Solutions for E-Mobility PHOENIX CONTACT – in Dialog with Customers and Partners Worldwide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Programmable Fieldbus Controllers 61
Programmable Fieldbus Cont rollers ŻŻ Section 2 Ż Section 3.1 Prog rammable Fieldbus Cont rollers Section 3.3 Ź PERSPECTO ® Control Panels PFC200 • Decentralized intelligence based on Prog rammable Fieldbus Cont rolle r XT R fieldbus couplers • Merging control and visualization • Maximum performance in a minimum • Programmable to IEC 61131-3 For demanding applications where the • 8.9 cm ... 38.1 cm (3.5” … 15”) space • WAGO-I/O-SYSTEM 750, modular following are critical: • High processing speed • Extreme temperature stability • Additional operating controls • Immunity to interference and (e.g., start/stop switch) impulse-voltage withstand • Based on Linux® also in • Vibration and shock resistance high-level language Cont rolle rs 3 Programmable Fieldbus Controllers 61 Page General Product Information 62 Ve rsions 63 Inte rf aces and Configurations 63 Installation Inst ructions 64 Item Numbe r Keys 65 Standa rds and Rated Conditions 65 ETHERNET TCP S S Net/IP r OFIBU R BACnet/IP IP KNX P CANopen Ethe CPU MODBU Othe rs Description Item No. IEC 60870-5 750-880 66 32-bit x x IEC 61850 ETHERNET Controller IEC 61400-25 750-881 68 750-885 70 x x Media redundancy ETHERNET Controller 32-bit 750-882 72 MODBUS RTU IEC 60870-5 32-bit x x IEC 61850 Telecontrol Controller 750-872 74 IEC 61400-25 3.2 ETHERNET TCP/IP Controller, x x MODBUS RTU 76 32-bit RS-232 750-873 PFC 32-bit x x ETHERNET Controller 750-852 78 32-bit x x KNX IP Controller 750-889 80 x x BACnet/IP Controller 750-831 82 32 Bit x x BACnet/IP Controller 750-830 84 32 Bit x BACnet MS/TP -
IEC 63110 Management of EV Charging / Discharging Infrastructure
IEC 63110 Management of Electric Vehicles charging and discharging infrastructures IEC 63110 Management of EV charging / discharging infrastructure Paul Bertrand IEC convener of IEC JWG1 (ISO/IEC 15118) IEC convener of JWG11 (IEC 63110) [email protected] 15/01/2020 IEC 63110 presentation 1 IEC 63110 Management of Electric Vehicles charging and discharging infrastructures Summary of the presentation • A perspective of e-mobility standards landscape • Zoom on IEC 63110 : management of charging-discharging infrastructure • IEC 63110 organisation, members and scope • Communication architecture • Requirements and transport technology • Use cases and object model • Sessions and Transactions • Interconnections with other standards • Conclusion 15/01/2020 IEC 63110 presentation 2 IEC 63110 Management of Electric Vehicles charging and discharging infrastructures A perspective of e-mobility standards landscape 15/01/2020 IEC 63110 presentation 3 IEC 63110 Management of Electric Vehicles charging and discharging infrastructures What is in stake with E-mobility in the future ? In 2020 : an emerging new mobility environment Around 5 millions of EVs are circulating in the world More or less 1 million of public charging stations are deployed today Industry is learning and coping with e-mobility needs in more cities every day Large utilities are engaged in massive investments to support the increasing demand of electricity due to E-mobility Smart Charging and V2G are now in the agenda of all stakeholders After 2040 as the number of EVs is now -
V2G Injector: Whispering to Cars and Charging Units Through the Power-Line
V2G Injector: Whispering to cars and charging units through the Power-Line Sébastien Dudek, Jean-Christophe Delaunay and Vincent Fargues [email protected] [email protected] [email protected] Synacktiv Abstract. Since vehicles became connected to a bus called CAN (Con- troller Area Network), many “garage” hackers got interested in investi- gating the different controllers, known as ECUs (Engine Control Units), and accessible via the On-Board Diagnostics (OBD) port. Among those different controllers, some of them are accessible via Wi-Fi, others via GPRS, 3G and 4G mobile networks, that could be attacked during a radio interception attack [19]. Moreover, another little-known vector of attack will appear with the deployment of V2G (Vehicle-to-Grid) systems that communicate via power lines support. Nevertheless, no public tool exists to interface with these systems, but also to analyse and to inject V2G traffic. That is why we have developed a tool called V2G Injector to attack these systems. In this article, we will briefly introduce the V2G concept and its similari- ties with domestic Power-Line Communication systems. Then, we will present the techniques we use in our tool that aim to interface with the system, monitor and inject traffic. We will also present a new specification vulnerability in the communication medium we have been able to exploit to intrude the V2G network. To finish, we will talk about issues we have found during our tests on real equipment, and mitigations we can encounter, or apply, in some contexts as well as possible bypasses. 1 Introduction: rise of V2G Due to its environmental friendliness, Electric Vehicle (EV) is gaining popularity in U.S.A, Japan, China and some countries in Europe. -
Report on Voting on Document Xx
SMB/5309/R For IEC use only 2014-05-02 INTERNATIONAL ELECTROTECHNICAL COMMISSION STANDARDIZATION MANAGEMENT BOARD SUBJECT SMB meeting 150, agenda item 5.3, Frankfurt Report of SEG-3, AAL, System Evaluation Group – Ambient Assisted Living, following the meeting held on 2014-03-10 to 12 in Brussels, Belgium BACKGROUND SEG-AAL held its first meeting on 2014-03-10 to 12 in Brussels, answering the invitation of its Belgian member. The next date for the meeting of the SEG or the committee succeeding the SEG is planned in conjunction with the general meeting of the European AAL Joint Programme, on 2014-09-08 to 09, in Bucharest, Romania. On March 10, SEG-AAL held a workshop with CENELEC in order to exchange experiences and ongoing actions in the field of AAL. Please see the workshop brochure in annex. SEG-AAL had its plenary session on March 11 and 12. The report is in two parts: Part A – Recommendations submitted to the SMB for formal approval: A1 to A4 Part B – Status of Work Annex 1 – SEG-AAL members attending the meeting Annex 2 – SG 5 membership list Annex 3 – SEG-AAL / CENELEC workshop brochure Annex 4 – SEG-AAL final report ACTION The SMB is invited to decide on the recommendations submitted in Part A, using the Technical Server, before 2014-05-30, and to note Part B. Item 1: A1 Membership of SEG-AAL: Members of the former SG5-AAL Item 2: A2 External membership of SEG-AAL: Continua Health Alliance Item 3: A3 External membership of SEG-AAL: AALIANCE2 Item 4: A4 Transition from SEG-AAL to SYC-AAL Secretariat note: item 4 is not the final decision on creating a SyC on AAL – that decision will be taken at the SMB meeting 150 following discussion on all the comments received, i.e. -
IEC / EN Standardization
CHAdeMO Europe Annual Member Meeting 2014 IEC / EN standardization by Takeshi Haida, CHAdeMO Technical WG All rights reserved. CHAdeMO Association 1 Topics 1. IEC standard for DC EV charging station • IEC 61851-23 ed.1 (published) • IEC 61851-24 ed.1 (published) • IEC 62196-3 ed.1 (published) • IEC 61851-21-2 (EMC under discussion) 2. to the Europe and Japan Standard •EN, JIS 3. NEW work in IEC • MT5 (maintenance project on the IEC61851-23 ed.1 and IEC61851-24 ed.1) All rights reserved. CHAdeMO Association Key items of DC EV charging station for International 2 standardization IEC61851‐23 ElectricalElectrical Safety Safety ChargingCharging Function Function ChargingCharging Performance Performance IEC62196‐3 VehicleVehicle Coupler Coupler IEC61851‐24 DigitalDigital Communication Communication ProtocolProtocol All rights reserved. CHAdeMO Association 3 Standardization project and Publication Electrical Safety Electrical Safety DigitalDigital Communication Communication VehicleVehicle Coupler Coupler ChargingCharging Function Function ProtocolProtocol ChargingCharging Performance Performance 2010.7 2011.3 2010.10 Project 61851‐23 Project 61851‐24 Project 62196‐3 Technical Committee TC69 Technical Committee TC23 /SC23H 2014.3 2014.3 2014.6 IEC61851‐23 edition 1 IEC61851‐24 edition 1 IEC62196‐3 edition 1 All rights reserved. CHAdeMO Association 4 Standardization project and Publication Electrical Safety Electrical Safety DigitalDigital Communication Communication VehicleVehicle Coupler Coupler ChargingCharging Function Function ProtocolProtocol ChargingCharging Performance Performance 2010.7 2011.3 2010.10 Project 61851‐23 Project 61851‐24 Project 62196‐3 Technical Committee TC69 Technical Committee TC23 /SC23H 2014.3 2014.3 2014.6 IEC61851‐23 edition 1 IEC61851‐24 edition 1 IEC62196‐3 edition 1 All rights reserved. CHAdeMO Association 5 Integration of CHAdeMO, GB, CCS into IEC standards System IEC61851‐23 edition 1 CHAdeMOCHAdeMO Comm. -
IO-Link (Single-Drop Digital Communication System) for Sensors and Actuators
5 IO-Link (Single-Drop Digital Communication System) for Sensors and Actuators 5.1. Motivation.and.Objectives.for.a.New.Technology....................... 5-1 5.2. IO-Link.Technology.......................................................................... 5-2 Purpose.of.Technology. •. Positioning.within.the.Automation. Hierarchy. •. Wiring,.Connectors,.and.Power. •. Communication. Features.of.IO-Link. •. Role.of.a.Master. •. IO-Link. Configuration. •. Mapping.to.Fieldbuses.and.System. Integration. •. Implementation.and.Engineering.Support. •. Test.and. Wolfgang Stripf Certification. •. Profiles. •. Functional.Safety. •. Standardization PROFIBUS and PROFINET Abbreviations.................................................................................................5-8 International References.......................................................................................................5-9 5.1 Motivation and objectives for a new technology Th .increased.use.of.microcontrollers.embedded.in.low-cost.sensors.and.actuators.has.provided.oppor- tunities.for.adding.diagnosis.and.configuration.data.to.support.increasing.application.requirements. Th .driving.force.for.a.new.technology.called.IO-LinkTM*.has.been.the.need.of.these.low-cost.sensors. and.actuators.to.exchange.the.diagnosis.and.configuration.data.with.a.controller.(PC.or.PLC).using.a. low-cost.digital.communication.technology.while.maintaining.backward.compatibility.with.the.cur- rent.digital.input.and.digital.output.(DI/DO).signals. Another.driving.force.is.cost.reduction.and.substitution.of.error-prone.analog.transmission.such.as. 0–10.V..Using.IO-Link.avoids.digital/analog.conversion.on.the.sensor.side.and.analog/digital.conver- sion.on.the.controller.side. In.fieldbus.concepts,.the.IO-Link.defines.a.generic.interface.for.connecting.sensors.and.actuators.to. a.Master†.unit,.which.may.be.combined.with.gateway.capabilities.to.become.a.fieldbus.remote.I/O.node. Any.IO-Link-compliant.Device‡.can.be.attached.to.any.available.interface.port.of.the.Master..Devices. -
Current State-Of-The-Art of EV Chargers
Current State-of-the-Art of EV Chargers Dr. Volker Schwarzer, Dr. Reza Ghorbani Department of Mechanical Engineering for Hawaii Natural Energy Institute, University of Hawaii at Manoa 1680 East West Road, POST 109 Honolulu, HI 96822 E-mail: [email protected] Submitted to: Dr. David Block Florida Solar Energy Center University of Central Florida 1679 Clearlake Road Cocoa, FL 32922 E-mail: [email protected] Purchase Order Number: 291166 Report Number: HNEI-01-15 February, 2015 The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is a project report issued and disseminated under the sponsorship of the U.S. Department of Transportation’s University Transportation Centers Program. The U.S. Government assumes no liability for the contents or use thereof. Current State-of-the-Art of EV Chargers Volker Schwarzer, Reza Ghorbani February 2015 1. Abstract Recent reports of utility providers have shown that under certain circumstances the integration of renewable energy sources might cause damaging Transient Over-Voltages (TOV) in the power grid. With the rising availability of electric vehicle (EV) charging stations in residential neighborhoods, the potential of EV batteries for TOV reduction is being examined. This report analyses the current state-of-the-art EV charger technology with respect to utilized charging technologies and their capabilities to mitigate over- voltages. Furthermore, power ratings of charging systems, including maximum power influx control and communication strategies, are analyzed. Corresponding time constraints, as well as system response times are also determined. -
Simulation Tool Based Structural Text Generation for Programmable Logic Controllers
Kaarle Patomäki Simulation Tool Based Structural Text Generation for Programmable Logic Controllers Thesis submitted for examination for the degree of Master of Science in Technology Turku 23.7.2020 Supervisor: Professori Kari Tammi Advisor: Juuso Kelkka Aalto University, P.O. BOX 11000, 00076 AALTO www.aalto.fi Abstract of master's thesis Author Kaarle Patomäki Title of thesis Simulation Tool Based Structural Text Generation for Programmable Logic Controllers Master programme Mechanical Engineering Code ENG25 Thesis supervisor Associate Professor Kari Tammi Thesis advisor(s) Juuso Kelkka, M. Sc. (Tech.) Date 23.7.2020 Number of pages 50+8 Language English Abstract Model-based design is a relatively new technique of developing software for embedded systems. It aims to reduce the cost of the software development process by generating the code from a simulation model. The code is generated automatically using a tool that is developed for this purpose. This way the errors in the system can be found and eliminated early in the development process compared to traditional software development project for embedded systems. As mentioned, the tools are at the time of this study still relatively new, and especially when considering code that has to comply with functional safety standards, the code has to fulfill certain requirements and it has to be clear enough so that it can be traced back to each function of the model. This study aims to determine how well these methods can be used with software development for embedded systems in mind. More precisely, this thesis focuses on MathWorks’ Simulink as the modelling software, and CODESYS as the coding language of the programmable logic controller and ultimately the compatibility of these with each other. -
IEC-International Electrotechnical Commission
Standards Manager Web Standards List IEC-International Electrotechnical Commission Id Number Title Year Organization Page 1 60034-2-3 Rotating electrical machines _ Part 2-3: Specific test methods for determining losses and efficiency of converter-fed AC 2020 IEC motors - Edition 1.0 2 60034-3 Rotating electrical machines _ Part 3: Specific requirements for synchronous generators driven by steam turbines or 2020 IEC combustion gas turbines and for synchronous compensators - Edition 7.0 3 60034-5 Rotating electrical machines _ Part 5: Degrees of protection provided by the integral design of rotating electrical machines 2020 IEC (IP code) _ Classification - Edition 5.0 4 60034-7 Rotating electrical machines _ Part 7: Classification of types of construction, mounting arrangements and terminal box 2020 IEC position (IM Code) - Edition 3.0 5 60034-11 Rotating electrical machines _ Part 11: Thermal protection - Edition 3.0 2020 IEC 6 60034-18-42 Rotating electrical machines _ Part 18-42: Partial discharge resistant electrical insulation systems (Type II) used in rotating 2020 IEC electrical machines fed from voltage converters _ Qualification tests - Edition 1.1; Consolidated Reprint 7 60045-1 Steam turbines _ Part 1: Specifications - Edition 2.0 2020 IEC 8 60050-113 NULL 2020 IEC AMD 2 9 60050-113 AMENDMENT 3 International Electrotechnical Vocabulary (IEV) _ Part 113: Physics for electrotechnology - Edition 1.0 2020 IEC AMD 3 10 60050-151 AMENDMENT 4 International Electrotechnical Vocabulary (IEV) _ Part 151: Electrical and magnetic devices -
Iec Standards for Ev Charging
IEC STANDARDS FOR EV CHARGING EPRI IWC June 8, 2016 Gregory C. Nieminski, LLC [email protected] IEC Project Stages and Timetable for Standards Development Minimum Timeline Project Stage Associated Document Name Abbreviation (for comment and/or voting) Proposal stage New Work Item Proposal NWIP 3 months for voting 12 months Preparatory stage Working draft WD recommended 2-4 months for Committee stage Committee draft CD comment IEC/CDV 5 months for Enquiry stage Enquiry draft translation (2), ISO/DIS comment and voting (3) Final Draft International Approval stage FDIS 2 months for voting Standard Publication stage International Standard IEC or ISO/IEC 1.5 -2 months IEC TC69 Charging Station (EVSE) Standards Projects:Key: In Publications Published New Status Change Delay * MT5 meeting June 2016 Stage Working Next IEC Edition NWIP Draft CD CD (CD#) CDV FDIS Publication 61851-1 3 2016-04 2016-07 61851-21-1 1 2012-07 2016-02 2016-09 61851-21-2 1 2012-07 (3rd) 2015-11 2017-03 61851-22 1 To be withdrawn – Consolidated into 61851-1 61851-23, 2 MT5 (3rd) 2016-01 2017-03 2017-12 2018-04 61851-24 2016-07* 61851-3-1, -2 1 2013-01 (3nd) 2016-6 Scope change TS 2016-10 61851-3-3, -4, 2013-01 nd 1 2016-02 (3 ) 2016-6 TS 2016-10 -5, -6, -7 IEC 61851-1, 3rd Edition Edited draft for FDIS sent to IEC mid-April FDIS in preparation, final vote on FDIS pending (two month vote). Issues: • Cord and plug connected wall box requirements – Maintained in Standard. -
Electric Vehicle Charging Integration
Electric Vehicle ! Charging Integration Johan Driesen KU Leuven, Department Electrical Engineering Research group Electrical Energy (ESAT-ELECTA) Kasteelpark Arenberg 10, 3001 Leuven, Belgium e-mail: [email protected] www: http://www.esat.kuleuven.be/electa © K.U.Leuven – ESAT/Electa Tutorial • Goal: • get insight into the charging process and procedures • understand the different technology concepts and business models to implement this • learn about the problems caused by and opportunities offered through a large fleet of EVs in the electricity system • Overview • EV overview: history, types, charging level • Charging technology • Grid interaction © K.U.Leuven – ESAT/Electa J.Driesen - EV Charging Integration 2 Electric Vehicles overview including how to “charge” © K.U.Leuven – ESAT/Electa History: 1895-1910 • electric vehicles were the most promising drive technology end 1800s: speed records, neater cars • combustion engine took over in early 1900s: became more powerful, easy to take with cheap fuel Edison electric car battery Charging of a Detroit Electric vehicle © K.U.Leuven – ESAT/Electa J.Driesen - EV Charging Integration 4 Early EVs • Baker'Inside'Driven' Coupe' • 1.5'kW'cont.' • 4.5'kW'peak' • 40'km/h'top'speed' • 12'x'6V'baCery'cells' • 175'km'range' • Edison'Nickel'Iron' Alkaline' • 2475'$'in'1915' • Vs.'440'$'for'1915' Ford'model'T © K.U.Leuven – ESAT/Electa J.Driesen - EV Charging Integration 5 Janetzy Jamais Contente o first car ever to exceed 100 km/h • 24/04/1899 • 105.882 km/h • 2 electric motors in ‘aerodynamic’ car • driven by Camille Janetzy (B.) in Achères (Fr.) • named “Jamais Contente” © K.U.Leuven – ESAT/Electa J.Driesen - EV Charging Integration 6 History: 1905-1925 • gasoline vehicles take over completely: discovery of many oil wells drop fuel prices • mass production techniques introduced by Ford • short revivals: • Edison battery (NiFe) • WW I: oil shortage • 1900 US car production: 1575 electric cars vs. -
Open Intercharge Protocol for Charge Point Operators
Open intercharge Protocol for Charge Point Operators VERSION 2.2 / MARCH 2018 ©HUBJECT GMBH OICP Version 2.2 for Charge Point Operators_v002 Table of Contents Table of Contents Table of Contents ..................................................................................................................................... 2 1 Introduction .................................................................................................................................. 6 1.1 The Hubject Platform ................................................................................................................. 6 1.2 The Charge Point Operator (CPO) ............................................................................................ 7 1.3 Scope ......................................................................................................................................... 7 1.4 Conventions ............................................................................................................................... 8 1.5 Overview .................................................................................................................................... 8 1.6 Release management .............................................................................................................. 10 1.7 Further documents ................................................................................................................... 11 1.8 OICP protocol version and service versions ...........................................................................