<<

44, Bull. Eur. Ass. Pathol., 33(2) 2013

›Ž–Š˜Žœȱ’—ȱ꜑Žœȱ˜ȱ‘ŽȱŽ—žœȱ (Teleostei, Sparidae) from Bizerte Lagoon (Northern coast of Tunisia)

R. Antar* and L. Gargouri Ben Abdallah

ŽœŽŠ›Œ‘ȱ—’DZȱ—’–Š•ȱ’˜ȬŒ˜•˜¢ȱŠ—ȱ¢œŽ–Š’ŒȱŸ˜•ž’˜—Š›¢ǰȱŠŒž•¢ȱ ˜ȱŒ’Ž—ŒŽœǰȱ—’ŸŽ›œ’¢ȱ˜ȱž—’œȱ•ȱŠ—Š›ǰȱŘŖşŘǰȱž—’œǰȱž—’œ’Š

Abstract •ŽŸŽ—ȱœ™ŽŒ’Žœȱ˜ȱ›Ž–Š˜Žœȱ Ž›Žȱ˜ž—ȱ’—ȱ‘Žȱ’Žœ’ŸŽȱ›ŠŒȱ˜ȱŘŘřȱœ™Š›’ȱ꜑Žœȱ˜ȱ‘ŽȱŽ—žœȱ Diplodus (D. annularis, D. puntazzo, ǯȱœŠ›žœȱand ǯȱŸž•Š›’œ) sampled from Bizerte Lagoon (NE coast of Tunisia). D. annularis and ǯȱŸž•Š›’œȱwere infected mainly by ŠŒŸ’ŒŠ›’ŠȱŒ›Šœœ’ž•Š and the trematode fauna of ǯȱœŠ›žœȱwas dominated by Proctoeces maculatus. Prodistomum polonii, was found ˜›ȱ‘Žȱꛜȱ’–Žȱ’—ȱD. annularis in Tunisian waters. Most of the trematode species show a broad ̎¡’‹’•’¢ȱ’—ȱœ™Š’Š•ȱ˜ŒŒž››Ž—ŒŽȱŠ—ȱŒŠ—ȱŒ˜•˜—’£Žȱ’쎛Ž—ȱ™Š›œȱ˜ȱ‘Žȱ’Žœ’ŸŽȱ›ŠŒǯ The exceptions are A. microcirrus, P. polonii and Z. rubellus, which are limited to the stomach, the posterior intestine and the rectum, respectively.

Introduction Diplodus species, in particular sharpsnout sea of the genus Diplodus (Teleostei, Sparidae) bream (D. puntazzoǼȱ‘ŠŸŽȱŠĴ›ŠŒŽȱ›ŽŠȱ’—- are widespread in the Mediterranean Sea, in the terest for Tunisian aquaculture due to their Black Sea and in the Eastern Atlantic Ocean. All high commercial value. Therefore, a number species are gregarious. D. annularis prefers sand of studies have examined the biology (Bradai sea beds or seagrass meadows, whereas other et al., 1998, 2001; Mouine et al., 2012; Cherif et Diplodus species live on coastal water with rocky al., 2008), growth (Bradai et al., 1998, 2001) and ˜›ȱœŠ—¢ȱ‹˜Ĵ˜–œǯȱ‘Ž¢ȱžœžŠ••¢ȱ•’ŸŽȱŠȱŽ™‘œȱ physiology (Bouhlel et al., 2007, 2009) of these varying from 0 to 150 m (Fischer et al., 1987). ꜑Žœǯȱ —ȱŒ˜—›Šœǰȱ‘Ž’›ȱ™Š›Šœ’’ŒȱŠž—ŠȱŠ—ǰȱ’—ȱ Sexual maturity is reached during the second particular, helminths are not well known. So year of life for D. annularis, during the fourth far, only one paper has been published on the year for ǯȱœŠ›žœ and ǯȱŸž•Š›’œȱand during the trematodes of Tunisian coastal species of Dip- third year for D. puntazzo (Mouine et al., 2012). lodus (Gargouri Ben Abdallah and Maamouri, ‘Žȱ™›Ž¢ȱ˜ȱ‘ŽœŽȱ꜑ŽœȱŒ˜—œ’œœȱ˜ȱ ˜›–œǰȱŒ›žœ- 2008). The aims of the present study are (i) to taceans, echinoderms, molluscs, hydrozoans provide a database of trematodes in Diplodus and algae (Fischer et al., 1987). Diplodus species species in Bizerte Lagoon (NE Tunisia) and Œ˜—œ’žŽȱŠȱŒ˜—œ’Ž›Š‹•Žȱ™Š›ȱ˜ȱ‘Žȱ꜑Ž›’Žœȱ (ii) to compare this with the presence of these trade of Tunisia and represent a remarkable ™Š›Šœ’Žœȱ˜ěȱ‘Žȱž—’œ’Š—ȱŒ˜ŠœȱŠ—ȱ’—ȱ˜‘Ž›ȱ resource. Moreover, during the last few years, Mediterranean coastal environments.

* Corresponding author’s email: [email protected] Bull. Eur. Ass. Fish Pathol., 33(2) 2013, 45

Materials and methods pycnoporus, Lepocreadium album, ǯȱ™Ž˜›Œ‘’œ and Between October 2008 and October 2009, a total Prodistomum polonii); Monorchiidae (Monorchis ˜ȱŘŘřȱœ™Š›’ȱ꜑ȱ˜ȱ‘ŽȱŽ—žœȱDiplodus were parvus); Opecoelidae (ŠŒŸ’ŒŠ›’ŠȱŒ›Šœœ’ž•Š) and collected in the Bizerte Lagoon (north east of Zoogonidae (Diphterostomum brusinae and Zoo- Tunisia, between 37°8’ and 37°16’N and 9°46’and ˜—žœȱ›ž‹Ž••žœ) (Figure 1). 9°56’E (Dellali et al., 2001)) by Menzel Abder- ›Š‘–Ž—ȱ꜑Ž›’Žœǯȱ‘Žȱ꜑Žœȱ Ž›Žȱ’Ž—’ꮍȱ’—ȱ Most of the collected parasites were found in accordance to Fischer et al. (1987) and included several Diplodus species and therefore do not 130 individuals of D. annularis, 8 individuals of Ž¡‘’‹’ȱŠȱœ›’Œȱ‘˜œȱœ™ŽŒ’ęŒ’¢ȱǻŠ‹•ŽȱŗǼǯȱA. mi- D. puntazzo, 19 individuals of ǯȱœŠ›žœȱand 66 crocirrus, P. polonii and Z. rubellus were limited individuals of D. Ÿž•Š›’œ. ˜ȱŠȱœ™ŽŒ’ęŒȱœ’Žȱ’—ȱ‘Žȱ’Žœ’ŸŽȱ›ŠŒǰȱ’ǯŽǯȱ‘Žȱ stomach, the posterior intestine and the rectum, The specimens were measured, weighed and respectively. In contrast, the distribution of the dissected. The digestive tract was removed ˜‘Ž›ȱ™Š›Šœ’Žœȱœ™ŽŒ’Žœȱ ’‘’—ȱ‘Žȱ’쎛Ž—ȱ‘˜œȱ Š—ȱ’Ÿ’Žȱ’—˜ȱ’쎛Ž—ȱ™Š›œȱǻoesophagus, showed wider distributions, and these species stomach, pyloric caeca, duodenum, mid-intes- Ž›Žȱ˜ž—ȱ’—ȱŠȱ•ŽŠœȱ ˜ȱ’쎛Ž—ȱ™Š›œȱ˜ȱ‘Žȱ tine, posterior intestine, rectum) and examined intestine (Table 1). Thus, these parasites appear for trematodes under a binocular microscope. not to be very restrictive in their requirements, The localisation in the digestive tract for each although their niche dimensions within the individual was noted. The collected parasites digestive tract were variable according to the were studied either directly in vivo under the host species. Thus, the ecological niche of M. stereomicroscope or conserved for observation Œ›Šœœ’ž•Š was limited to the mid-intestine in D. •ŠŽ›ǯȱ‘Žȱ™Š›Šœ’Žœȱ Ž›Žȱę¡Žȱ’—ȱ˜ž’—Ȃœȱ̞’ȱ œŠ›žœ, whereas it extended to the duodenum between a slide and a coverglass, washed with and mid-intestine in ǯȱŸž•Š›’œ and to three distilled water, stained with boric carmine, de- parts of intestine in D. annularisǯȱ’–’•Š›ȱ’쎛- hydrated in a series of alcohol (70%, 95%, 100%), ences between hosts were found for D. brusinae, cleared in Gaulteria oil and mounted between H. pycnoporus and ǯȱ™Ž˜›Œ‘’œȱ(Table 1). a slide and a coverglass in Canada balsam. Drawings were made using a light microscope , and to a lesser degree D. equipped with a drawing tube. Ÿž•Š›’œ, have the most diverse trematode fauna each hosting 10 and 8 species, respectively. D. Prevalence, mean intensity and abundance were œŠ›žœ harboured only 4 trematode species, calculated according to Bush et al. (1997). whereas in D. puntazzo we observed no trem- atode species, perhaps because of the small Results sample size (n = 8). The trematode fauna of D. In total, 11 species of trematodes belonging to annularis and ǯȱŸž•Š›’œ were dominated by six families were found in the digestive tract of ǯȱŒ›Šœœ’ž•Š, and P. maculatus was the most Diplodus spp., i.e. Derogenidae (Arnola microcir- frequent parasite in ǯȱœŠ›žœ (Table 1). rus); Fellodistomidae (Proctoeces maculatus and Ž›’—˜›Ž–Šȱ™ŠŽ••’); Lepocreadiidae (Holorchis 46, Bull. Eur. Ass. Fish Pathol., 33(2) 2013

Figure 1.ȱ›Š ’—œȱ˜ȱ’쎛Ž—ȱ›Ž–Š˜Žœȱ™Š›Šœ’Žœȱ’—ȱ꜑Žœȱ˜ȱ‘ŽȱDiplodus genus found in Bizerte lagoon. Bull. Eur. Ass. Fish Pathol., 33(2) 2013, 47

Table 1. Global Epidemiologic values (Prevalence: P (%), Abundance: A and Mean intensity: MI) of trematodes from Diplodusȱœ™™ǯȱ˜ěȱ’£Ž›ŽȱŠ˜˜—ȱŠ—ȱ ž•ȱ˜ȱž—’œȱǻ Š›˜ž›’ȱŽ—ȱ‹Š••Š‘ȱŠ—ȱŠŠ–˜ž›’ȱŘŖŖŞǼǯȱǰȱ oesophagus; B, Stomach; C, pyloric caeca, D, duodenum; E, mid-intestine; F, posterior intestine G, rectum.

Gulf of Tunis Hosts Parasite species Present work (Gargouri and Maamouri, 2008) Sites P(%) A MI Sites P(%) A MI Arnola microcirrus B 0.8 0.01 1.0 Diphterostomum brusinae DFG 14.6 0.50 3.5 G 16.17 0.51 3.18 Holorchis pycnoporus DF 3.8 0.08 2.2 Lecithocladium excisum B 2.94 0.04 1.5 Diplodus Lepocreadium album ACF 11.5 0.40 3.8 DE 2.94 0.07 2.5 annularis Ž™˜Œ›ŽŠ’ž–ȱ™Ž˜›Œ‘’œ CD 2.3 0.03 1.7 C 4.41 0.10 2.33 n= 130 ŠŒŸ’ŒŠ›’ŠȱŒ›Šœœ’ž•Š DEF 13.1 0.40 3.3 DE 10.29 0.19 1.85 Monorchis parvus CD 8.5 0. 30 3.9 CD 44.12 4.11 9.63 Prodistomum polonii F 0.8 0.02 3.0 œŽž˜™¢Œ—ŠŽ—Šȱ꜌‘‘Š•’ E 2.94 0.07 2.5 Ž›’—˜›Ž–Šȱ™ŠŽ••’ D 0.8 0.01 1.0 ˜˜˜—žœȱ›ž‹Ž••žœȱ G 0.8 0.01 2.0 G 1.47 0.01 1 Monorchis monorchis C 12 1.54 12.83 Diplodus Peracreadium characis De 18 0.50 2.77 puntazzo Proctoeces maculatus G 2 0.03 2 n= 8 œŽž˜™¢Œ—ŠŽ—Šȱ꜌‘‘Š•’ȱ DE 6 0.08 1.33 Arnola microcirrus B 1.42 0.01 1 Diphterostomum brusinae F 5.3 0.10 3.0 G 12.86 0.50 3.89 Holorchis pycnoporus DE 7.14 0.11 1.6 Lepocreadium album D 2.86 0.06 2 Ž™˜Œ›ŽŠ’ž–ȱ™Ž˜›Œ‘’œ CD 10.5 0.10 1.5 Diplodus ŠŒŸ’ŒŠ›’ŠȱŒ›Šœœ’ž•Š E 5.3 0.05 1.0 DE 18.57 0.34 1.87 œŠ›žœ Monorchis parvus C 1.43 0.04 3 n= 19 Peracreadium characis DE 1.43 0.17 12 Proctoeces maculatus FG 15.8 0.10 1.0 FG 8.57 0.19 2.17 œŽž˜™¢Œ—ŠŽ—Šȱ꜌‘‘Š•’ E 4.29 0.04 1 Š›ž•ŠȱœŠ›ž’Œ˜•Š G 4.29 0.07 1.66 ˜˜˜—žœȱ›ž‹Ž••žœ G 7.14 0.11 1.6 Diphterostomum brusinae FG 6.1 0.70 12.5 G 18.33 0.52 2.81 Holorchis pycnoporus F 1.5 0.01 1.0 DEF 1.66 0.03 2 Lecithocladium excisum B 1.66 0.02 1 Lepocreadium album C 3.33 0.05 1.5 Ž™˜Œ›ŽŠ’ž–ȱ™Ž˜›Œ‘’œ D 1.5 0.01 1.0 Diplodus ŠŒŸ’ŒŠ›’ŠȱŒ›Šœœ’ž•Š DE 19.7 0.30 1.5 DE 11.66 0.3 2.57 Ÿž•Š›’œ Monorchis parvus CF 10.6 0.20 1.6 CDEF 41.66 4 9.60 n= 66 Proctoeces maculatus FG 6.1 0.10 2.2 G 6.66 0.2 3 œŽž˜™¢Œ—ŠŽ—Šȱ꜌‘‘Š•’ EF 3.33 0.03 1 ¢Œ—ŠŽ—˜’ŽœȱœŽ—ŽŠ•Ž—œ’œ F 1.66 0.02 1 Ž›’—˜›Ž–Šȱ™ŠŽ••’ F 1.5 0.01 1.0 Š›ž•ŠȱœŠ›ž’Œ˜•Š G 3.33 0.08 2.50 ˜˜˜—žœȱ›ž‹Ž••žœȱ G 1.5 0.04 3.0 G 1.66 0.05 2 48, Bull. Eur. Ass. Fish Pathol., 33(2) 2013

The majority (70.7 %) of the individual hosts (ǯȱœŠ›žœȱandȱǯȱŸž•Š›’œ) andȱǯȱ™ŠŽ••’, pre- harboured only one trematode species. Two viously not reported for the Gulf of Tunis. S. trematode species occurred in 22.0 % of the ™ŠŽ••’ǰȱ›Ž™˜›Žȱ˜›ȱ‘Žȱꛜȱ’–Žȱ’—ȱž—’œ’Šȱ’—ȱ hosts, while three and four parasite species oc- cantharus (Gargouri Ben Abdallah curred in 3.7% and 2.4% of the host specimens, and Maamouri, 2008), was found in D. annularis respectively. One D. Ÿž•Š›’œȱ‘Š›‹˜ž›Žȱ꟎ȱ and ǯȱŸž•Š›’œ. Thus, these sparids are new trematode species (D. brusinae, L. ™Ž˜›Œ‘’œ, M. recorded host species for this trematode in the Œ›Šœœ’ž•Š, P. maculatus and Z. rubellus) in the Bizerte Lagoon. The abundance of ǯȱ™ŠŽ••’ in digestive tract, with three of them (D. brusinae, D. annularis and ǯȱŸž•Š›’œȱwas low and its P. maculatus and Z. rubellus) occupying the same presence may be accidental. Furthermore, P. microbiotope (rectum). polonii, recorded from D. annularis was found, ˜›ȱ‘Žȱꛜȱ’–Žǰȱ’—ȱž—’œ’Š—ȱ ŠŽ›œǯȱ›Š¢ȱŠ—ȱ Discussion ’‹œ˜—ȱǻŗşşŖǼȱ›Ž™˜›Žȱ‘’œȱ™Š›Šœ’Žȱ›˜–ȱ꜑Žœȱ Eleven species of trematodes were found as in several families (Carangidae, Centracanthi- parasites in the digestive tract of four Diplodus dae, Gadidae, Engraulidae, Mullidae, Pomato- species in the Bizerte Lagoon. The niche dimen- midae, Scorpaenidae, Soleidae and ) in sions of these parasites in the digestive tracts the Atlantic Ocean and the Mediterranean Sea Š™™ŽŠ›ȱ˜ȱ‹ŽȱŽŽ›–’—Žȱ‹¢ȱ‹˜‘ȱ’—Ž›œ™ŽŒ’ęŒȱ ‹žȱ—˜ȱ’—ȱœ™Š›’ȱ꜑ŽœǯȱP. polonii seems to be Š—ȱ’—›Šœ™ŽŒ’ęŒȱŒ˜–™Ž’’˜—ǯȱ‘žœǰȱ‘Žȱ’—Œ›ŽŠœŽȱ a more generalist species. This can be related in the number of parasites in the tract and the to a wide spectrum of the second intermediate saturation of the ecological carrying capacity of host represented by several bivalvia (Bray and ‘Žȱ’쎛Ž—ȱ—’Œ‘Žœȱ’—žŒŽœȱ™Š›Šœ’Žȱœ™ŽŒ’Žœȱ˜ȱ Gibson, 1990). However, A. microcirrus and H. occupy marginal situations in order to escape pycnoporus have already been described as para- competition (Combes, 1995). Furthermore, the sites of D. annularis, respectively in the Black Sea trophic resources in the intestines are potentially (Gaevskaya and Korniychuk, 2003) and in other abundant and allow a high number of parasite regions of the Mediterranean (Bray and Cribb, species to coexist. Therefore, we hypothesize 1997). As recorded by Kostadinova et al. (2004), that the low species diversity of the infracom- A. microcirrus seems to show morphological munities is most likely dependent on the low ’쎛Ž—ŒŽœȱŠŒŒ˜›’—ȱ˜ȱ‘Žȱ‘˜œǯȱ‘ŽœŽȱ’쎛- rate of transmission of larval stages. ences were considered by these authors to be ’‘’—ȱ‘Žȱ‹˜ž—œȱ˜ȱ’—›ŠȬœ™ŽŒ’ęŒȱŸŠ›’Š’˜—ǯȱ‘Žȱ The species richness and ecological variables like comparison of the frequency of trematode fauna prevalence, abundance and mean intensity were shows that, except for those of L. album,ȱǯȱ™Ž˜›- Ž—Ž›Š••¢ȱ•˜ Ž›ȱ’—ȱ꜑Žœȱ›˜–ȱ’£Ž›ŽȱŠ˜˜—ȱ chis, P. maculatus which were much higher in the compared with those reported for the coastal Bizerte Lagoon, the frequency of the parasites of environments in the Gulf of Tunis (Gargouri other species were greatest in the Gulf of Tunis Ben Abdallah and Maamouri, 2008). New host (Gargouri Ben Abdallah and Maamouri, 2008). species were observed in Bizerte lagoon for A. microcirrus (D. annularis), P. polonii (D. annu- The low abundance of trematodes recorded in laris), H. pycnoporus (D. annularis), ǯȱ™Ž˜›Œ‘’œȱ sparids from the Bizerte Lagoon can be related Bull. Eur. Ass. Fish Pathol., 33(2) 2013, 49 to the availability of the intermediate hosts and terranean (Bartoli and Gibson, 1989; Bartoli and the viability of the free larval stages (cercaria Bray, 1996; Bartoli et al., 1989a, 1989b, 2005; Š—ȱ–’›ŠŒ’’ž–Ǽȱ’—ȱŒ˜—ę—ŽȱŽ—Ÿ’›˜—–Ž—Dzȱ Sasal et al., 1999; Ternengo et al., 2005, D’Amico the Bizerte Lagoon represents a receptor of et al., 2006; Kostadinova and Gibson, 2009). ž›‹Š—ȱŽĝžŽ—ȱ›˜–ȱ—Ž’‘‹˜ž›’—ȱŸ’••ŠŽœȱŠ—ȱ In the Eastern Mediterranean, the trematodes of several industrial wastes ǻ›Š›ęȱŠ—ȱ•’–Ȭ ˜ȱ‘ŽœŽȱœ™Š›’ȱ꜑ȱ‘ŠŸŽȱ‹ŽŽ—ȱ•’Ĵ•Žȱœž’Žȱ Shimi, 2004; Ben Said et al., 2010). Sures (2003) (Pogorel’tseva, 1952; Fischthal, 1980, 1982; Œ•Š’–œȱ‘ŠȱŠšžŠ’Œȱ‘˜œœȱ˜ȱ™Š›Šœ’ŽœȱŠ›ŽȱŠěŽŒŽȱ Saad-Fares, 1985). The species richness of the by environmental conditions. Pollution may trematode fauna of Diplodus spp. from Bizerte ŠŸŽ›œŽ•¢ȱŠěŽŒȱ‘Ž’›ȱ‘ŽŠ•‘ȱŠ—ȱŽŸŽ—ȱŒŠžœŽȱ Lagoon was higher than those reported from the extinction. In addition, water pollution might eastern Mediterranean coast (Saad Fares, 1985), ‘ŠŸŽȱŽ•ŽŽ›’˜žœȱŽěŽŒœȱ˜—ȱ’—Ž›–Ž’ŠŽȱ‘˜œœȱ and lower than those described in the western of heteroxenous parasites and thus reduce para- Mediterranean (Bartoli et al., 2005) (Table 2). The œ’ŽȱŠ‹ž—Š—ŒŽDzȱ™˜••žŠ—œȱŠěŽŒȱ‘Žȱ‘ŽŠ•‘ȱ˜ȱ •˜ ȱ’ŸŽ›œ’¢ȱ›ŽŒ˜›Žȱ’—ȱŽ‹Š—˜—ȱ’œȱŠĴ›’‹žŽȱ parasites and consequently their occurrence to a lack of investigation in the sector or to the and distribution (Sures, 2008). Valtonen et al. ’ĜŒž•¢ȱ˜ȱ›ŽŠ•’£Š’˜—ȱ˜ȱ‘ŽȱŸ’Š•ȱŒ¢Œ•Žȱ˜ȱ‘ŽœŽȱ (1997) and Williams and Mackenzie (2003) show parasites on the Lebanese coasts, characterized the existence of correlation between parasite by the absence of lagoons and ponds. abundance and the amount of pollution. Pi- etrock and Marcogliese (2003) believe that the Bartoli et al. (2005) explains the high trematode high concentrations of toxic substances such diversity and frequency of the Scandola nature as metals, deactivate certain enzymes of the reserve by the high general level of biodiversity larvae and consequently reduce their ability (Miniconi et al., 1990; Verlaque, 1990; Merella, to infect a new host. 1991; Verlaque et al., 1999) related to the stabil- ity of the ecosystem (absence of major pollut- The trematode fauna of Diplodus spp. has been ants) and to its direct opening on the Western the topic of many research in the Western Medi- Mediterranean basin.

Table 2. Number of trematodes species from Diplodus œ™™ǯȱ›˜–ȱ’쎛Ž—ȱŽ’Ž››Š—ŽŠ—ȱŒ˜Šœœǯȱ‘ŽȱœŠ–™•Žȱ size is given in parentheses.

Gulf of Tunis Scandola Nature Present (Gargouri Ben Lebanese coasts Hosts Reserve of Corsica work Abdallah and (Saad Fares, 1985) (Bartoli et al., 2005) Maamouri, 2008) D. annularis 10 (130) 8 (68) - 6 (54) D. puntazzo 0 (8) 4 (60) - 3 (3) ǯȱœŠ›žœ 4 (19) 11 (70) 4 (?) 10 (69) ǯȱŸž•Š›’œ 8 (66) 11 (60) 3 (?) 10 (43) 50, Bull. Eur. Ass. Fish Pathol., 33(2) 2013

annularis from the Tunisian coasts. Cahiers References Žȱ‹’˜•˜’Žȱ–Š›’—Ž 50, 223–229. Bartoli P and Gibson DI (1989). Wardula œŠ›ž’Œ˜•Š n.sp. (Digenea, Mesometridae), Bradai MN, Ghorbel M, Jarboui O and Bouain a rectal parasite ofȱ’™•˜žœȱœŠ›žœ (Teleostei, A (1998). Croissance de trois espèces de Sparidae) in western Mediterranean. sparidés Díplodus puntazzo, ’™•˜žœȱŸž•Š›’œȱ ——Š•ŽœȱŽȱŠ›Šœ’˜•˜’Žȱ ž–Š’—ŽȱŽȱ˜–™Š›·Ž et Spondylosoma cantharus du golfe de Gabès 64, 20–29. (Tunisie). Ž—›Žȱ’—Ž›—Š’˜—Š•ȱŽȱ‘ŠžŽœȱ·žŽœȱ Š›˜—˜–’šžŽœȱ –·’Ž››Š—·Ž——Žœȱ ™’˜—œȱ Bartoli P, Bray RA and Gibson DI (1989a). The ·’Ž››Š—·Ž——Žœ, 51–56. ™ŽŒ˜Ž•’ŠŽȱǻ’Ž—ŽŠǼȱ˜ȱœ™Š›’ȱ꜑Žœȱ˜ȱ the western Mediterranean. III. Macvicaria Bradai MN, Jarboui O, Ghorbel M, Ghorbel- ’‹œ˜—ȱǭȱ›Š¢ǰȱŗşŞŘǯȱ¢œŽ–Š’ŒȱŠ›Šœ’˜•˜¢ȱ Ouannes A, Bouain A and El Abed A 13, 167–192. (2001). Age et croissance du sparaillon Diplodus annularis (Teleostei, Sparidae) du Bartoli P, Gibson DI, Bray RA, Maillard C Golfe de Gabes. Rapport de la Commission and Lambert M (1989b). The Opecoelidae ’—Ž›—Š’˜—Š•ŽȱŽȱ•ŠȱŽ›ȱ·’Ž››Š—·Ž 36, 246. ǻ’Ž—ŠǼȱ˜ȱœ™Š›’ȱ꜑Žœȱ˜ȱ‘Žȱ ŽœŽ›—ȱ Mediterranean. II. Pycnadenoides Yamaguti, Bray RA and Gibson DI (1990). The 1938 and PseudopycnadenaȱŠŠȬŠ›Žœȱǭȱ Ž™˜Œ›ŽŠ’’ŠŽȱǻ’Ž—ŽŠǼȱ˜ȱ꜑Žœȱ˜ȱ‘Žȱ Maillard, 1986. ¢œŽ–Š’ŒȱŠ›Šœ’˜•˜¢ 13, north-east Atlantic: review of the genera 35–51. Opechona Looss, 1907 and Prodistomum Linton, 1910. ¢œŽ–Š’ŒȱŠ›Šœ’˜•˜¢ȱ15, Bartoli P and Bray RA (1996). Description of 159–202. three species of Holorchis Stossich, 1901 (Digenea: Lepocreadiidae) from marine Bray RA and Cribb TH (1997). The subfamily ꜑Žœȱ˜ěȱ˜›œ’ŒŠǯȱ¢œŽ–Š’ŒȱŠ›Šœ’˜•˜¢ Aephnidiogeninae Yamaguti, 1934 35, 133–143. (Digenea: Lepocreadiidae), its status and that of the genera Ž™‘—’’˜Ž—Žœȱ Bartoli P, Gibson DI and Bray RA (2005). Nicoll, 1915, Holorchis Stossich, 1901, ’Ž—ŽŠ—ȱœ™ŽŒ’Žœȱ’ŸŽ›œ’¢ȱ’—ȱŽ•Ž˜œȱ꜑ȱ Austroholorchis n.g. œŽžŠŽ™‘—’’˜Ž—Žœȱ ›˜–ȱŠȱ—Šž›Žȱ›ŽœŽ›ŸŽȱ˜ěȱ˜›œ’ŒŠǰȱ›Š—ŒŽȱ Yamaguti 1971, Pseudoholorchis Yamaguti (Western Mediterranean), and a comparison 1958, and Neolepocreadium Thomas, 1960. with other Mediterranean regions. ˜ž›—Š•ȱ ¢œŽ–Š’ŒȱŠ›Šœ’˜•˜¢ 36, 47-68. ˜ȱŠž›Š•ȱ ’œ˜›¢ 39 (1), 47–70. žœ‘ȱǰȱŠěŽ›¢ȱ ǰȱ˜ĵȱ ȱŠ—ȱ‘˜œŠ”ȱȱ Ben Said O, Goñi Urriza M, El Bour M, Duran (1997). Parasitology meets ecology on its R and Aissa P (2010). Diversité des bactéries own terms: Margolis et al. revisited. ˜ž›—Š•ȱ capables de dégrader les hydrocarbures ˜ȱŠ›Šœ’˜•˜¢ 83, 575–583. aromatiques polycycliques et résistantes aux métaux et aux antibiotiques isolées à Cherif M, Zarrad R, Gharbi H, Missaoui H partir des sédiments de la lagune de Bizerte, and Jarboui O (2008). Length-weight Tunisie.ȱŽŸžŽȱŽȱ’Œ›˜‹’˜•˜’Žȱ —žœ›’ŽȱŠ—·ȱ ›Ž•Š’˜—œ‘’™œȱ˜›ȱŗŗȱ꜑ȱœ™ŽŒ’Žœȱ›˜–ȱ‘Žȱ et Environnement 1, 32–48. Gulf of Tunis (SW Mediterranean Sea, Tunisia). Š—Ȭ–Ž›’ŒŠ—ȱ ˜ž›—Š•ȱ˜ȱšžŠ’Œȱ Bouhlel I, Mnari A, Chraief I, Hammami M, El Sciences 3, 1–5. Cafsi M and Chaouch A (2007). Variation œŠ’œ˜——’¸›Žȱžȱ™›˜ę•ȱŽ—ȱŠŒ’Žœȱ›ŠœȱŽȱ•Šȱ Combes C (1995). “Interactions durables. chair de trois espèces de Sparidés du golfe Ecologie et évolution du parasitisme”, de Tunis. Cybium 31, 191–197. 524 pp. Elsevier-Masson, Paris, ISBN: 2225848009. Bouhlel I, Mnari A, Chraief I, Hammami M, El Šœ’ȱȱŠ—ȱ‘Š˜žŒ‘ȱȱǻŘŖŖşǼǯȱŠĴ¢ȱŠŒ’œȱ Ȃ–’Œ˜ȱǰȱŠ—Žœ›’ȱ›˜Ĵ’ȱ ǰȱž•ž›’˜—’ȱ ȱ in muscles, liver and gonads in Diplodus and Figus V (2006). Helminth parasite Bull. Eur. Ass. Fish Pathol., 33(2) 2013, 51

community of Diplodus annularis L. 187–198. (Osteichthyes, Sparidae) from Gulf Kostadinova A, Bartoli P, Gibson DI and Raga of Cagliari (Sardinia, South Western JA (2004). Redescriptions of Š—’‹ž›œŠžœȱ Mediterranean). ž••Ž’—ȱ˜ȱ‘Žȱž›˜™ŽŠ—ȱ blennii (Paggi and Orechhia, 1975) n. comb. œœ˜Œ’Š’˜—ȱ˜ȱ’œ‘ȱŠ‘˜•˜’œœȱ26, 222–228. and Arnola microcirrus (Vlasenko, 1931) Dellali M, Gnassia Barelli M, Romeo M and Aissa (Digenea: Derogenidae) from marine P (2001). The use of acetylcholinesterase Ž•Ž˜œœȱ˜ěȱ˜›œ’ŒŠǯȱ¢œŽ–Š’ŒȱŠ›Šœ’˜•˜¢ȱ activity in Ruditapes decussatus and Mytilus 58, 125–137. Š••˜™›˜Ÿ’—Œ’Š•’œȱin the biomonitoring of Merella P (1991). Ricerche sulla malacofauna Bizerta lagoon. Comparative Biochemistry della Riserva naturale di Scandola (Corsica Š—ȱ‘¢œ’˜•˜¢ 130, 227–235. nord occidentale). Thesis, University of Fischer W, Seneider M, Bauchaut ML (1987). Sassari Italy, 138 p. D’identification des espèces pour les Miniconi R, Francour P and Bianconi CH (1990). besoins de la pêche. Méditerranée et Mer Inventaire de la faune ichthyologique de noire (zone de pêche 37) Vertébrés, Fiches la Reserve Naturelle de Scandola (Corse, F.A.O., II, 1359–1361, FAO, Rome. Mediterranee nord-occidentale). Cybium Fischthal JH (1980). Some digenetic trematodes 14, 77–89. ˜ȱ–Š›’—Žȱ꜑Žœȱ›˜–ȱ œ›ŠŽ•ȂœȱŽ’Ž››Š—ŽŠ—ȱ Mouine N, Francour P, Ktari MH and cost and their zoogeography, especially Chakroun-Marzouk N (2012). Reproductive ‘˜œŽȱ ›˜–ȱ Žȱ ŽŠȱ ’––’›Š—ȱ ꜑Žœǯȱ biology of four Diplodus species Diplodus ˜˜•˜’ŒŠȱŒ›’™Š 9, 11–23. Ÿž•Š›’œǰȱǯȱŠ——ž•Š›’œǰȱǯȱœŠ›žœȱœŠ›žœ and D. Fischthal JH (1982). Additional records of puntazzo (Sparidae) in the Gulf of Tunis ’Ž—Ž’Œȱ›Ž–Š˜Žœȱ˜ȱ–Š›’—Žȱ꜑Žœȱ›˜–ȱ (central Mediterranean). ˜ž›—Š•ȱ ˜ȱ ‘Žȱ Israel’s Mediterranean cost. ›˜ŒŽŽ’—œȱ˜ȱ Š›’—Žȱ’˜•˜’ŒŠ•ȱœœ˜Œ’Š’˜—ȱ˜ȱ‘Žȱ—’Žȱ ‘Žȱ Ž•–’—‘˜•˜’ŒŠ•ȱ˜Œ’Ž¢ȱ˜ȱŠœ‘’—˜— ’—˜– 92(3), 623–631. 49, 34–44. Pietrock M and Marcogliese DJ (2003). Free- Gaevskaya AV and Korniychuk YM (2003). living endohelminth stages: at the mercy Parasitic organisms as a component of of environmental conditions. Trends in ecosystems of the Black Sea near-shore Š›Šœ’˜•˜¢ 19, 293–299. zone of Crimea. In “Modern condition of ˜˜›Ž•ȂœŽŸŠȱȱǻŗşśŘǼǯȱŠ›Šœ’Žœȱ˜ȱ꜑ȱ˜ȱ‘Žȱ biological diversity in near shore zone of North Eastern part of the Black Sea. Trudy Crimea (Black Sea sector)” (V.N. Eremeev —œ’žŠȱ˜˜•˜’’ȱ ’ŽŸ 8, 100–120. and A.V. Gaevskaya, Eds), Sevastopol: EKOSI-Gidrophizika, pp.425-490. Saad Fares A (1985). Trématodes de poissons des côtes du Liban. Thèse Doctorat d’Etat, Gargouri Ben Abdallah L and Maamouri F Université des Sciences et Techniques du (2008). Digenean fauna diversity in Sparid Languedoc, 435 pp. ꜑ȱ›˜–ȱž—’œ’Š—ȱŒ˜Šœœǯȱž••Ž’—ȱ˜ȱ‘Žȱ ž›˜™ŽŠ—ȱœœ˜Œ’Š’˜—ȱ˜ȱ’œ‘ȱŠ‘˜•˜’œœ 28, Sasal P, Niquil N and Bartoli P (1999). 129–137. Community structure of digenean ™Š›Šœ’Žœȱ˜ȱœ™Š›’ȱŠ—ȱ•Š‹›’ȱ꜑Žœȱ˜ȱ Kostadinova A and Gibson DI (2009). New the Mediterranean Sea: a new approach. records of rare derogenids (Digenea: Š›Šœ’˜•˜¢ 119, 635–648. Hemiuroidea) from Mediterranean sparids, including the description of a new ›Š›ęȱȱŠ—ȱ•’–Ȭ‘’–’ȱȱǻŘŖŖŚǼǯȱŸŠ•žŠ’˜—ȱ species of Š—’‹ž›œŠžœ Naidenova, 1969 œ’–™•’ę·ŽȱŽœȱ›’œšžŽœDZȱž—ŽȱŠ™™›˜Œ‘Žȱšž’ȱ and redescription of Ž›˜Ž—ŽœȱŠ›’Š’Œžœ s’applique au nord de Tunisie. Larhyss Nikolaeva, 1966. ¢œŽ–Š’ŒȱŠ›Šœ’˜•˜¢ȱ74, ˜ž›—Š• 3,185–196. 52, Bull. Eur. Ass. Fish Pathol., 33(2) 2013

Sures B (2003). Accumulation of heavy metals ‹¢ȱ’—Žœ’—Š•ȱ‘Ž•–’—‘œȱ’—ȱ꜑DZȱŠ—ȱ˜ŸŽ›Ÿ’Ž ȱ and perspective. Š›Šœ’˜•˜¢ 126, 53–60. Sures B (2008). Environmental parasitology. Interactions between parasites and pollutants in the aquatic environment. Parasite 15, 434–438. Ternengo S, Levron C and Marchand B (2005). ŽŠ£˜Š—ȱŠ›Šœ’Žœȱ’—ȱ™Š›’ȱ꜑ȱ’—ȱ˜›œ’ŒŠȱ (Western Mediterranean).ȱž••Ž’—ȱ˜ȱ‘Žȱ ž›˜™ŽŠ—ȱœœ˜Œ’Š’˜—ȱ˜ȱ’œ‘ȱŠ‘˜•˜’œœ 25, 262–269. Valtonen ET, Holmes JC and Koskivaara M (1997). Eutrophication, pollution, Š—ȱ ›Š–Ž—Š’˜—DZȱ ŽěŽŒœȱ ˜—ȱ ™Š›Šœ’Žȱ communities in roach (Rutilus rutilus) and perch (Ž›ŒŠȱ̞Ÿ’Š’•’œ) in four lakes in central Finland. Š—Š’Š—ȱ ˜ž›—Š•ȱ˜ȱ’œ‘Ž›’Žœȱ and Aquatic Sciences 54, 572–585. Verlaque M (1990). Flore marine de la région de Galeria. ›ŠŸŠž¡ȱŒ’Ž—’ęšžŽœȱžȱŠ›ŒȱŠž›Ž•ȱ ·’˜—Š•ȱŽȱŽœȱ·œŽ›ŸŽœȱŠž›Ž••ŽœȱŽȱ˜›œŽ 29, 77–88. Ž›•ŠšžŽȱǰȱ›Š—Œ˜ž›ȱȱŠ—ȱŠ›˜›ŽĴ˜ȱȱǻŗşşşǼǯȱ Evaluation de la valeur patrimoniale des biocénoses marines de la face ouest de l’îlot de Gargalu (Réserve intégrale de Scandola). ›ŠŸŠž¡ȱŒ’Ž—’ęšžŽœȱžȱŠ›ŒȱŠž›Ž•ȱ·’˜—Š•ȱ ŽȱŽœȱ·œŽ›ŸŽœȱŠž›Ž••ŽœȱŽȱ˜›œŽ 59, 121–168. Williams HH and Mackenzie K (2003). Marine parasites as pollution indicators: an update. Š›Šœ’˜•˜¢ 126, 27–41.