Tiki Formation

Total Page:16

File Type:pdf, Size:1020Kb

Tiki Formation Tiki formation April 20, 2021 In News: Recently, A new species and two genera of cynodonts, small rat-like creatures that lived around 220 million years ago, have been discovered in the Tiki Formation in Madhya Pradesh, a treasure trove of vertebrate fossils. Tiki formation In Madhya Pradesh, northern India, the Tiki Formation is a Late Triassic (Carnian to Norian) geologic formation. Dinosaur remains are among the fossils discovered in the formation, but none have yet been assigned to a particular genus. In the Tiki Formation, phytosaur fossils from the genus Volcanosuchus have also been discovered. The Tiki Formation inspired the genera Tikiodon, Tikitherium, and Tikisuchus, as well as the species Rewaconodon tikiensis, Hyperodapedon tikiensis, and Parvodus tikiensis. The majority of the Tiki Formation is related to Argentina’s Ischigualasto Formation, Brazil’s upper portion of the Santa Maria Formation, and the overlying lower Caturrita Formation, Madagascar’s Isalo II Beds, Scotland’s Lossiemouth Sandstone, and North America’s lower Tecovas Formation. Cynodonts: The Study and Importance of a New Species The scale, crown shape, and cusp structure of the fossil teeth were studied and compared to previously described cynodonts. Cynodonts are significant in evolutionary studies since they are the ancestors of modern mammals. We can see how their molar and premolar teeth evolved and changed over time by observing them The shape of their crowns indicates that these creatures are intermediate types that are very similar to the mammalian line of evolution. Synapsids are a group of egg-laying vertebrates (amniotes) that includes cynodonts and living mammals. Cynodonts have a close relationship with living mammals, as shown by their bones..
Recommended publications
  • (Reptilia: Archosauria) from the Late Triassic of North America
    Journal of Vertebrate Paleontology 20(4):633±636, December 2000 q 2000 by the Society of Vertebrate Paleontology RAPID COMMUNICATION FIRST RECORD OF ERPETOSUCHUS (REPTILIA: ARCHOSAURIA) FROM THE LATE TRIASSIC OF NORTH AMERICA PAUL E. OLSEN1, HANS-DIETER SUES2, and MARK A. NORELL3 1Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964; 2Department of Palaeobiology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6 and Department of Zoology, University of Toronto, Toronto, Ontario, Canada M5S 3G5; 3Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024 INTRODUCTION time-scales (Gradstein et al., 1995; Kent and Olsen, 1999). Third, Lucas et al. (1998) synonymized Stegomus with Aeto- To date, few skeletal remains of tetrapods have been recov- saurus and considered the latter taxon an index fossil for con- ered from the Norian- to Rhaetian-age continental strata of the tinental strata of early to middle Norian age. As discussed else- Newark Supergroup in eastern North America. It has always where, we regard this as the weakest line of evidence (Sues et been assumed that these red clastic deposits are largely devoid al., 1999). of vertebrate fossils, and thus they have almost never been sys- tematically prospected for such remains. During a geological DESCRIPTION ®eld-trip in March 1995, P.E.O. discovered the partial skull of a small archosaurian reptile in the lower part of the New Haven The fossil from Cheshire is now housed in the collections of Formation (Norian) of the Hartford basin (Newark Supergroup; the American Museum of Natural History, where it is cata- Fig.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • Comissão Organizadora
    ISSN 2175-7720 Paleontologia 2 Livro de Resumos ISSN 2175-7720 Paleontologia 3 Livro de Resumos Comitê Editorial: Valéria Gallo Hilda Maria Andrade da Silva Capa e Identidade Visual: Mapinguari Design Projeto gráfico interno e editoração: Rafael Fernandes Lopes da Silva XXI Congresso Brasileiro de Paleontologia: A paleontologia e os eventos globais. 2009, Belém, Pará, Brasil. ISSN: 2175-7720 1. Paleontologia 2. Geociências 3. Congresso Brasileiro de Paleontologia Paleontologia 4 Sobre a Logomarca A Logomarca do XXI Congresso Brasileiro de Paleontologia O gênero Orthaulax é um representante extinto da família Strombidae, endêmico da província paleobiogeográfica Caribeana, vivente entre o Oligoceno Superior e o Mioceno Inferior. Do ponto de vista paleoambiental teria vivido em ambiente marinho de águas rasas, quentes, límpidas, agitadas e com salinidade normal. O processo envolvente da sua ultima volta tornou a concha bastante sólida e maciça, permitindo que habitasse ambiente de grande agitação, como os biohermas, pequenas edificações recifais. Na Formação Pirabas, a espécie Orthaulax pugnax (Heilprin, 1887) foi reconhecida por Maury (1925), e corroborada em pesquisas subseqüentes. Estudos realizados por Cândido Simões Ferreira, delimitaram nos calcários aflorantes no litoral nordeste do Estado do Pará e noroeste do Estado do Maranhão, uma zona caracterizada por elementos estenobiônticos, típicos de recifes de corais. A espécie O. pugnax, associada com algas coralíneas, corais hermatípicos e equinóides regulares são as formas mais características que contribuíram para a edificação do bioherma. Assim, este gastrópode constitui-se em um elemento importante da Formação Pirabas, por ter sido o primeiro táxon utilizado para datar esta unidade litoestratigráfica como oligo-miocênica, bem como seu decisivo papel para correlação com outras unidades sincrônicas da Província Biogeográfica Caribeana, permitindo delimitar no norte do Brasil, a sua extremidade sul.
    [Show full text]
  • 2020 GSRS Abstract Book and Schedule.Pdf (12.83
    VIRGINIA TECH DEPARTMENT OF GEOSCIENCES 25TH ANNUAL GEOSCIENCES STUDENT RESEARCH SYMPOSIUM FEBRUARY 13-14, 2020 KELLY HALL ROOM 310 HTTPS://GSRSVTGEOS.WIXSITE.COM/HOME GEOSCIENCES STUDENT RESEARCH SYMPOSIUM AT VT GEOS @GSRS_VTGEOS @GSRS_VTGEOS 25th Annual GSRS Welcome to the 2020 Geosciences Student Research Symposium. In 2020, we are celebrating the quadricentennial of GSRS, 25thGSRS. This event is entirely student-led and Fundraising and logistics are organized by a committee of graduate students. GSRS objectives are to help students gain experience in developing communication skills, event preparation, leadership, mentorship, and team-building. GSRS provides students a platform to communicate their research across the far-reaching disciplines of our department which promotes student growth as scientists in a collegial environment. Students also gain practice in communicating their research to a broad audience which offers a unique opportunity for students to prepare for future talks at national conferences. GSRS brings the geoscience family together through scientific talks, poster sessions, and discussions during Breakfasts, lunches, and department’s favorite banquet! GSRS would not be possible without the help of our greater geoscience family and friends. Thank you very much to everyone who donated to GSRS through our Virginia Tech Crowdfunding Campaign last fall. This symposium would not be possible without your generosity. Thank you to Carol Lee Donuts, Blacksburg Bagels, Due South, Moe’s, and Custom Catering for working with us through the catering process. Thank you to the VT Police Department and Rhino security for providing security at our banquet. Thank you very much to everyone in the Department of Geosciences (students, faculty, and staff) for helping to make GSRS possible.
    [Show full text]
  • Dinosaurs British Isles
    DINOSAURS of the BRITISH ISLES Dean R. Lomax & Nobumichi Tamura Foreword by Dr Paul M. Barrett (Natural History Museum, London) Skeletal reconstructions by Scott Hartman, Jaime A. Headden & Gregory S. Paul Life and scene reconstructions by Nobumichi Tamura & James McKay CONTENTS Foreword by Dr Paul M. Barrett.............................................................................10 Foreword by the authors........................................................................................11 Acknowledgements................................................................................................12 Museum and institutional abbreviations...............................................................13 Introduction: An age-old interest..........................................................................16 What is a dinosaur?................................................................................................18 The question of birds and the ‘extinction’ of the dinosaurs..................................25 The age of dinosaurs..............................................................................................30 Taxonomy: The naming of species.......................................................................34 Dinosaur classification...........................................................................................37 Saurischian dinosaurs............................................................................................39 Theropoda............................................................................................................39
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • A Procolophonid (Parareptilia) from the Owl Rock Member, Chinle Formation of Utah, Usa
    Palaeontologia Electronica http://palaeo-electronica.org A PROCOLOPHONID (PARAREPTILIA) FROM THE OWL ROCK MEMBER, CHINLE FORMATION OF UTAH, USA Nicholas C. Fraser, Randall B. Irmis*, and David K. Elliott ABSTRACT An isolated skull of a procolophonid is described from the Owl Rock Member of the Chinle Formation in the Abajo Mountains of southeast Utah. Although poorly pre- served, this specimen exhibits features that demonstrate a phylogenetic relationship with leptopleuronine procolophonids. These include the dentition, the greatly expanded orbitotemporal opening, the prominent quadratojugal spikes, and the shape of the jugal. Nicholas C. Fraser. Virginia Museum of Natural History, Martinsville, Virginia 24112, USA. [email protected] Randall B. Irmis. Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA. *Current Address: University of California Museum of Paleontology, 1101 Valley Life Sciences Building, Berkeley, California 94720-4780. [email protected] David K. Elliott. Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA. [email protected] KEY WORDS: Procolophonidae; Parareptilia; Late Triassic; Chinle Formation PE Article Number: 8.1.13 Copyright: Society of Vertebrate Paleontology. May 2005 Submission: 28 June 2004. Acceptance: 6 March 2005. INTRODUCTION skull has been described in detail (Kemp 1974; Carroll and Lindsay 1985). The first member of the The Procolophonidae are a group of small clade to be named was Leptopleuron from the parareptiles (sensu Laurin and Reisz
    [Show full text]
  • A Beaked Herbivorous Archosaur with Dinosaur Affinities from the Early Late Triassic of Poland
    Journal of Vertebrate Paleontology 23(3):556±574, September 2003 q 2003 by the Society of Vertebrate Paleontology A BEAKED HERBIVOROUS ARCHOSAUR WITH DINOSAUR AFFINITIES FROM THE EARLY LATE TRIASSIC OF POLAND JERZY DZIK Instytut Paleobiologii PAN, Twarda 51/55, 00-818 Warszawa, Poland, [email protected] ABSTRACTÐAn accumulation of skeletons of the pre-dinosaur Silesaurus opolensis, gen. et sp. nov. is described from the Keuper (Late Triassic) claystone of KrasiejoÂw in southern Poland. The strata are correlated with the late Carnian Lehrberg Beds and contain a diverse assemblage of tetrapods, including the phytosaur Paleorhinus, which in other regions of the world co-occurs with the oldest dinosaurs. A narrow pelvis with long pubes and the extensive development of laminae in the cervical vertebrae place S. opolensis close to the origin of the clade Dinosauria above Pseudolagosuchus, which agrees with its geological age. Among the advanced characters is the beak on the dentaries, and the relatively low tooth count. The teeth have low crowns and wear facets, which are suggestive of herbivory. The elongate, but weak, front limbs are probably a derived feature. INTRODUCTION oped nutrient foramina in its maxilla. It is closely related to Azendohsaurus from the Argana Formation of Morocco (Gauf- As is usual in paleontology, with an increase in knowledge fre, 1993). The Argana Formation also has Paleorhinus, along of the fossil record of early archosaurian reptiles, more and with other phytosaurs more advanced than those from Krasie- more lineages emerge or extend their ranges back in time. It is joÂw (see Dutuit, 1977), and it is likely to be somewhat younger.
    [Show full text]
  • OSTEODERMS of JUVENILES of STAGONOLEPIS (ARCHOSAURIA: AETOSAURIA) from the LOWER CHINLE Group, EAST-CENTRAL ARIZONA
    Heckert, A.B., and Lucas, S.O., eds., 2002, Upper Triassic Stratigraphy and Paleontology. New Mexico Museum of Natural History and Science Bulletin No. 21. 235 OSTEODERMS OF JUVENILES OF STAGONOLEPIS (ARCHOSAURIA: AETOSAURIA) FROM THE LOWER CHINLE GROUp, EAST-CENTRAL ARIZONA ANDREW B. HECKERT and SPENCER G. LUCAS New Mexico Museum of Natural History, 1801 Mountain Rd NW, Albuquerque, NM 87104 Abstract-We describe for the first time small «25 mm) dorsal paramedian, lateral, and appendicu­ lar /ventral scutes (osteoderms) of aetosaurs from the Blue Hills in Apache County, east-central Ari­ zona. These diminutive scutes, collected by c.L. Camp in the 1920s, preserve diagnostic features of the common Adamanian aetosaur Stagonolepis. Stagonolepis wellesi was already known from the Blue Hills, so identification of juvenile scutes of Stagonolepis simply confirms the existing biostratigraphic and paleogeographic distribution of the genus. Still, application of the same taxonomic principles used to identify larger, presumably adult, aetosaur scutes suggests that juvenile aetosaurs should provide the same level of biostratigraphic resolution obtained from adults. Keywords: Arizona, aetosaur, juvenile, Stagonolepis, Chinle, Blue Mesa Member INTRODUCTION Aetosaurs are an extinct clade of heavily armored, primar­ ily herbivorous, archosaurs known from Upper Triassic strata on all continents except Antarctica and Australia (Heckert and Lucas, 2000). The osteoderms (scutes) of aetosaurs are among the most common tetrapod fossils recovered from the Upper Triassic Chinle Group, and are typically identifiable to genus (Long and Ballew, 1985; Long and Murry, 1995; Heckert and Lucas, 2000). This in tum has facilitated development of a robust tetrapod-based bios­ tratigraphy of the Chinle Group and other Upper Triassic strata 34' Springetille co worldwide (e.g., Lucas and Hunt, 1993; Lucas and Heckert, 1996; c: o Lucas, 1997, 1998).
    [Show full text]
  • The Permo-Triassic Sandstones of Morayshire, Scotland
    Excursion guide 13: The Permo-Triassic sandstones of Morayshire, Scotland S. OGILVIE, K. GLENNIE & The Hopeman Sandstone lies unconformably on Devonian sediments, a relationship observable with C. HOPKINS the stratigraphically equivalent Cutties Hillock The Permo-Triassic sandstones of Morayshire, NE Sandstone in quarries at Quarry Wood, west of Elgin Scotland, are host to an impressive coastal display of (Fig. 1). The ‘New Red Sandstone’ succession for sedimentary structures, trace fossils and fault rocks onshore Inner Moray Firth is illustrated in Fig. 2. (Fig. 1). The late Permian Hopeman Sandstone is exposed for nearly 10 km as a narrow coastal strip Fig. 2. Stratigraphy of the between Covesea [NJ199709] and Cummingstown ‘New Red Sandstone’ in [NJ132639], where it comes into contact with the the Elgin District. overlying Triassic Burghead Beds along the Lossie- mouth Fault. The sandstone has a maximum proven thickness of 60 m (BGS borehole data, Clarkly Hill). Other occurrences of the Triassic in the area are found at Findrassie, Spynie and on Lossiemouth shore. The ‘Stotfield Cherty Rock’ is a laterally ex- tensive fossil soil horizon (calcrete with secondary silica) that forms a good seismic reflector throughout the Inner Moray Firth Basin, where it caps the Upper Triassic Lossiemouth Sandstone. It is not only a valuable marker horizon within the basin but also an indicator of structural quiescence and a semi-arid climate. Fig. 1. Location map. © Blackwell Science Ltd, GEOLOGY TODAY, September–October 2000/185 The recommended map for this excursion is OS Fig. 3. South-dipping dunes. The deformation features are likely to be air- 1 : 25 000 Pathfinder 146 (Elgin).
    [Show full text]
  • Stratigraphical Chart of the United Kingdom: Northern Britain
    STRATIGRAPHICAL CHART OF THE UNITED KINGDOM: NORTHERN BRITAIN 1 2 3 4 5 6 7 8 9 10 11 12 BGS Geological Time Chart North-west Approaches/ Northern Isles Northern North Sea Northern Highlands Western Isles & Grampian Midland Valley Central North Sea South of Northern Isle of Man & Northern Hebrides Shelf Inner Hebrides Highlands of Scotland Scotland Ireland northern Irish Sea England Eon Era Series/ Stage/Age age (Ma) Period Epoch System/ Sub-era 0.01 Holocene Late 0.13 Ulster Glacigenic Caledonia Glacigenic Group Caledonia Glacigenic Group Caledonia Glacigenic Group Caledonia Glacigenic Group Caledonia Glacigenic Group Caledonia Glacigenic Group Group Caledonia Glacigenic Group Caledonia Glacigenic Group Britannia Britannia Britannia Britannia Britannia Britannia Britannia Britannia British Coastal British Coastal Catchments British Coastal British Coastal British Coastal British Coastal Benburb Group British Coastal British Coastal Catchments Catchments Catchments Catchments Catchments Catchments Catchments Mid Deposits Group Group Deposits Group Group Deposits Group Deposits Group Group Deposits Group Group Deposits Group Deposits Group Deposits Group Group Albion Group Albion Group Albion Group Albion Glacigenic Group Glacigenic Group Glacigenic Group Glacigenic Group The Geological Society 0.78 Pleistocene* nary Nordland Early Group Quater Scale: 1 cm = 0.5 Ma Compiled by C N Waters 1.8 Nordland Nordland Group Group Cartography by P Lappage L Gelasian Pliocene Residual Buchan Deposits Gravels Formation Piacenzian 2.6 Group 3.6 E Zanclean 5.3 BGS contributors: Messinian 7.2 L Tortonian Britannia M C Akhurst, C A Auton, R P Barnes, A J M Barron, M A E Browne, M T Dean, J D Floyd, M R Gillespie, 11.6 Brassington Cenozoic Serravallian Catchments Miocene M Langhian 13.6 Formation P M Hopson, M Krabbendam, A G Leslie, A A McMillan, D Millward, W I Mitchell, K Smith, D Stephenson, Neogene 16.0 Group P Stone, and C N Waters.
    [Show full text]
  • Supplementary Information Niche Partitioning
    Supplementary Information Niche partitioning shaped herbivore macroevolution through the early Mesozoic Suresh A. Singh1*, Armin Elsler1, Thomas L. Stubbs1, Russell Bond1, Emily Rayfield1 & Michael J. Benton1. 1. School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK. *e­mail: [email protected] Contents: Supplementary Note 1..………………………………………………………………………...………3 Alternative data transformation methods and results Supplementary Table 1…………………………………………………………………………………5 Functional character descriptions and functional utility to feeding behaviour. Supplementary Table 2…………………………………………………………………………………7 Character loadings for functional principal component (fPC) scores in main text. Supplementary Table 3…………………………………………………………………………………8 Character loadings for functional principal component (fPC) scores in supplement. Supplementary Table 4…………………………………………………………………………………8 Symmetric Procrustes analysis results. Supplementary Table 5…………………………………………………………………………………9 Internal validation statistics for different cluster configurations. Supplementary Table 6…………………………………………………………………………………9 External validation statistics for different cluster configurations. Supplementary Table 7………………………………………………………………………………..10 Feeding functional group conflicts within early Mesozoic assemblages. Supplementary Table 8………………………………………………………………………………..11 Total herbivore shape and functional disparity at stage level. Supplementary Table 9…………………………………………………………………………..……12 Archosauromorph shape and functional disparity
    [Show full text]