Barite in Washington
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Podiform Chromite Deposits—Database and Grade and Tonnage Models
Podiform Chromite Deposits—Database and Grade and Tonnage Models Scientific Investigations Report 2012–5157 U.S. Department of the Interior U.S. Geological Survey COVER View of the abandoned Chrome Concentrating Company mill, opened in 1917, near the No. 5 chromite mine in Del Puerto Canyon, Stanislaus County, California (USGS photograph by Dan Mosier, 1972). Insets show (upper right) specimen of massive chromite ore from the Pillikin mine, El Dorado County, California, and (lower left) specimen showing disseminated layers of chromite in dunite from the No. 5 mine, Stanislaus County, California (USGS photographs by Dan Mosier, 2012). Podiform Chromite Deposits—Database and Grade and Tonnage Models By Dan L. Mosier, Donald A. Singer, Barry C. Moring, and John P. Galloway Scientific Investigations Report 2012-5157 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 This report and any updates to it are available online at: http://pubs.usgs.gov/sir/2012/5157/ For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Mosier, D.L., Singer, D.A., Moring, B.C., and Galloway, J.P., 2012, Podiform chromite deposits—database and grade and tonnage models: U.S. -
A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite)
minerals Review A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite) Darius G. Wonyen 1,†, Varney Kromah 1,†, Borbor Gibson 1,† ID , Solomon Nah 1,† and Saeed Chehreh Chelgani 1,2,* ID 1 Department of Geology and Mining Engineering, Faculty of Engineering, University of Liberia, P.O. Box 9020 Monrovia, Liberia; [email protected] (D.G.W.); [email protected] (Y.K.); [email protected] (B.G.); [email protected] (S.N.) 2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected]; Tel.: +1-41-6830-9356 † These authors contributed equally to the study. Received: 24 July 2018; Accepted: 13 August 2018; Published: 15 August 2018 Abstract: It is well documented that flotation has high economic viability for the beneficiation of valuable minerals when their main ore bodies contain magnesium (Mg) carbonates such as dolomite and magnesite. Flotation separation of Mg carbonates from their associated valuable minerals (AVMs) presents several challenges, and Mg carbonates have high levels of adverse effects on separation efficiency. These complexities can be attributed to various reasons: Mg carbonates are naturally hydrophilic, soluble, and exhibit similar surface characteristics as their AVMs. This study presents a compilation of various parameters, including zeta potential, pH, particle size, reagents (collectors, depressant, and modifiers), and bio-flotation, which were examined in several investigations into separating Mg carbonates from their AVMs by froth flotation. Keywords: dolomite; magnesite; flotation; bio-flotation 1. Introduction Magnesium (Mg) carbonates (salt-type minerals) are typical gangue phases associated with several valuable minerals, and have complicated processing [1,2]. -
Reactivity of Dolomite in Water-Saturated Supercritical Carbon
Energy Conversion and Management 65 (2013) 564–573 Contents lists available at SciVerse ScienceDirect Energy Conversion and Management journal homepage: www.elsevier.com/locate/enconman Reactivity of dolomite in water-saturated supercritical carbon dioxide: Significance for carbon capture and storage and for enhanced oil and gas recovery ⇑ Xiuyu Wang a,1, Vladimir Alvarado b, Norbert Swoboda-Colberg a, John P. Kaszuba a,c, a Department of Geology and Geophysics, 1000 E. University Avenue, University of Wyoming, Laramie, WY 82071, USA b Department of Chemical and Petroleum Engineering, 1000 E. University Avenue, University of Wyoming, Laramie, WY 82071, USA c School of Energy Resources, 1000 E. University Avenue, University of Wyoming, Laramie, WY 82071, USA article info abstract Article history: Carbon dioxide injection in porous reservoirs is the basis for carbon capture and storage, enhanced oil and Received 17 December 2011 gas recovery. Injected carbon dioxide is stored at multiple scales in porous media, from the pore-level as a Received in revised form 18 July 2012 residual phase to large scales as macroscopic accumulations by the injection site, under the caprock and Accepted 26 July 2012 at reservoir internal capillary pressure barriers. These carbon dioxide saturation zones create regions Available online 5 November 2012 across which the full spectrum of mutual CO2–H2O solubility may occur. Most studies assume that geo- chemical reaction is restricted to rocks and carbon dioxide-saturated formation waters, but this paradigm Keywords: ignores injection of anhydrous carbon dioxide against brine and water-alternating-gas flooding for Carbon capture and storage enhanced oil recovery. Enhanced oil recovery Enhanced gas recovery A series of laboratory experiments was performed to evaluate the reactivity of the common reservoir Fluid–rock interactions mineral dolomite with water-saturated supercritical carbon dioxide. -
Dolomite Deposit Near Marble Stevens County Washington
Dolomite Deposit Near Marble Stevens County Washington By CHARLES DEISS A CONTRIBUTION TO ECONOMIC GEOLOGY GEOLOGICAL SURVEY BULLETIN 1027-C A study of the geologic structure and petrology of a dolomite deposit UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1955 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Abstract..-_ __________-_______-__-_-_______--_____---__-_-----____ 119 Introduction. _____________________________________________________ 120 Location of deposit-_--__-________-_-___--________-_-_____---____-- 120 Sedimentary rocks.________________________________________________ 121 Northport limestone- __--_--______--_-________-_-_______-._____ 122 Glacial drift... __________-________-__-___________--__---_-._ 122 Glacial lake deposits.__________________________________________ 123 [gneous rocks.___-_-__--__-_-_---_-___--_----__---__---._-_-__---_ 125 Lamprophyre dikes.____________--___-____-__----___-_----.__-- 125 Petrography of the dike rocks.-.__________-________----_-___ 126 Economic significance of the dikes___________________________ 128 Geologic structure.________________________________________________ 128 Faults ----------------------------------------------------- 129 Joints.-.-___-.__----_---_---__----__-_._-___-------_. 129 Structures in the quarry face.___________________________________ 130 Dolomite deposit-___-___---____-__--_.._---__--__---__-____-_-_---_ 130 Lithology of the dolomite...------._____________________________ 130 Breccia zones.________-_____-____-______-_--_____--_-__-__ 132 Chemical analyses.__---___-_________________________________-^ 132 Lithologic section and position of selected samples _________________ 132 Silica and other impurities.--_---______-_-_----_______-___-.__-_ 135 Origin of the dolomite._________________________________________ 138 Mining conditions and methods. -
Porphyry Copper Deposits of the American Cordillera
Porphyry Copper Deposits of the American Cordillera Frances Wahl Pierce and John G. Bolm, Editors Arizona Geological Society Digest 20 1995 The Helvetia Area Porphyry Systems, Pima County, Arizona S. A. ANZALONE ASARCO Incorporated, Tu cson, Arizona ABSTRACT INTRODUCTION The Helvetia area porphyry copper deposits occur within The Helvetia area copper deposits occur within a large an extensive Laramide porphyry system located in the Santa Laramide porphyry system located in the Santa Rita Mountains, Rita Mountains, Pima County, Arizona. The entire system Pima County, Arizona. This porphyry copper system consists of consists of four separate centers of copper mineralization: four separate areas of copper mineralization - Rosemont, Peach Rosemont, Peach-Elgin, Broadtop Butte, and Copper Wo rld. Elgin, Broadtop Butte, and Copper World - lying within a Mineralization and alteration are primarily of the contact broad alteration zone in the northern segment of the Santa Rita pyrometasomatic type and hydrothermal alteration and zon Mountains. Mineralization and alteration are primarily contact ing of sulfide mineral assemblages resemble those observed at pyrometasomatic, and zoning of hydrothermal alteration and sul the Twin Buttes Copper Mine located approximately 30 kilo fide mineral assemblages is similar to those observed at the meters west of Helvetia. The stratigraphic sequence, ranging Twin Buttes and Mission Copper Mines located approximately from Cambrian Bolsa Formation to Permian Rain Va lley For 30 kilometers west of Helvetia. ASARCO acquired the copper mation, correlates well with sections developed in the Tw in deposits within the Helvetia area porphyry systems in 1988 and Buttes and Mission Mine areas. The Paleozoic section in the has continued the exploration and development effort since then. -
Fluid Properties and Sources of Sixiangchang Carbonate- Associated Mercury Deposit, Southwest China
Acta Geochim (2019) 38(5):670–682 https://doi.org/10.1007/s11631-019-00362-w ORIGINAL ARTICLE Fluid properties and sources of Sixiangchang carbonate- associated mercury deposit, southwest China 1,2 1,2 1,2 1,2 1,2 Yuzhou Zhuo • Yong Huang • Jinwei Li • Wei Gao • Jinxiang Li Received: 8 March 2019 / Revised: 6 June 2019 / Accepted: 27 June 2019 / Published online: 4 July 2019 Ó Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Mercury mines in Guizhou province are the %, while d18O variation ranges from 13.80 to 23.09 %, main base of mercury production and the most important and the d34S variation range of cinnabar is 16.51–24.28 %. resource base in China. The San-Dan mercury belt in Carbonate mineral trace elements and C–O isotopes com- Guizhou province contains a series of important mercury positions suggested that early ore-forming fluid was deposits. However, the source of metallogenic materials reduced, and late ore-forming fluid was oxidized. The ore- and the properties of metallogenic fluid of these mercury forming fluid of the Sixiangchang mercury deposit is a deposits have long been a controversial issue. In this study, mixture of deep crustal fluid and meteoric water in deep we used cathode luminescence techniques to distinguish thermal circulation, and involved in the oxidation of different stages of dolomite and calcite, laser ablation organic matter. The cinnabar d34S results showed that inductively coupled plasma mass spectrometry to analyze sulfur mainly came from seawater sulfate with the partic- the trace elements, and stable isotope mass spectrometry ipation of microbial reduction. -
Hematite and Goethite Inclusions in Low-Grade
HEMATITE AND GOETHITE INCLUSIONS IN LOW-GRADE DOLOMITIC BANDED IRON FORMATIONS: PHYSICAL PARAMETER EVALUATION TO OPTIMIZE ORE BENEFICIATION Beate Orberger, Christiane Wagner, Alina Tudryn, Benoît Baptiste, Richard Wirth, Rachael Morgan, Serge Miska To cite this version: Beate Orberger, Christiane Wagner, Alina Tudryn, Benoît Baptiste, Richard Wirth, et al.. HEMATITE AND GOETHITE INCLUSIONS IN LOW-GRADE DOLOMITIC BANDED IRON FORMATIONS: PHYSICAL PARAMETER EVALUATION TO OPTIMIZE ORE BENEFICIA- TION. XXVIII International Mineral Processing Congress Proceedings , Canadian Institute of Mining, Metallurgy and Petroleum, 2016, pp.1-11. hal-01394125 HAL Id: hal-01394125 https://hal.archives-ouvertes.fr/hal-01394125 Submitted on 8 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IMPC 2016: XXVIII International Mineral Processing Congress Proceedings - ISBN: 978-1-926872-29-2 HEMATITE AND GOETHITE INCLUSIONS IN LOW-GRADE DOLOMITIC BANDED IRON FORMATIONS: PHYSICAL PARAMETER EVALUATION TO OPTIMIZE ORE BENEFICIATION *B. Orberger1, C. Wagner2, A. Tudryn1, -
Hydrothermal-Sedimentary Dolomite
Zhang et al. Journal of Palaeogeography (2020) 9:24 https://doi.org/10.1186/s42501-020-00070-0 Journal of Palaeogeography ORIGINAL ARTICLE Open Access Hydrothermal-sedimentary dolomite — a case from the Middle Permian in eastern Junggar Basin, China Shuai Zhang1,2,3,4, Yi-Qun Liu1,2*, Hong Li1,2, Xin Jiao1,2 and Ding-Wu Zhou1,2 Abstract The Middle Permian Lucaogou Formation in the Jimusar Sag, eastern Junggar Basin, NW China, was deposited in a salt lake within an intracontinental rift basin with intense hydrothermal activity. Hydrothermal-sedimentary dolomite in the form of three types of dolostones, namely, analcime-feldspar dolostone (AFD), silicic dolostone (SD) and buddingtonite-albite dolostone (BAD), related to syn-sedimentary hydrothermal activity at lake bottom was discovered. The characteristics and formation mechanism of the dolomite were studied based on micron-scale petrographic and isotopic geochemical research. The syn-depositional formation of these dolostones was indicated by their rock-mineral features and syn-sedimentary deformation stage. The dolomite was composed of relatively poorly ordered proto-dolomite crystals with micron-sized spherical or sub-spherical morphology and coexisted with hydrothermal minerals, including analcime, buddingtonite, albite and chalcedony. Albite clasts were replaced by the dolomite, indicating high-temperature conditions during formation. The remarkably low strontium isotopic compositions of the dolostones (87Sr/86Sr with an average of 0.705687) indicated that mantle-derived materials 13 might have involved in the ore-forming fluid. The dolostones had positive δ CPDB values (with an average of 18 18 6.94‰) and negative δ OPDB values (with an average of − 8.12‰). -
Minerals Found in Michigan Listed by County
Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee, -
Cinnabar Hgs C 2001-2005 Mineral Data Publishing, Version 1
Cinnabar HgS c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 32. Rhombohedral crystals, to 10 cm; thick tabular {0001}; stout to slender prismatic k [1010]. Also as incrustations, granular, and massive. Twinning: Twin plane {0001}, twin axis [0001], to form simple contact twins. Physical Properties: Cleavage: {1010}, perfect. Fracture: Subconchoidal, uneven. Tenacity: Slightly sectile. Hardness = 2–2.5 VHN = 82–156 (10 g load). D(meas.) = 8.176 D(calc.) = 8.20 Optical Properties: Transparent in thin pieces. Color: Cochineal-red, towards brownish red and lead-gray. Streak: Scarlet. Luster: Adamantine, inclining to metallic when dark; dull in friable material. Optical Class: Uniaxial (+). ω = 2.905 (598.5). = 3.256 (598.5). Anisotropism: High. R1–R2: (400) 30.0–33.5, (420) 28.8–32.1, (440) 27.4–30.9, (460) 26.4–29.9, (480) 25.7–29.5, (500) 25.2–29.4, (520) 24.6–29.4, (540) 24.2–29.1, (560) 23.9–28.6, (580) 23.7–27.9, (600) 23.4–27.3, (620) 23.0–26.8, (640) 22.6–26.3, (660) 22.4–26.0, (680) 22.1–25.7, (700) 21.9–25.5 Cell Data: Space Group: P 3121 or P 3221. a = 4.145(2) c = 9.496(2) Z = 3 X-ray Powder Pattern: Almad´en,Spain. 2.85 (10), 3.34 (9), 1.672 (6), 2.06 (5), 1.969 (5), 1.725 (5), 1.339 (5) Chemistry: Essentially pure HgS. Polymorphism & Series: Trimorphous with metacinnabar and hypercinnabar. Occurrence: Formed from low-temperature hydrothermal solutions in veins, and in sedimentary, igneous, and metamorphic host rocks. -
Some Cinnabar Deposits in Western Nevada
SOME CINNABAR DEPOSITS IN WESTERN NEVADA. By ADOLPH KNOPF. DEPOSITS EAST OF MINA. LOCATION AND HISTORY OF DISCOVERY. A belt of cinnabar deposits is situated in the heart "of the Pilot Mountains, in an air line 8 miles south of east of Mina, Esmeralda County, Nev. The average elevation above sea level here is 7,300 feet, or about 2,700 feet above Mina, the local supply point, which is on the Southern Pacific system. The deposits are accessible from Mina by a good wagon road of easy grade about 12 miles long. The area in which tho quicksilver deposits occur supports sufficient forest growth to furnish wood for local use as fuel and contains a number of springs that are capable of furnishing an ample domestic supply of water. The topographic features of the district and its ap proaches are shown on the scale of 1:250,000, or approximately 4 miles to the inch, on the United States Geological Survey's map of the Tonopah quadrangle. The discovery that drew attention to the cinnabar of Pilot Moun tains was made in June, 1913. On the day of the discovery Thomas Pepper and Charles Keough had been tracking two stray steers, when near nightfall the trail led over an old prospect in which a face of limestone traversed by small veinlets of red mineral was exposed. The red mineral was recognized by Keough as cinnabar. After find ing the steers and taking them to Mina the two discoverers returned to Cinnabar Mountain, as the hill on which they had made the find has since been named, where they spent 10 days in careful search and located 17 claims. -
Mississippi Valley-Type Lead-Zinc Deposits (Mvt)
MISSISSIPPI VALLEY-TYPE LEAD-ZINC DEPOSITS (MVT) SUZANNE PARADIS1, PETER HANNIGAN2 AND KEITH DEWING2 1GSC-MRGB/MRD, 9860 West Saanich Road, Sidney, BC, V8L 4B2 2GSC-SMGB, 3303 - 33 Street North West, Calgary, AB, T2L 2A7 [email protected] Definition Scientific Definition MVT deposits are stratabound, carbonate-hosted sul- Simplified Definition phide bodies, composed predominantly of zinc and lead, Mississippi Valley-type (MVT) deposits are epigenet- bound in sphalerite and galena. The deposits occur mainly in ic stratabound carbonate-hosted sulphide bodies composed dolostone as open-space fillings, collapse breccias and/or as predominantly of sphalerite and galena. These deposits replacement of the carbonate host rock. Less commonly, sul- account for approximately 25 percent of the world's lead and phide and gangue minerals occupy primary carbonate poros- zinc resources. They are so-named because several classic ity. The deposits are epigenetic, having been emplaced after MVT districts are located in carbonate rocks within the lithification of the host rock. drainage basin of the Mississippi River in the central United MVT deposits originate from saline basinal metallifer- States (US). Important Canadian districts include Pine Point, ous fluids at temperatures in the range of 75°-200°C. They Cornwallis, Nanisivik, Newfoundland Zinc, Gays River, are located in carbonate platform settings, typically in rela- Monarch-Kicking Horse, and Robb Lake. tively undeformed orogenic foreland rocks, commonly in foreland thrust belts, and rarely in rift zones (Leach and Sangster, 1993). FIG. 1. Distribution of Mississippi Valley-type deposits and districts worldwide (from Sangster, 1990). Numbers on symbols are the deposit numbers of the World Mineral Deposits Database.