Minutes and Appendices (MAPS)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WORDS MADE FLESH Code, Culture, Imagination Florian Cramer
WORDS MADE FLESH Code, Culture, Imagination Florian Cramer Me dia De s ign Re s e arch Pie t Z w art Ins titute ins titute for pos tgraduate s tudie s and re s e arch W ille m de Kooning Acade m y H oge s ch ool Rotte rdam 3 ABSTRACT: Executable code existed centuries before the invention of the computer in magic, Kabbalah, musical composition and exper- imental poetry. These practices are often neglected as a historical pretext of contemporary software culture and electronic arts. Above all, they link computations to a vast speculative imagination that en- compasses art, language, technology, philosophy and religion. These speculations in turn inscribe themselves into the technology. Since even the most simple formalism requires symbols with which it can be expressed, and symbols have cultural connotations, any code is loaded with meaning. This booklet writes a small cultural history of imaginative computation, reconstructing both the obsessive persis- tence and contradictory mutations of the phantasm that symbols turn physical, and words are made flesh. Media Design Research Piet Zwart Institute institute for postgraduate studies and research Willem de Kooning Academy Hogeschool Rotterdam http://www.pzwart.wdka.hro.nl The author wishes to thank Piet Zwart Institute Media Design Research for the fellowship on which this book was written. Editor: Matthew Fuller, additional corrections: T. Peal Typeset by Florian Cramer with LaTeX using the amsbook document class and the Bitstream Charter typeface. Front illustration: Permutation table for the pronounciation of God’s name, from Abraham Abulafia’s Or HaSeichel (The Light of the Intellect), 13th century c 2005 Florian Cramer, Piet Zwart Institute Permission is granted to copy, distribute and/or modify this document under the terms of any of the following licenses: (1) the GNU General Public License as published by the Free Software Foun- dation; either version 2 of the License, or any later version. -
B.Casselman,Mathematical Illustrations,A Manual Of
1 0 0 setrgbcolor newpath 0 0 1 0 360 arc stroke newpath Preface 1 0 1 0 360 arc stroke This book will show how to use PostScript for producing mathematical graphics, at several levels of sophistication. It includes also some discussion of the mathematics involved in computer graphics as well as a few remarks about good style in mathematical illustration. To explain mathematics well often requires good illustrations, and computers in our age have changed drastically the potential of graphical output for this purpose. There are many aspects to this change. The most apparent is that computers allow one to produce graphics output of sheer volume never before imagined. A less obvious one is that they have made it possible for amateurs to produce their own illustrations of professional quality. Possible, but not easy, and certainly not as easy as it is to produce their own mathematical writing with Donald Knuth’s program TEX. In spite of the advances in technology over the past 50 years, it is still not a trivial matter to come up routinely with figures that show exactly what you want them to show, exactly where you want them to show it. This is to some extent inevitable—pictures at their best contain a lot of information, and almost by definition this means that they are capable of wide variety. It is surely not possible to come up with a really simple tool that will let you create easily all the graphics you want to create—the range of possibilities is just too large. -
Branding Guidelines
2020 v. 1 BRANDING GUIDELINES A visual identity guide for New Orleans Baptist Theological Seminary and Leavell College New Orleans Baptist Theological Seminary and Leavell College 01 2020 v. 1 CONTENTS COLORS 3 Primary Color 3 Secondary Colors 4 Grays LOGOS 5 Graduate Logo 7 Undergraduate Logo 9 Combining both Logos TYPOGRAPHY 10 Roboto Font Family 11 Utopia Font Family 12 Combining both Fonts 13 Branding Statements LAYOUT GUIDELINES Text and Images Margins and Bleeds White Space EXAMPLE PAGES New Orleans Baptist Theological Seminary and Leavell College 02 2020 v. 1 The primary purple and secondary colors should be utilized COLORS for all seminary and college designs. Generally, gray or white should be used for text. Limited use of primary and secondary colors is acceptable for headlines. The primary purple is Primary and intentionally contrasted and complemented by the secondary Secondary Colors colors. A balanced design is structured by the weight, proximity, and alignment of shapes, text, and photos. Photos should be bright and saturated. NOTE: If a printer is not accurate or the material does not hold ink effectively, the purple can easily skew to either a reddish or blueish hue. Primary Purple Secondary Gold Secondary Light Blue Cyan = 80 Cyan = 21 Cyan = 67 Magenta = 88 Magenta = 22 Magenta = 0 CMYK Yellow = 36 Yellow = 100 Yellow = 18 Black = 29 Black = 0 Black = 0 Red = 68 Red = 209 Red = 48 RGB Green = 48 Green = 180 Green = 192 Blue = 90 Blue = 43 Blue = 210 #44305a #d1b42b #30c0d2 HEX 2627 C 110 C 2627 U 110 U PANTONE New Orleans Baptist Theological Seminary and Leavell College 03 2020 v. -
Bitstream Fonts in May 2005 at Totaling 350 Font Families with a Total of 1357 Font Styles
Bitstream Fonts in May 2005 at http://www.myfonts.com/fonts/bitstream totaling 350 font families with a total of 1357 font styles The former Bitstream typeface libraries consisted mainly of forgeries of Linotype fonts and of ITC fonts. See the list below on the pages 24–29 about the old Bitstream Typeface Library of 1992. The 2005 Bitstream typeface library contains the same forgeries of Linotype fonts as formerly and also the same ITC fonts, but it also includes a lot of new mediocre „rubbish fonts“ (e.g. „Alphabet Soup“, „Arkeo“, „Big Limbo“), but also a few new quality fonts (e.g. „Drescher Grotesk“, „Prima Serif“ etc.). On the other hand, a few old fonts (e.g. „Caxton“) were removed. See the list below on pages 1–23. The typeface collection of CorelDraw comprises almost the entire former old Bitstream typeface library (see the list below on pages 24–29) with the following exceptions: 1. A few (ca. 3) forgeries of Linotype fonts are missing in the CorelDraw font collections, e.g. the fonts „Baskerville No. 2“ (= Linotype Baskerville No. 2), „Italian Garamond“ (= Linotype Garamond Simoncini), and „Revival 555“ (= Linotype Horley Old Style). 2. A lot (ca. 11) of ITC fonts are not contained in the CorelDraw font collections, e.g. „ITC Berkeley Oldstyle“, „ITC Century“, „ITC Clearface“, „ITC Isbell“, „ITC Italia“, „ITC Modern No. 216“, „ITC Ronda“, „ITC Serif Gothic“, „ITC Tom’s Roman“, „ITC Zapf Book“, and „ITC Zapf International“. Ulrich Stiehl, Heidelberg 3-May 2005 Aachen – 2 styles Ad Lib™ – 1 styles Aerospace Pi – 1 styles Aldine -
Uniform Rendering of XML Encoded Mathematical Content with Opentype Fonts
i \eutypon24-25" | 2011/1/21 | 8:58 | page 11 | #15 i i i Εὔτυπon, τεῦχος 24-25 — >Okt¸brioc/October 2010 11 Uniform Rendering of XML Encoded Mathematical Content with OpenType Fonts Apostolos Syropoulos 366, 28th October Str. GR-671 00 Xanthi Greece E-mail: asyropoulos at yahoo dot com The new OpenType MATH font table contains important information that can be used to correctly and uniformly render mathematical con- tent (e.g., mathematical formulae, equations, etc.). Until now, all sys- tems in order to render XML encoded mathematical content employed some standard algorithms together with some standard sets of TrueType and/or Type 1 fonts, which contained the necessary glyphs. Unfortu- nately, this approach does not produce uniform results because certain parameters (e.g., the thickness of the fraction line, the scale factor of superscripts/subscripts, etc.) are system-dependant, that is, their exact values will depend on the particular setup of a given system. Fortunately, the new OpenType MATH table can be used to remedy this situation. In particular, by extending renderers so as to be able to render mathemat- ical contents with user-specified fonts, the result will be uniform across systems and platforms. In other words, the proposed technology would allow mathematical content to be rendered the same way ordinary text is rendered across platforms and systems. 1 Introduction The OpenType font format is a new cross-platform font file format developed jointly by Adobe and Microsoft. OpenType fonts may contain glyphs with ei- ther cubic B´eziersplines (used in PostScript fonts) or with quadratic B´ezier splines (used in TrueType fonts). -
Font HOWTO Font HOWTO
Font HOWTO Font HOWTO Table of Contents Font HOWTO......................................................................................................................................................1 Donovan Rebbechi, elflord@panix.com..................................................................................................1 1.Introduction...........................................................................................................................................1 2.Fonts 101 −− A Quick Introduction to Fonts........................................................................................1 3.Fonts 102 −− Typography.....................................................................................................................1 4.Making Fonts Available To X..............................................................................................................1 5.Making Fonts Available To Ghostscript...............................................................................................1 6.True Type to Type1 Conversion...........................................................................................................2 7.WYSIWYG Publishing and Fonts........................................................................................................2 8.TeX / LaTeX.........................................................................................................................................2 9.Getting Fonts For Linux.......................................................................................................................2 -
The File Cmfonts.Fdd for Use with Latex2ε
The file cmfonts.fdd for use with LATEX 2".∗ Frank Mittelbach Rainer Sch¨opf 2019/12/16 This file is maintained byA theLTEX Project team. Bug reports can be opened (category latex) at https://latex-project.org/bugs.html. 1 Introduction This file contains the external font information needed to load the Computer Modern fonts designed by Don Knuth and distributed with TEX. From this file all .fd files (font definition files) for the Computer Modern fonts, both with old encoding (OT1) and Cork encoding (T1) are generated. The Cork encoded fonts are known under the name ec fonts. 2 Customization If you plan to install the AMS font package or if you have it already installed, please note that within this package there are additional sizes of the Computer Modern symbol and math italic fonts. With the release of LATEX 2", these AMS `extracm' fonts have been included in the LATEX font set. Therefore, the math .fd files produced here assume the presence of these AMS extensions. For text fonts in T1 encoding, the directive new selects the new (version 1.2) DC fonts. For the text fonts in OT1 and U encoding, the optional docstrip directive ori selects a conservatively generated set of font definition files, which means that only the basic font sizes coming with an old LATEX 2.09 installation are included into the \DeclareFontShape commands. However, on many installations, people have added missing sizes by scaling up or down available Metafont sources. For example, the Computer Modern Roman italic font cmti is only available in the sizes 7, 8, 9, and 10pt. -
Ghostscript and Mupdf Status Openprinting Summit April 2016
Ghostscript and MuPDF Status OpenPrinting Summit April 2016 Michael Vrhel, Ph.D. Artifex Software Inc. San Rafael CA Outline Ghostscript overview What is new with Ghostscript MuPDF overview What is new with MuPDF MuPDF vs Ghostscript MuJS, GSView The Basics Ghostscript is a document conversion and rendering engine. Written in C ANSI 1989 standard (ANS X3.159-1989) Essential component of the Linux printing pipeline. Dual AGPL/Proprietary licensed. Artifex owns the copyright. Source and documentation available at www.ghostscript.com Graphical Overview PostScript PCL5e/c with PDF 1.7 XPS Level 3 GL/2 and RTL PCLXL Ghostscript Graphics Library High level Printer drivers: Raster output API: Output drivers: Inkjet TIFF PSwrite PDFwrite Laser JPEG XPSwrite Custom etc. CUPS Devices Understanding devices is a major key to understanding Ghostscript. Devices can have high-level functionality. e.g. pdfwrite can handle text, images, patterns, shading, fills, strokes and transparency directly. Graphics library has “default” operations. e.g. text turns into bitmaps, images decomposed into rectangles. In embedded environments, calls into hardware can be made. Raster devices require the graphics library to do all the rendering. Relevant Changes to GS since last meeting…. A substantial revision of the build system and GhostPDL directory structure (9.18) GhostPCL and GhostXPS "products" are now built by the Ghostscript build system "proper" rather than having their own builds (9.18) New method of internally inserting devices into the device chain developed. Allows easier implementation of “filter” devices (9.18) Implementation of "-dFirstPage"/"-dLastPage" with all input languages (9.18) Relevant Changes to GS since last meeting…. -
Surviving the TEX Font Encoding Mess Understanding The
Surviving the TEX font encoding mess Understanding the world of TEX fonts and mastering the basics of fontinst Ulrik Vieth Taco Hoekwater · EuroT X ’99 Heidelberg E · FAMOUS QUOTE: English is useful because it is a mess. Since English is a mess, it maps well onto the problem space, which is also a mess, which we call reality. Similary, Perl was designed to be a mess, though in the nicests of all possible ways. | LARRY WALL COROLLARY: TEX fonts are mess, as they are a product of reality. Similary, fontinst is a mess, not necessarily by design, but because it has to cope with the mess we call reality. Contents I Overview of TEX font technology II Installation TEX fonts with fontinst III Overview of math fonts EuroT X ’99 Heidelberg 24. September 1999 3 E · · I Overview of TEX font technology What is a font? What is a virtual font? • Font file formats and conversion utilities • Font attributes and classifications • Font selection schemes • Font naming schemes • Font encodings • What’s in a standard font? What’s in an expert font? • Font installation considerations • Why the need for reencoding? • Which raw font encoding to use? • What’s needed to set up fonts for use with T X? • E EuroT X ’99 Heidelberg 24. September 1999 4 E · · What is a font? in technical terms: • – fonts have many different representations depending on the point of view – TEX typesetter: fonts metrics (TFM) and nothing else – DVI driver: virtual fonts (VF), bitmaps fonts(PK), outline fonts (PFA/PFB or TTF) – PostScript: Type 1 (outlines), Type 3 (anything), Type 42 fonts (embedded TTF) in general terms: • – fonts are collections of glyphs (characters, symbols) of a particular design – fonts are organized into families, series and individual shapes – glyphs may be accessed either by character code or by symbolic names – encoding of glyphs may be fixed or controllable by encoding vectors font information consists of: • – metric information (glyph metrics and global parameters) – some representation of glyph shapes (bitmaps or outlines) EuroT X ’99 Heidelberg 24. -
Using Fonts Installed in Local Texlive - Tex - Latex Stack Exchange
27-04-2015 Using fonts installed in local texlive - TeX - LaTeX Stack Exchange sign up log in tour help TeX LaTeX Stack Exchange is a question and answer site for users of TeX, LaTeX, ConTeXt, and related Take the 2minute tour × typesetting systems. It's 100% free, no registration required. Using fonts installed in local texlive I have installed texlive at ~/texlive . I have installed collectionfontsrecommended using tlmgr . Now, ~/texlive/2014/texmfdist/fonts/ has several folders: afm , cmap , enc , ... , vf . Here is the output of tlmgr info helvetic package: helvetic category: Package shortdesc: URW "Base 35" font pack for LaTeX. longdesc: A set of fonts for use as "dropin" replacements for Adobe's basic set, comprising: Century Schoolbook (substituting for Adobe's New Century Schoolbook); Dingbats (substituting for Adobe's Zapf Dingbats); Nimbus Mono L (substituting for Abobe's Courier); Nimbus Roman No9 L (substituting for Adobe's Times); Nimbus Sans L (substituting for Adobe's Helvetica); Standard Symbols L (substituting for Adobe's Symbol); URW Bookman; URW Chancery L Medium Italic (substituting for Adobe's Zapf Chancery); URW Gothic L Book (substituting for Adobe's Avant Garde); and URW Palladio L (substituting for Adobe's Palatino). installed: Yes revision: 31835 sizes: run: 2377k relocatable: No catdate: 20120606 22:57:48 +0200 catlicense: gpl collection: collectionfontsrecommended But when I try to compile: \documentclass{article} \usepackage{helvetic} \begin{document} Hello World! \end{document} It gives an error: ! LaTeX Error: File `helvetic.sty' not found. Type X to quit or <RETURN> to proceed, or enter new name. -
Latex2ε Font Selection
LATEX 2" font selection © Copyright 1995{2021, LATEX Project Team.∗ All rights reserved. March 2021 Contents 1 Introduction2 1.1 LATEX 2" fonts.............................2 1.2 Overview...............................2 1.3 Further information.........................3 2 Text fonts4 2.1 Text font attributes.........................4 2.2 Selection commands.........................7 2.3 Internals................................8 2.4 Parameters for author commands..................9 2.5 Special font declaration commands................. 10 3 Math fonts 11 3.1 Math font attributes......................... 11 3.2 Selection commands......................... 12 3.3 Declaring math versions....................... 13 3.4 Declaring math alphabets...................... 13 3.5 Declaring symbol fonts........................ 14 3.6 Declaring math symbols....................... 15 3.7 Declaring math sizes......................... 17 4 Font installation 17 4.1 Font definition files.......................... 17 4.2 Font definition file commands.................... 18 4.3 Font file loading information..................... 19 4.4 Size functions............................. 20 5 Encodings 21 5.1 The fontenc package......................... 21 5.2 Encoding definition file commands................. 22 5.3 Default definitions.......................... 25 5.4 Encoding defaults........................... 26 5.5 Case changing............................. 27 ∗Thanks to Arash Esbati for documenting the newer NFSS features of 2020 1 6 Miscellanea 27 6.1 Font substitution.......................... -
Chapter 13, Using Fonts with X
13 Using Fonts With X Most X clients let you specify the font used to display text in the window, in menus and labels, or in other text fields. For example, you can choose the font used for the text in fvwm menus or in xterm windows. This chapter gives you the information you need to be able to do that. It describes what you need to know to select display fonts for use with X client applications. Some of the topics the chapter covers are: The basic characteristics of a font. The font-naming conventions and the logical font description. The use of wildcards and aliases for simplifying font specification The font search path. The use of a font server for accessing fonts resident on other systems on the network. The utilities available for managing fonts. The use of international fonts and character sets. The use of TrueType fonts. Font technology suffers from a tension between what printers want and what display monitors want. For example, printers have enough intelligence built in these days to know how best to handle outline fonts. Sending a printer a bitmap font bypasses this intelligence and generally produces a lower quality printed page. With a monitor, on the other hand, anything more than bitmapped information is wasted. Also, printers produce more attractive print with variable-width fonts. While this is true for monitors as well, the utility of monospaced fonts usually overrides the aesthetic of variable width for most contexts in which we’re looking at text on a monitor. This chapter is primarily concerned with the use of fonts on the screen.