Life Tables Shape Genetic Diversity in Marine Fishes
Total Page:16
File Type:pdf, Size:1020Kb
1 Appendix 1 to Barry and al. "Life tables shape genetic diversity 2 in marine fishes” : life tables of the 16 marine teleostean species 3 Pierre Barry, Thomas Broquet, Pierre-Alexandre Gagnaire 4 Each page represents the informations of life tables and corresponding bibliographic references for each 13 5 of the 16 species. On top, image from Igl´esias , reproduced with permissions, vernacular and latin name 6 of the species. 7 The first table, on top, shows length at infinity Linf , growth parameter K, and t0 from Von Bertalanffy 8 equation modelling age-length relationship. Maturitys show age at first maturity, and maximum age, 9 lifespan. Values are showed for male, female and for combined sexes. On bottom of the first table, 10 F = y(L) shows the corresponding model between age and fecundity, either linear (F = α + β × L), β 11 exponential (F = α × exp[β × L]) or power-law (F = α × L ). α and β shows corresponding parameter 12 of the relationship between age and fecundity. Corresponding bibliographic references are indicated in the 13 last column. 14 The second table shows life tables components calculated with the parameters of the first table: for 15 each age, Lx indicates length in centimeters for combined sexes, Lx;f , length for females only and Lx;m, 16 length for males only. lx, lx;f and lx;m indicates age-specific survival for combined sexes, females and 17 males, respectively. Cumc, Cumf and Cumm indicates cumulative age-specific survival for combined 18 sexes, females and males respectively. Bx, Bx;f and Bx;m show relative fecundity for combined sexes, 19 females and males, respectively (max fecundity equals 1 at lifespan). 20 On the bottom, solid lines represent the age-specific probability of survival until age x curves (y left- 21 axis), dashed lines represent the age-specific fecundity curves (y right-axis). Black, blue and red lines 22 represent combined sexes, male and females curves, respectively. 1 23 Montagu's blenny 24 Coryphoblennius galerita Parameter Combined Female Male Ref Linf 6.54 6.54 6.54 K 0.432 0.432 0.432 16 t0 -1.247 -1.247 -1.247 Milton Maturity 1 1 1 Max age 6 6 6 F = y(L) Linear α -2146.4 Carrass´onand Bau 5 β 710.07 Age Lx Lx;f Lx;m lx lx;f lx;m Cumc Cumf Cumm Bx Bx;f Bx;m 1 4.4 4.4 4.4 0.46 0.46 0.46 0.180 0.180 0.180 0.420 0.420 0.420 2 4.8 4.8 4.8 0.50 0.50 0.50 0.083 0.083 0.083 0.542 0.542 0.542 3 5.3 5.3 5.3 0.55 0.55 0.55 0.041 0.041 0.041 0.695 0.695 0.695 4 5.8 5.8 5.8 0.60 0.60 0.60 0.023 0.023 0.023 0.847 0.847 0.847 5 6.2 6.2 6.2 0.63 0.63 0.63 0.013 0.013 0.013 0.969 0.969 0.969 6 6.3 6.3 6.3 0.00 0.00 0.00 0.008 0.008 0.008 1.00 1.00 1.00 - Coryphoblennius galerita 1.00 1.00 Age−specific fecundity 0.75 0.75 0.50 0.50 0.25 0.25 Probability of survival until age 0.00 0.00 0 1 2 3 4 5 6 Age 2 25 Rainbow wrasse 26 Coris julis Parameter Combined Female Male Ref Linf 25.4 21.27 29.66 K 0.16 0.21 0.12 25 t0 -1.19 -1.08 -1.52 Skeljoˇ Maturity 1 1 1 Max age 7 5 6 F = y(L) Power α 0.902 Skeljoˇ 25 β 3.643 Age Lx Lx;f Lx;m lx lx;f lx;m Cumc Cumf Cumm Bx Bx;f Bx;m 1 8.5 8.7 8.5 0.44 0.45 0.46 0.282 0.305 0.327 0.037 0.119 0.037 2 11.4 11.3 11.5 0.59 0.58 0.61 0.123 0.137 0.150 0.108 0.309 0.112 3 12.9 12.6 13.1 0.64 0.63 0.66 0.073 0.079 0.091 0.169 0.459 0.179 4 14.8 14.9 14.8 0.70 0.70 0.71 0.047 0.050 0.060 0.280 0.846 0.280 5 16.5 15.6 16.6 0.74 0.72 0.75 0.033 0.035 0.043 0.415 1.000 0.425 6 18.1 { 18.1 0.77 { 0.78 0.024 0.025 0.032 0.582 { 0.582 7 21 { 21 0.81 { 0.82 0.018 { 0.025 1.000 { 1.000 - Coris julis 1.00 1.00 Age−specific fecundity 0.75 0.75 0.50 0.50 0.25 0.25 Probability of survival until age 0.00 0.00 0 1 2 3 4 5 6 7 Age 3 27 European sea bass 28 Dicentrarchus labrax Parameter Combined Female Male Ref Linf 83.2 87.8 78.1 K 0.066 0.061 0.075 28 t0 -1.745 -1.797 -1.765 Wassef and Emary Maturity 3 2 4 Max age 15 15 9 F = y(L) Power α 0.00087 Kara 14 β 5 Age Lx Lx;f Lx;m lx lx;f lx;m Cumc Cumf Cumm Bx Bx;f Bx;m 1 13.3 13.3 13.6 0.36 0.36 0.36 0.376 0.162 0.179 0.000 0.000 0.000 2 18.1 18.1 18.2 0.52 0.52 0.51 0.134 0.057 0.064 0.000 0.000 0.000 3 21.8 21.8 21.7 0.61 0.61 0.60 0.070 0.030 0.033 0.000 0.000 0.028 4 25.5 25.5 25.4 0.68 0.68 0.67 0.043 0.018 0.020 0.008 0.000 0.062 5 29.5 29.5 29.4 0.73 0.73 0.72 0.029 0.012 0.013 0.017 0.017 0.129 6 33.2 33.2 33 0.77 0.77 0.76 0.021 0.009 0.009 0.031 0.031 0.229 7 36.5 36.5 36.2 0.80 0.80 0.79 0.016 0.007 0.007 0.051 0.051 0.364 8 40.3 40.3 40.3 0.82 0.82 0.82 0.013 0.006 0.006 0.083 0.083 0.623 9 44.3 44.3 44.3 0.84 0.84 0.84 0.011 0.005 0.005 0.133 0.133 1.000 10 48.3 48.3 { 0.86 0.86 { 0.009 0.004 0.004 0.205 0.205 { 11 52.4 52.4 { 0.88 0.88 { 0.008 0.003 { 0.308 0.308 { 12 56.3 56.3 { 0.89 0.89 { 0.007 0.003 { 0.442 0.442 { 13 59.8 59.8 { 0.90 0.90 { 0.006 0.003 { 0.597 0.597 { 14 63.4 63.4 { 0.91 0.91 { 0.005 0.002 { 0.800 0.800 { 15 66.3 66.3 { 0.91 0.91 { 0.005 0.002 { 1.000 1.000 { - Dicentrarchus labrax 1.00 1.00 Age−specific fecundity 0.75 0.75 0.50 0.50 0.25 0.25 Probability of survival until age 0.00 0.00 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Age 4 29 Sharp-snout seabream 30 Diplodus puntazzo Parameter Combined Female Male Ref Linf 54.1 52.3 52.7 K 0.182 0.203 0.187 8 t0 -2.531 -2.225 -2.761 Dom´ınguez-Seoaneet al. Maturity 2 2 2 Max age 10 10 10 F = y(L) Power α 40.269 Taieb et al. 26 β 2.0483 Age Lx Lx;f Lx;m lx lx;f lx;m Cumc Cumf Cumm Bx Bx;f Bx;m 1 25.3 25.3 25.3 0.57 0.55 0.57 0.359 0.338 0.364 0.000 0.000 0.000 2 31.0 31.0 31.0 0.66 0.64 0.66 0.203 0.185 0.207 0.000 0.000 0.000 3 34.6 34.6 34.6 0.70 0.69 0.70 0.134 0.118 0.137 0.454 0.454 0.454 4 37.5 37.5 37.5 0.73 0.72 0.73 0.094 0.081 0.096 0.535 0.535 0.535 5 39.1 39.1 39.1 0.74 0.73 0.75 0.068 0.058 0.071 0.583 0.583 0.583 6 43.5 43.5 43.5 0.78 0.77 0.78 0.051 0.042 0.053 0.725 0.725 0.725 7 45.6 45.6 45.6 0.79 0.78 0.79 0.039 0.032 0.041 0.798 0.798 0.798 8 48.4 48.4 48.4 0.81 0.80 0.81 0.031 0.025 0.033 0.902 0.902 0.902 9 49.8 49.8 49.8 0.81 0.80 0.82 0.025 0.020 0.026 0.956 0.956 0.956 10 50.9 50.9 50.9 0.82 0.81 0.82 0.020 0.016 0.021 1.000 1.000 1.000 - Diplodus puntazzo 1.00 1.00 Age−specific fecundity 0.75 0.75 0.50 0.50 0.25 0.25 Probability of survival until age 0.00 0.00 0 1 2 3 4 5 6 7 8 9 10 Age 5 31 Long-snouted seahorse 32 Hippocampus guttulatus Parameter Combined Female Male Ref Linf 19.76 19.76 19.76 K 0.571 0.571 0.571 7 t0 -0.05 -0.083 -0.044 Curtis and Vincent Maturity 1 1 1 Max age 5 5 5 F = y(L) Exponential α 78.54 Curtis and Vincent 7 β 0.16 Age Lx Lx;f Lx;m lx lx;f lx;m Cumc Cumf Cumm Bx Bx;f Bx;m 1 13.5 13.5 13.5 0.36 0.36 0.36 0.253 0.253 0.253 0.415 0.415 0.415 2 16.5 16.5 16.5 0.47 0.47 0.47 0.092 0.092 0.092 0.670 0.670 0.670 3 18.0 18.0 18.0 0.52 0.52 0.52 0.044 0.044 0.044 0.852 0.852 0.852 4 18.5 18.5 18.5 0.53 0.53 0.53 0.023 0.023 0.023 0.923 0.923 0.923 5 19.0 19.0 19.0 0.55 0.55 0.55 0.012 0.012 0.012 1.000 1.000 1.000 - Hippocampus guttulatus 1.00 1.00 Age−specific fecundity 0.75 0.75 0.50 0.50 0.25 0.25 Probability of survival until age 0.00 0.00 0 1 2 3 4 5 Age 6 33 Blackbellied angler 34 Lophius budegassa Parameter Combined Female Male Ref Linf 102 147.3 102.5 K 0.15 0.091 0.189 11 t0 -0.05 -0.083 -0.044 Garc´ıa-Rodr´ıguezet al.