted, somewhat odorous when crushed. Stems: ridged aging cylindric, with 3 ridges descending from each leaf, tough. Leaves: helically alternate, even-1-pinnately compound with (5−)11−19 pairs of leaflets, petiolate with pulvinus, with stipules; stipules 2, attached to leaf base below pulvinus, ascending, sickle-shaped to asymmetrically ovate, 4−7 × 2−2.4 mm, green or with reddish, sometimes with basal lobe on stem side, finely short-ciliate on margin aging glabrescent, acuminate at tip, on inner side with winglike midvein, surfaces with several short soft hairs to glabrate, early-deciduous; petiole having pulvinus at base, pulvinus 6−9 × 3−3.5 mm, with some short, fine hairs, cylindric above pulvinus (faintly channeled), to 15 mm long; rachis narrowly channeled and 2-ridged, tough, pairs of leaflets arising along ridges on upper side of rachis, pairs 8−9 mm apart, with short extension beyond the uppermost pair of leaflets, initially ± sericeous; stipels 2 at end of ridge beside channel, minute-triangular, 0.2−0.3 mm long, withering above midpoint; petiolule = pulvinus, 1.2−2 × 0.6−0.8 mm, short-hairy; blades of leaflets, elliptic to lanceolate-oblong, < 20−44 × < 6.5−13 mm, bluish green, tapered and oblique at base, entire, acute to obtuse with narrow point (often curved) at tip, pinnately veined with midrib slight raised on lower surface, upper surface glarous, lower surface ± short-sericeous aging sparsely short-hairy wit fine appressed hairs. -
Rapid in Vitro Regeneration of Sesbania Drummondii
BIOLOGIA PLANTARUM 48 (1): 13-18, 2004 Rapid in vitro regeneration of Sesbania drummondii S.B. CHEEPALA, N.C. SHARMA and S.V. SAHI* Biotechnology Center, Department of Biology, Western Kentucky University, Bowling Green, KY 42101 USA Abstract This paper describes rapid propagation of Sesbania drummondii using nodal explants isolated from seedlings and young plants. The nodal segments proliferated into multiple shoots on Murashige and Skoog’s (MS) medium supplemented with 22.2 µM benzyladenine. MS medium containing 2.2 and 4.5 µM thidiazuron induced 5 - 6 shoots per stem node from 3-month-old plants. Nodal explants when cultured on MS medium containing combinations of benzyladenine (8.8 and 11.1 µM) and indole-3-butyric acid (0.24 - 2.46 µM) or indole-3-acetic acid (0.28 - 2.85 µM) gave lesser number of shoots. Callus induced on cotyledonary explants when subcultured on 2.2 µM thidiazuron containing medium resulted in its mass proliferation having numerous embryoid-like structures. Indole-3-butyric acid (0.24 - 2.46 µM) was found suitable for root induction. In vitro regenerated plants were acclimatized in greenhouse conditions. Additional key words: 6-benzyladenine, indole-3-acetic acid, indole-3-butyric acid, medicinal plant, metal hyperaccumulator, micropropagation, thidiazuron. Introduction Sesbania drummondii (Rydb.) Cory (Fabaceae) is a et al. 1993), S. grandiflora (Khattar and Mohan Ram perennial shrub. It is distributed in seasonally wet places 1983, Shanker and Mohan Ram 1990), S. cannabina (Xu of southern coastal plains of the United States of et al. 1984, Shahana and Gupta 2002), S. bispinosa America, from Florida to Texas. -
Exploring Energy Gardens Botanic Gardens and Biofuels Volume 11 • Number 1 EDITORIAL BIOENERGY and the ROLE of BOTANIC GARDENS Sara Oldfield
Journal of Botanic Gardens Conservation International Volume 11 • Number 1 • January 2014 Exploring energy gardens Botanic gardens and biofuels Volume 11 • Number 1 EDITORIAL BIOENERGY AND THE ROLE OF BOTANIC GARDENS Sara Oldfield .... 02 EDITORS NEPAL ENERGY GARDEN PROJECT: EXPLORING ENERGY GARDENS AS A SOURCE FOR LOCAL FUEL PRODUCTION Jon Lovett .... 03 BIOENERGY DAY @ UGA Terry Marie Hastings .... 07 WASTE-TO-ENERGY: CONSERVING PLANT GENETIC RESOURCES, IMPROVING LIVELIHOODS David K. Nkwanga .... 11 ENALGAE PILOT AT THE CAMBRIDGE UNIVERSITY BOTANIC GARDEN Suzanne Sharrock Sara Oldfield A CASE STUDY OF BIO-ENGINEERING WORK Beatrix Schlarb-Ridley .... 14 Director of Global Secretary General Programmes BIOENERGY PLANT COLLECTION AND RESEARCH IN THE XISHUANGBANNA TROPICAL BOTANICAL GARDEN Cover Photo : Child carrying firewood in Gorkha, Nepal .... 16 Zzvet/Shutterstock.com Zeng-Fu Xu, Jianxiang Hu, Tianping Huang, and Jin Chen Design : Seascape www.seascapedesign.co.uk DESIGNING AN ENERGY GARDEN Trudi Entwistle .... 19 BGjournal is published by Botanic Gardens Conservation International (BGCI) . It is published twice a year. HASSAN BIOFUEL PARK: A CONCEPT FOR PROMOTION OF Membership is open to all interested individuals, institutions and organisations that support the aims REPLENISHABLE GREEN ENERGY Balakrishna Gowda, K.T. .... 23 of BGCI. Prasanna, G.C. Vijaya Kumar, C. Haleshi and K. Rajesh Kumar Further details available from: • Botanic Gardens Conservation International, Descanso RESOURCES House, 199 Kew Road, Richmond, Surrey TW9 3BW -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
Canada – 2018 Update
Canada – 2018 update Bioenergy policies and status of implementation Country Reports IEA Bioenergy: 09 2018 This report was prepared from the 2018 OECD/IEA World Energy Balances, combined with data and information provided by the IEA Bioenergy Executive Committee and Task members. All individual country reports were reviewed by the national delegates to the IEA Bioenergy Executive Committee, who have approved the content. General background on the approach and definitions can be found in the central introductory report1 for all country reports. Edited by: Luc Pelkmans, Technical Coordinator IEA Bioenergy Contributors: Alex MacLeod, Bruno Gagnon, Devin O’Grady, Yana Mazin and Maria Wellisch NATIONAL POLICY FRAMEWORK IN CANADA In 2015, at the United Nations Climate Conference (COP21) in Paris, Canada together with 194 other participating countries, agreed to take steps to support the transition to a global low-carbon economy that would limit the global temperature increase to less than 2 degrees Celsius above pre-industrial levels. Canada’s government at both federal and provincial and territorial levels is committing to policies such as supporting renewable/clean technology innovation as announced in the Federal Budgets 20162, and 20173. Furthermore, to support the COP21 commitment, the federal government in partnership with provinces and territories, and in consultation with Indigenous peoples has developed a pan-Canadian Framework on Clean Growth and Climate Change4. It includes a federal carbon pricing framework and measures to achieve reductions across all sectors of the economy. The Pan-Canadian Approach to Pricing Carbon Pollution was announced October 3, 2016. On November 25, 2016, the Government of Canada announced its intent to develop a Clean Fuel Standard (CFS). -
A Comparative Study of the Effects of Sesbania Drummondii on the Hepatic Cytochrome P-450 Monooxygenase Systems of Chickens and Rats
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1990 A Comparative Study of the Effects of Sesbania Drummondii on the Hepatic Cytochrome P-450 Monooxygenase Systems of Chickens and Rats. Marcy Iva Banton Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Banton, Marcy Iva, "A Comparative Study of the Effects of Sesbania Drummondii on the Hepatic Cytochrome P-450 Monooxygenase Systems of Chickens and Rats." (1990). LSU Historical Dissertations and Theses. 4970. https://digitalcommons.lsu.edu/gradschool_disstheses/4970 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
Approved Shrubs and Plants
VWCA BOARD APPROVED LIST OF FLORIDA, MAINTENANCE FRIENDLY SHRUBS AND PLANTS AS RECOMMENDED BY JEFF BECK FROM PRESTIGIOUS LAWNCARE – REVISED 4/13/15 (MOST DESCRIPTIONS ARE FROM SOUTH FLORIDA PLANT GUIDE.COM). NAME/URL LINK BRIEF DESCRIPTION PICTURE 1. Dwarf Allamanda With exquisite butter-yellow flowers over glossy deep green foliage, the dwarf variety of allamanda stays small and bushy, making it a good shrub for smaller spaces. Watering correctly is the key to keeping these small flowering shrubs at their best. They need regular irrigation but must dry out a bit in between watering. Picturesque in groupings or rows, they can work as a front-of-the-border plants or use them behind annuals, groundcovers or small perennials. 2. Arborcola (Green If you're looking for a pretty, easy-to-grow, mid-size or Trinette) aka shrub, this is it. Plant it anywhere - full sun to full Shefflera shade - and it will thrive. Forget to water it - it will forgive you. These shrubs grow in a mounded shape and make wonderful accent plants, privacy plants or hedges. They're also useful in hiding the "unmentionables"...like the air-conditioner or those funky above-ground drainage pipes that can spoil the look of a front yard. 3. Azaela Blossoming often begins in late February or early March. Dwarf and semi-dwarf varieties blossom on and off all year but the full size plants are content with being classic and beautiful spring flowering shrubs. You might want to plant both sizes for more year round flowers...and they all like similar planting conditions. -
Bristly Locust Robinia Hispida
Bristly locust Robinia hispida Description Introduced to North America as an ornamental tree and to prevent soil erosion. This species is considered invasive in the state of Michigan, New Jersey, Ohio, Pennsylvania and Washington. All parts of this plant are mildly poisonous. Habit Deciduous tree or small suckering shrub, growing from 2-10 ft tall, new shoots are glandular-bristly. Often found in thickets since it spreads rapidly from root suckers. Leaves Alternate, pinnately compound; 9-13 entire, elliptical leaflets; 7-9 in long, green in color above and paler below. Stems Source: MISIN. 2021. Midwest Invasive Species Information Network. Michigan State University - Applied Spatial Ecology and Technical Services Laboratory. Available online at https://www.misin.msu.edu/facts/detail.php?id=213. Slender, zigzag and covered in bristly red hairs, later turning a gray-brown in color. buds sunken, no spines. Flowers Perfect, attractive, rose colored pea-like in hanging clusters, yellow spot in the center, appearing in late spring. Fruits and Seeds Flat pod, 2-2.5 in long and very bristly. Habitat Native to the southern United States. Grows well on dry, well-drained, moist, sunny or shaded areas. Reproduction Vegetatively by root suckers. Similar New Mexican locust (Robinia neomexicana) and Black locust (Robinia pseudoacacia). Monitoring and Rapid Response Cutting is not recommended. Can be controlled with foliar spray FS-1 Glyphosate 3.75%, Triclopyr Amine 2.50% or with Basal Bark BB-1 Triclopyr Ester 25% Credits The information provided in this factsheet was gathered from the Virginia Tech Department of Forest Resources and Environmental Conservation VTree.