Optimization of Stencil Computations on Gpus

Total Page:16

File Type:pdf, Size:1020Kb

Optimization of Stencil Computations on Gpus Optimization of Stencil Computations on GPUs DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Prashant Singh Rawat, M.Tech. Graduate Program in Computer Science and Engineering The Ohio State University 2018 Dissertation Committee: Prof. P. Sadayappan, Advisor Prof. Atanas Rountev Prof. Gagan Agrawal © Copyright by Prashant Singh Rawat 2018 ABSTRACT Stencil computations form the compute-intensive core of many scientific appli- cation domains, such as image processing of CT and MRI imaging, computational electromagnetics, seismic processing, and climate modeling. A stencil computation involves element-wise update of an output domain based on a fixed set of neighboring points from the input domain. Such stencil computations are either time iterated, or require successive application of multiple stencil operators on the input domains. Stencil optimization on multi- and many-core architectures has been an active research topic for the past two decades. Stencil computations traditionally have low arithmetic intensity with only a few floating-point operations performed relative to the data transferred per output point, and are therefore memory bandwidth-bound. Since the data movement cost consistently dominates the computational cost in modern architectures, most of these research efforts focus on reducing the data movement in stencils to tackle the bandwidth bottleneck. Consequently, several tiling techniques have been proposed over the years to exploit spatial and temporal reuse across a sequence of stencils or across multiple time steps for time iterated stencil. With the ever-increasing use of GPUs for general purpose computing, application developers have started exploring the acceleration of data-parallel stencils on GPUs. GPUs have lower data movement costs than the multi-core CPU architectures, and ii hence are an attractive target for accelerating memory bandwidth-bound stencil com- putations. At the same time, GPUs are compute-intensive with significantly higher number of registers per thread, and therefore suitable for accelerating stencil compu- tations with high arithmetic intensity as well. The arithmetic intensity of a stencil is proportional to its order, which is the number of input elements read from the center along each dimension. In many scientific applications, high-order stencils pro- vide better computational accuracy with lesser data movement than their low-order counterparts. However, the main performance bottleneck for high-order stencils on GPUs is the high register pressure, which causes excessive register spills or a steep drop in achieved parallelism, resulting in a subsequent performance loss. This dissertation proposes novel GPU-centric optimization strategies that address the performance bottlenecks for stencils with different arithmetic intensities: tiling and fusion heuristics for bandwidth-bound stencils with low arithmetic intensity, and register optimizations for high-order stencils with high arithmetic intensity. The proposed optimizations have been implemented into a DSL based stencil optimization framework, StencilGen, that can automatically generate high-performance CUDA code from an input DSL specification of the stencil computation. The efficacy ofthe proposed optimizations is demonstrated via empirical evaluation on a variety of 2D and 3D stencil kernels extracted from PDE solvers, image processing pipelines, and proxy DOE applications. iii To my mother and my sisters, for their unbounded love and unconditional support. iv ACKNOWLEDGMENTS Now that I look back, this part of life was, in measures, exciting, overwhelming and exhausting. I experienced everything, from first-year jitters, second-year blues, and home sickness, to working tirelessly in burst mode, frustration over rejected papers, and the thrill of publishing; I will cherish these experiences for life. Thankfully, I was not alone in this journey. There were many people who treaded along, making things easier, and they deserve a shout-out. I could have not found a better advisor than Prof. P. Sadayappan. I have improved on many aspects by listening to his discussions, critiques, and invaluable advice over the past five years. He steered my research when I needed it, and gave mefree reins at other times to hone the independent researcher in me. He provided me with internship opportunities, supported me through tough times, and I am certain, helped in many more behind-the-scene situations that I would not even know about. He is an exceptional mentor to all his students. I am grateful to Prof. Atanas Rountev for his constant help during the past five years, and especially during the first two years of the grad school. Most of my papers made it to publication because of his insightful advice, careful edits, and excellent suggestions on how to translate ideas into words. I am thankful to Louis-Noël Pouchet and Fabrice Rastello for their contributions to various parts of the dissertation. Louis-Noël has especially been instrumental in v shaping up the experimental sections in all my papers. Fabrice provided several insights on the reordering framework and the related work on register allocation in general. The years I spent at IIT Bombay gave me a new direction. I had the most patient M.Tech advisor, Prof. Supratim Biswas. I am eternally grateful to Prof. Uday Khedker for introducing me to compilers during my Bachelors, letting me be a part of GCC Resource Center (GRC) during my Masters, introducing me to Prof. Biswas and Saday, and bridging my path from IITB to OSU. I spent five years working with him, and I could spend another five talking about how amazing the days with him in GRC were. I want to express my gratitude to all the present and past fellow lab mates at OSU: Venmugil, Israt, Aravind, Mahesh, Sanket, Shashank, Ankur, Martin, Tom, Kevin, Naznin, Naser, Samyam, Changwan, Jinsung, Wenlei, Miheer, Vineeth, Rohit, Kunal, Emre, Gordon. Also, my friends at IITB: Nisha, Akshar, Salil, Subhajit, Harbaksh, Prajakta, Vini, Jubi, Ishita, Ashish, Prachi, Pritam, Swati, Swaroop, Shubhangi. Thanks for the interesting conversations! I am grateful to my close friends Bharat, Prashal, Santosh, and Ravi, who knew me when I was a confused teen, and helped me transition into what I am today. And finally, my family back in India – my mother, sisters, brother-in-laws, the whole entourage of nieces and nephews – and my family here, Umesh. Their uncon- ditional love and support is what keeps me going on. Without their encouragement, I could have not reached this far. People rightly say that distance makes the heart grow fonder. I wish I had the vocabulary to do justice to my love for them. This work is as much theirs as it is mine. vi VITA June 2003 – May 2007 . Bachelor of Engineering, CSE Mumbai University Mumbai, India. June 2007 – May 2009 . Research Assistant IIT Bombay Mumbai, India. June 2009 – July 2012 . Master of Technology, CSE IIT Bombay Mumbai, India. August 2012 – Present . Graduate Research Assistant The Ohio State University Columbus, Ohio. May 2015 – August 2015 . Intern NVidia Corporation Redmond, Washington. May 2016 – June 2016 . Intern Lawrence Livermore National Lab. Livermore, California. May 2017 – August 2017 . Intern NVidia Corporation Redmond, Washington. PUBLICATIONS Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, Prashant Singh Rawat, Sriram Krishnamoorthy, Louis-Noël Pouchet, Fabrice Rastello, P. Sadayappan GPU Code Optimization via Abstract Kernel Emulation and Sensitivity Analysis. To appear in ACM SIGPLAN conference on Pogramming Language Design and Im- plementation (PLDI), June 2018. vii Prashant Singh Rawat, Aravind Sukumaran-Rajam, Atanas Rountev, Louis-Noël Pouchet, Fabrice Rastello, P. Sadayappan Register Optimizations for Stencils on GPUs. In ACM Symposium on Principles and Practice of Parallel Programming (PPoPP), February 2018. Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, Prashant Singh Rawat, Sriram Krishnamoorthy, Louis-Noël Pouchet, Fabrice Rastello, P. Sadayappan POSTER: Performance Modeling for GPUs using Abstract Kernel Emu- lation. In ACM Symposium on Principles and Practice of Parallel Programming (PPoPP), February 2018. Prashant Singh Rawat, Aravind Sukumaran-Rajam, Atanas Rountev, Louis-Noël Pouchet, Fabrice Rastello, P. Sadayappan POSTER: Statement Reordering to Alleviate Register Pressure for Sten- cils on GPUs. In International Conference on Parallel Architectures and Compilation Techniques (PACT), September 2017. Prashant Singh Rawat, Changwan Hong, Mahesh Ravishankar, Vinod Grover, Louis- Noël Pouchet, Atanas Rountev, P. Sadayappan Resource Conscious Reuse-Driven Tiling for GPUs. In International Conference on Parallel Architectures and Compilation Techniques (PACT), September 2016. Prashant Singh Rawat, Changwan Hong, Mahesh Ravishankar, Vinod Grover, Louis- Noël Pouchet, Atanas Rountev, P. Sadayappan Effective resource management for enhancing performance of 2D and3D stencils on GPUs. In 9th Annual Workshop on General Purpose Processing using Graphics Processing Unit (GPGPU), March 2016. Prashant Singh Rawat, Martin Kong, Thomas Henretty, Justin Holewinski, Kevin Stock, Louis-Noël Pouchet, J. Ramanujam, Atanas Rountev, P. Sadayappan SDSLc: a multi-target domain-specific compiler for stencil computations. In 5th International Workshop on Domain-Specific Languages and High-Level Frame- works for High Performance Computing (WOLFHPC), November 2015. viii FIELDS OF
Recommended publications
  • Data-Flow Prescheduling for Large Instruction Windows in Out-Of-Order Processors
    Data-Flow Prescheduling for Large Instruction Windows in Out-of-Order Processors Pierre Michaud, Andr´e Seznec IRISA/INRIA Campus de Beaulieu, 35042 Rennes Cedex, France {pmichaud, seznec}@irisa.fr Abstract We introduce data-flow prescheduling. Instructions are sent to the issue buffer in a predicted data-flow order instead The performance of out-of-order processors increases of the sequential order, allowing a smaller issue buffer. The with the instruction window size. In conventional proces- rationale of this proposal is to avoid using entries in the is- sors, the effective instruction window cannot be larger than sue buffer for instructions which operands are known to be the issue buffer. Determining which instructions from the yet unavailable. issue buffer can be launched to the execution units is a time- In our proposal, this reordering of instructions is accom- critical operation which complexity increases with the issue plished through an array of schedule lines. Each schedule buffer size. We propose to relieve the issue stage by reorder- line corresponds to a different depth in the data-flow graph. ing instructions before they enter the issue buffer. This study The depth of each instruction in the data-flow graph is de- introduces the general principle of data-flow prescheduling. termined, and the instruction is inserted in the correspond- Then we describe a possible implementation. Our prelim- ing schedule line. Lines are consumed by the issue buffer inary results show that data-flow prescheduling makes it sequentially. possible to enlarge the effective instruction window while Section 2 briefly describes issue buffers and discusses re- keeping the issue buffer small.
    [Show full text]
  • Jetson TX2 • NVIDIA Jetson Xavier • GPU Programming • Algorithm Mapping: • Convolutions Parallel Algorithm Execution
    GPU and multicore CPU architectures. Algorithm mapping Contributors: N. Tsapanos, I. Karakostas, I. Pitas Aristotle University of Thessaloniki, Greece Presenter: Prof. Ioannis Pitas Aristotle University of Thessaloniki [email protected] www.multidrone.eu Presentation version 1.3 GPU and multicore CPU architectures. Algorithm mapping • GPU and multicore CPU processing boards • Graphics cards • NVIDIA Jetson TX2 • NVIDIA Jetson Xavier • GPU programming • Algorithm mapping: • Convolutions Parallel algorithm execution • Graphics computing: • Highly parallelizable • Linear algebra parallelization: • Vector inner products: 푐 = 풙푇풚. • Matrix-vector multiplications 풚 = 푨풙. • Matrix multiplications: 푪 = 푨푩. Parallel algorithm execution • Convolution: 풚 = 푨풙 • CNN architectures, linear systems, signal filtering. • Correlation: 풚 = 푨풙 • template matching, tracking. • Signal transforms (DFT, DCT, Haar, etc): • Matrix vector product form: 푿 = 푾풙 • 2D transforms (matrix product form): 푿’ = 푾푿. Processing Units • Multicore (CPU): • MIMD. • Focused on latency. • Best single thread performance. • Manycore (GPU): • SIMD. • Focused on throughput. • Best for embarrassingly parallel tasks. Pascal microarchitecture https://devblogs.nvidia.com/inside-pascal/gp100_block_diagram-2/ Pascal microarchitecture https://devblogs.nvidia.com/inside-pascal/gp100_sm_diagram/ GeForce GTX 1080 • Microarchitecture: Pascal. • DRAM: 8 GB GDDR5X at 10000 MHz. • SMs: 20. • Memory bandwidth: 320 GB/s. • CUDA cores: 2560. • L2 Cache: 2048 KB. • Clock (base/boost): 1607/1733 MHz. • L1 Cache: 48 KB per SM. • GFLOPs: 8873. • Shared memory: 96 KB per SM. GPU and multicore CPU architectures. Algorithm mapping • GPU and multicore CPU processing boards • Graphics cards • NVIDIA Jetson TX2 • NVIDIA Jetson Xavier • GPU programming • Algorithm mapping: • Convolutions ARM Cortex-A57: High-End ARMv8 CPU • ARMv8 architecture • Architecture evolution that extends ARM’s applicability to all markets. • Full ARM 32-bit compatibility, streamlined 64-bit capability.
    [Show full text]
  • Computer Architecture Out-Of-Order Execution
    Computer Architecture Out-of-order Execution By Yoav Etsion With acknowledgement to Dan Tsafrir, Avi Mendelson, Lihu Rappoport, and Adi Yoaz 1 Computer Architecture 2013– Out-of-Order Execution The need for speed: Superscalar • Remember our goal: minimize CPU Time CPU Time = duration of clock cycle × CPI × IC • So far we have learned that in order to Minimize clock cycle ⇒ add more pipe stages Minimize CPI ⇒ utilize pipeline Minimize IC ⇒ change/improve the architecture • Why not make the pipeline deeper and deeper? Beyond some point, adding more pipe stages doesn’t help, because Control/data hazards increase, and become costlier • (Recall that in a pipelined CPU, CPI=1 only w/o hazards) • So what can we do next? Reduce the CPI by utilizing ILP (instruction level parallelism) We will need to duplicate HW for this purpose… 2 Computer Architecture 2013– Out-of-Order Execution A simple superscalar CPU • Duplicates the pipeline to accommodate ILP (IPC > 1) ILP=instruction-level parallelism • Note that duplicating HW in just one pipe stage doesn’t help e.g., when having 2 ALUs, the bottleneck moves to other stages IF ID EXE MEM WB • Conclusion: Getting IPC > 1 requires to fetch/decode/exe/retire >1 instruction per clock: IF ID EXE MEM WB 3 Computer Architecture 2013– Out-of-Order Execution Example: Pentium Processor • Pentium fetches & decodes 2 instructions per cycle • Before register file read, decide on pairing Can the two instructions be executed in parallel? (yes/no) u-pipe IF ID v-pipe • Pairing decision is based… On data
    [Show full text]
  • CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1 Datapath of Ooo Execution Processor
    Fiscal Year 2020 Ver. 2021-01-25a Course number: CSC.T433 School of Computing, Graduate major in Computer Science Advanced Computer Architecture 10. Multi-Processor: Distributed Memory and Shared Memory Architecture www.arch.cs.titech.ac.jp/lecture/ACA/ Room No.W936 Kenji Kise, Department of Computer Science Mon 14:20-16:00, Thr 14:20-16:00 kise _at_ c.titech.ac.jp CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1 Datapath of OoO execution processor Instruction flow Instruction cache Branch handler Instruction fetch Instruction decode Renaming Register file Dispatch Integer Floating-point Memory Memory dataflow RS Instruction window ALU ALU Branch FP ALU Adr gen. Adr gen. Store Reorder buffer (ROB) queue Data cache Register dataflow CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS) 2 Growth in clock rate of microprocessors From CAQA 5th edition CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3 From multi-core era to many-core era Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36 CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4 Aside: What is a window? • A window is a space in the wall of a building or in the side of a vehicle, which has glass in it so that light can come in and you can see out. (Collins) Instruction window 8 6 5 4 7 (a) Instruction window Instructions to be executed for an application Large instruction
    [Show full text]
  • STRAIGHT: Realizing a Lightweight Large Instruction Window by Using Eventually Consistent Distributed Registers
    2012 Third International Conference on Networking and Computing STRAIGHT: Realizing a Lightweight Large Instruction Window by using Eventually Consistent Distributed Registers Hidetsugu IRIE∗, Daisuke FUJIWARA∗, Kazuki MAJIMA∗, Tsutomu YOSHINAGA∗ ∗The University of Electro-Communications 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan E-mail: [email protected], [email protected], [email protected], [email protected] Abstract—As the number of cores as well as the network size programs. For scale-out applications, we assume the manycore in a processor chip increases, the performance of each core is processor structure, which consists of a number of STRAIGHT more critical for the improvement of the total chip performance. architecture cores (SAC) that are loosely connected each other. However, to improve the total chip performance, the performance per power or per unit area must be improved, making it difficult Being the first report on this novel processor architecture, in to adopt a conventional approach of superscalar extension. In this paper, we discuss the concept behind STRAIGHT, propose this paper, we explore a new core structure that is suitable for basic principles, and estimate the performance and budget manycore processors. We revisit prior studies of new instruction- expectation. The rest of the paper consists of following sec- level (ILP) and thread-level parallelism (TLP) architectures tions. Section II revisits studies of new architectures that were and propose our novel STRAIGHT processor architecture. By introducing the scheme of distributed key-value-store to the designed to improve the ILP/TLP performance of superscalar register file of clustered microarchitectures, STRAIGHT directly processors, and discusses the dilemma of both scalability executes the operation with large logical registers, which are approach and quick worker approach.
    [Show full text]
  • Optimizing SIMD Execution in HW/SW Co-Designed Processors
    Optimizing SIMD Execution in HW/SW Co-designed Processors Rakesh Kumar Department of Computer Architecture Universitat Politècnica de Catalunya Advisors: Alejandro Martínez Intel Barcelona Research Center Antonio González Intel Barcelona Research Center Universitat Politècnica de Catalunya A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy / Doctor per la UPC ABSTRACT SIMD accelerators are ubiquitous in microprocessors from different computing domains. Their high compute power and hardware simplicity improve overall performance in an energy efficient manner. Moreover, their replicated functional units and simple control mechanism make them amenable to scaling to higher vector lengths. However, code generation for these accelerators has been a challenge from the days of their inception. Compilers generate vector code conservatively to ensure correctness. As a result they lose significant vectorization opportunities and fail to extract maximum benefits out of SIMD accelerators. This thesis proposes to vectorize the program binary at runtime in a speculative manner, in addition to the compile time static vectorization. There are different environments that support runtime profiling and optimization support required for dynamic vectorization, one of most prominent ones being: 1) Dynamic Binary Translators and Optimizers (DBTO) and 2) Hardware/Software (HW/SW) Co-designed Processors. HW/SW co-designed environment provides several advantages over DBTOs like transparent incorporations of new hardware features, binary compatibility, etc. Therefore, we use HW/SW co-designed environment to assess the potential of speculative dynamic vectorization. Furthermore, we analyze vector code generation for wider vector units and find out that even though SIMD accelerators are amenable to scaling from hardware point of view, vector code generation at higher vector length is even more challenging.
    [Show full text]
  • Multithreading
    CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 14 – Multithreading Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste http://inst.eecs.berkeley.edu/~cs152 Last Time Lecture 13: VLIW § In a classic VLIW, compiler is responsible for avoiding all hazards -> simple hardware, complex compiler. § Later VLIWs added more dynamic hardware interlocks, which reduce relative hardware benefits § Use loop unrolling and software pipelining for loops, trace scheduling for more irregular code § Static scheduling difficult in presence of unpredictable branches and variable latency memory § VLIW has failed in general-purpose computing, but still used in deeply embedded processors and DSPs 2 Thread-Level Parallelism (TLP) § Difficult to continue to extract instruction-level parallelism (ILP) from a single sequential thread of control § Many workloads can make use of thread-level parallelism: – TLP from multiprogramming (run independent sequential jobs) – TLP from multithreaded applications (run one job faster using parallel threads) § Multithreading uses TLP to improve utilization of a single processor 3 Multithreading How can we guarantee no dependencies between instructions in a pipeline? One way is to interleave execution of instructions from different program threads on same pipeline Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 T1:LD x1,0(x2) F D X M W Prior instruction in a T2:ADD x7,x1,x4
    [Show full text]
  • Transforming TLP Into DLP with the Dynamic Inter-Thread Vectorization Architecture Sajith Kalathingal
    Transforming TLP into DLP with the dynamic inter-thread vectorization architecture Sajith Kalathingal To cite this version: Sajith Kalathingal. Transforming TLP into DLP with the dynamic inter-thread vectorization archi- tecture. Hardware Architecture [cs.AR]. Université Rennes 1, 2016. English. NNT : 2016REN1S133. tel-01426915v3 HAL Id: tel-01426915 https://tel.archives-ouvertes.fr/tel-01426915v3 Submitted on 28 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNEE´ 2016 THESE` / UNIVERSITE´ DE RENNES 1 sous le sceau de l’Universit´eBretagne Loire pour le grade de DOCTEUR DE L’UNIVERSITE´ DE RENNES 1 Mention : Informatique Ecole´ doctorale Matisse pr´esent´eepar Sajith Kalathingal pr´epar´ee`al’unit´ede recherche INRIA Institut National de Recherche en Informatique et Automatique Universit´ede Rennes 1 Th`esesoutenue `aRennes Transforming TLP into le 13 D´ecembre 2016 DLP with the Dynamic devant le jury compos´ede : Bernard GOOSSENS Inter-Thread Vector- Professeur `al’Universit´ede Perpignan Via Domitia / Rapporteur Smail NIAR ization Architecture Professeur `al’Universit´ede Valenciennes / Rapporteur Laure GONNORD Maˆitre de conf´erences `a l’Universit´e Lyon 1 / Examinatrice C´edricTEDESCHI Maˆitre de conf´erences `a l’Universit´e Rennes 1 / Examinateur Andr´eSEZNEC Directeur de recherches Inria / Directeur de th´ese Sylvain COLLANGE Charg´ede recherche INRIA / Co-directeur de th´ese Acknowledgement I would like to express my sincere gratitude to my thesis advisors, Andr´eSEZNEC and Sylvain COLLANGE.
    [Show full text]
  • Advanced Computer Architecture
    ADAPTIVE & SECURE ASCS COMPUTING SYSTEMS LABORATORY ECEN 676 Advanced Computer Architecture Complex Pipelining: VLIW Prof. Michel A. Kinsy ADAPTIVE & SECURE ASCS COMPUTING SYSTEMS LABORATORY Execution Concurrency Limits § Which features of an ISA limit the number of instructions in the pipeline? § Number of Registers § Which features of a program limit the number of instructions in the pipeline? § Control transfers ADAPTIVE & SECURE ASCS COMPUTING SYSTEMS LABORATORY Little’s Law § Throughput (T) = Number in Flight (N) / Latency (L) Issue Execution WB § Illustrative Example § 4 floating point units § 8 cycles per floating point operation § 1/2 issues per cycle! ADAPTIVE & SECURE ASCS COMPUTING SYSTEMS LABORATORY Little’s Law Parallelism = Throughput * Latency or N = T ´ L Throughput per Cycle One Operation Latency in Cycles ADAPTIVE & SECURE ASCS COMPUTING SYSTEMS LABORATORY Pipelined ILP Machine Max Throughput, Six Instructions per Cycle One Pipeline Stage Two Integer Units, Latency Single Cycle Latency in Cycles Two Load/Store Units, Three Cycle Latency Two Floating-Point Units, Four Cycle Latency § How much instruction-level parallelism (ILP) required to keep machine pipelines busy? ADAPTIVE & SECURE ASCS COMPUTING SYSTEMS LABORATORY Superscalar Control Logic Scaling § Each issued instructions must make interlock checks against W*L instructions, i.e., growth in interlocks µ W*(W*L) § For in-order machines, L is related to pipeline latencies § For out-of-order machines, L also includes time spent in instruction buffers (instruction window
    [Show full text]
  • Dynamic Vectorization in the E2 Dynamic Multicore Architecture to Appear in the Proceedings of HEART 2010
    Dynamic Vectorization in the E2 Dynamic Multicore Architecture To appear in the proceedings of HEART 2010 Andrew Putnam Aaron Smith Doug Burger Microsoft Research Microsoft Research Microsoft Research [email protected] [email protected] [email protected] ABSTRACT TFlex [9] is one proposed architecture that demonstrated a Previous research has shown that Explicit Data Graph Exe- large dynamic range of power and performance by combin- cution (EDGE) instruction set architectures (ISA) allow for ing power efficient, lightweight processor cores into larger, power efficient performance scaling. In this paper we de- more powerful cores through the use of an Explicit Data scribe the preliminary design of a new dynamic multicore Graph Execution (EDGE) instruction set architecture (ISA). processor called E2 that utilizes an EDGE ISA to allow for TFlex is dynamically configurable to provide the same per- the dynamic composition of physical cores into logical pro- formance and energy efficiency as a small embedded proces- cessors. We provide details of E2’s support for dynamic re- sor or to provide the higher performance of an out-of-order configurability and show how the EDGE ISA facilities out- superscalar on single-threaded applications. of-order vector execution. Motivated by these promising results, we are currently designing a new dynamic architecture called E2 that uti- lizes an EDGE ISA to achieve high performance power effi- Categories and Subject Descriptors ciently [3]. The EDGE model divides a program into blocks C.1.2 [Computer Systems Organization]: Multiple Data of instructions that execute atomically. Blocks consist of a Stream Architectures—single-instruction-stream, multiple- sequence of dataflow instructions that explicitly encode re- data-stream processors (SIMD), array and vector proces- lationships between producer-consumer instructions, rather sors; C.1.3 [Computer Systems Organization]: Other Ar- than communicating through registers as done in a conven- chitecture Styles—adaptable architectures, data-flow archi- tional ISA.
    [Show full text]
  • Instruction Fetch and Issue on an Implementable Simultaneous
    Exploiting Choice: Instruction Fetch and Issue on an Implementable Simultaneous Multithreading Processor ¡ Dean M. Tullsen , Susan J. Eggers , Joel S. Emer , Henry M. Levy , ¡ Jack L. Lo , and Rebecca L. Stamm ¡ Dept of Computer Science and Engineering Digital Equipment Corporation University of Washington HLO2-3/J3 Box 352350 77 Reed Road Seattle, WA 98195-2350 Hudson, MA 01749 Abstract an SMT processor to achieve signi®cantly higher throughput than either a wide superscalar or a multithreaded processor. That paper Simultaneous multithreading is a technique that permits multiple also demonstrated the advantages of simultaneous multithreading independent threads to issue multiple instructions each cycle. In over multiple processors on a single chip, due to SMT's ability to previous work we demonstrated the performance potential of si- dynamically assign execution resources where needed each cycle. multaneous multithreading, based on a somewhat idealized model. Those results showed SMT's potential based on a somewhat ide- In this paper we show that the throughput gains from simultaneous alized model. This paper extends that work in four signi®cant ways. multithreading can be achieved without extensive changes to a con- First, we demonstrate that the throughput gains of simultaneous mul- ventional wide-issue superscalar, either in hardware structures or tithreading are possible without extensive changesto a conventional, sizes. We present an architecture for simultaneous multithreading wide-issue superscalar processor. We propose an architecture that that achieves three goals: (1) it minimizes the architectural impact is more comprehensive, realistic, and heavily leveraged off existing on the conventional superscalar design, (2) it has minimal perfor- superscalar technology.
    [Show full text]
  • Chapter 16 - Instruction-Level Parallelism and Superscalar Processors
    Chapter 16 - Instruction-Level Parallelism and Superscalar Processors Luis Tarrataca [email protected] CEFET-RJ Luis Tarrataca Chapter 16 - Superscalar Processors 1 / 90 Table of Contents 1 Overview Scalar Processor Superscalar Processor Superscalar vs. Superpipelined Constraints Luis Tarrataca Chapter 16 - Superscalar Processors 2 / 90 Table of Contents 2 Design Issues Machine Parallelism Instruction Issue Policy In-order issue with in-order completion In-order issue with out-of-order completion Out-of-Order issue with Out-Of-Order Completion Register Renaming 3 Superscalar Execution Overview 4 References Luis Tarrataca Chapter 16 - Superscalar Processors 3 / 90 Overview Scalar Processor The first processors were known as scalar: What is a scalar processor? Any ideas? Luis Tarrataca Chapter 16 - Superscalar Processors 4 / 90 Overview Scalar Processor Scalar Processor The first processors were known as scalar: What is a scalar processor? Any ideas? In a scalar organization, a single pipelined functional unit exists for: • Integer operations; • And one for floating-point operations; Functional unit: • Part of the CPU responsible for calculations; Luis Tarrataca Chapter 16 - Superscalar Processors 5 / 90 Overview Scalar Processor Scalar Processor In a scalar organization, a single pipelined functional unit exists for: • Integer operations; • And one for floating-point operations; Figure: Scalar Organization (Source: [Stallings, 2015]) Luis Tarrataca Chapter 16 - Superscalar Processors 6 / 90 Overview Scalar Processor But why do we
    [Show full text]