Multiplicity of Solar-Type Stars

Total Page:16

File Type:pdf, Size:1020Kb

Multiplicity of Solar-Type Stars A Survey of Stellar Families: Multiplicity of Solar-Type Stars A Dissertation Presented in Partial Fulfillment of Requirements for the Degree of Doctor of Philosophy in the College of Arts and Sciences Georgia State University 2009 by Deepak Raghavan Committee: Dr. Harold A. McAlister, Chair Dr. Douglas R. Gies, Member Dr. Todd J. Henry, Member Dr. David W. Latham, Member Dr. Brian D. Mason, Member Dr. A. G. Unil Perera, Member Dr. Russel J. White, Member Date Dr. H. Richard Miller, Chair Department of Physics & Astronomy A Survey of Stellar Families: Multiplicity of Solar-Type Stars by Deepak Raghavan Under the Direction of Harold A. McAlister Abstract I present the results of a comprehensive assessment of companions to solar-type stars. The sample of 454 stars, including the Sun, was selected from the Hipparcos catalog with π > 40 mas, σπ/π < 0.05, 0.5 ≤ B − V ≤ 1.0, and positioned on an HR diagram within a band extending 1.5 magnitudes below and 2 magnitudes above an iterative best-fit main sequence. The resulting sample is an exhaustive set of stars with V -band flux between 0.1 and 10 times that of the Sun, providing a physical basis for the term “solar-type”. New observational as- pects of this work include a survey for separated fringe packet companions with long-baseline interferometry at the Center for High Angular Resolution Astronomy (CHARA) Array, blink- ing multi-epoch archival images to identify wide common proper motion companions, and speckle interferometry. Apart from evaluating companion information from the various cat- alogs covering many different techniques, I also obtained and included unpublished results from extensive radial velocity monitoring programs. The many sources leveraged enable a thorough search and evaluation for stellar and brown dwarf companions. The results presented here include eight new companion discoveries, four of which are wide common proper motion pairs discovered by blinking archival images, and four more are from the spectroscopic data. The overall observed fractions of single, double, triple, and higher order systems are 57% ± 3%, 33% ± 2%, 8% ± 1%, and 3% ± 1%, respectively. If all candidate companions identified are found to be real, the percentages would be 54% ± 2%, 34% ± 2%, 9% ± 2%, and 3% ± 1%, respectively. The incompleteness analysis indicates that only a few undiscovered companions remain for this well-studied sample. Including these missed companions and estimating the percentage of candidates that are real leads to multiplicity fractions of 55% ±3%, 34% ±2%, 9% ±2%, and 2% ±1% for single, binary, triple, and higher order systems. These results include all stellar and brown dwarf companions, and show that a majority of the solar-type stars are single, in contrast to earlier expectations. This large sample enables a check of the dependence of multiplicity on various physical parameters. Bluer, more massive stars are more likely to have companions than redder, less massive ones, consistent with the trend seen over the entire spectral range, but showing a steeper drop at solar-type stars than previously believed. Consistent with prior studies, younger, more active stars are seen as more likely to have companions than older, less active ones, suggesting that companions may be stripped over time by dynamical interactions. A preliminary, but important indication seen here is that brown dwarfs, like planets, seem to prefer stars with higher metallicity, tentatively suggesting that brown dwarfs may form like planets, at least when they are companions to stars. The period distribution derived is unimodal and roughly Gaussian with a peak and me- dian value of 300 years. The period-eccentricity relation shows the expected circularization for periods below 12 days, followed by a roughly flat distribution. The mass-ratio distribution shows a clear discontinuity near a value of one, indicating a preference for twins, which are not confined to short orbital periods. The period-mass-ratio relationship shows that multiple formation mechanisms are likely responsible for the formation of stellar systems – fission for like pairs and fragmentation or random associations for longer-period systems of all mass ratios. This distribution also shows a paucity of low-mass companions, confirming that the brown dwarf desert extends out to wide separations. The ratio of planet hosts among single, binary, and multiple systems are statistically indistinguishable, suggesting that planets are as likely to form around single stars as they are around components of binary or multiple systems. Hence, the common occurrence of binary systems is likely to increase the real-estate available for planets, and perhaps life. INDEX WORDS: Stellar multiplicity, Binary stars, Solar-type stars, Solar neighbor- hood, Exoplanet systems, Brown dwarfs, Survey, Long baseline inter- ferometry, Radial velocity A Survey of Stellar Families: Multiplicity of Solar-Type Stars by Deepak Raghavan A Dissertation Presented in Partial Fulfillment of Requirements for the Degree of Doctor of Philosophy in the College of Arts and Sciences Georgia State University 2009 Copyright by Deepak Raghavan 2009 A Survey of Stellar Families: Multiplicity of Solar-Type Stars by Deepak Raghavan Major Professor: Harold A. McAlister Committee: Douglas R. Gies Todd J. Henry David W. Latham Brian D. Mason A. G. Unil Perera Russel J. White Electronic Version Approved: Office of Graduate Studies College of Arts & Sciences Georgia State University May 2009 iv – 0 – To my parents Thank you for inculcating the spirit of learning in me v – 0 – Acknowledgments When I decided to pursue a doctorate in astronomy more than six years ago, it was not with complete certainty, but with a sense of curiosity, wonder, and yes, some apprehension. I had decided to chart a unique course for myself, and to travel down a path with few footsteps, especially given where I was coming from. I would not have been able to complete this journey without the steadfast support of my family and friends, and I would like to extend my most sincere gratitude to them. I could not have done this without the support of my dear wife, Priya, who has not only always stood by me, but also been such a tremendous source of support and wisdom, letting me probe and explore, while always being there when I needed a listening ear or a supporting hand. My children, Anjan and Aditi, while sometimes curious, and sometimes worried as to what daddy was doing back in school, never wavered in their implicit support. I thank my parents and siblings for inculcating the spirit of learning in me, which has become a significant driver of my life. My mother led by example, completing her own Ph.D. in Hinduism in 2007. I am very proud of her accomplishment and inspired by it. I appreciate my friends for their indulgence when I would excitedly talk about astronomy and for allowing me to miss parties or leave them early to go to AROC for observing. My thanks also go out to my committee members and the astronomy faculty members for the invaluable support and guidance they have provided me throughout the process. Special vi thanks to Todd Henry for directing my master’s work on exoplanet systems, for the idea of this thesis work, and for his consistently insightful feedback. I have truly enjoyed working with my advisor, Hal McAlister, and would like to recognize his consistent encouragement, support, and direction, not to mention his pioneering efforts in making the CHARA Array a reality and providing us graduate students with copious observing time on such a world- class instrument. Special thanks to Dave Latham for allowing my work to benefit from his meticulous radial velocity monitoring over 30 years and for being so supportive, gathering new data as required and reducing the data on hundreds of stars to enhance the results of this effort. Thanks to Brian Mason for always knowing the answer to any question about double stars and for taking me along on the speckle observing runs; and to Doug Gies, whose consistent advice and ideas enabled me to give a better shape to this effort. This work would not have been possible without the help extended by astronomers around the world, who responded to my persistent requests with support and encouragement. Geoff Marcy graciously allowed me access to his treasure trove of the highest precision radial velocities, enabling me to derive more robust statistics. Artie Hatzes, Bill Cochran, Hugh Jones, and Jason Wright also helped me improve the radial velocity coverage. Bill Hartkopf, Andrei Tokovinin, Dimitri Pourbaix, and Richard Gray were very helpful with their insights and analysis on specific stellar systems. My fellow graduate students enriched this journey with their humor, wit, and open acceptance of a who some might have considered “an outsider”, for which I am indebted to them. Special thanks to Rajesh Deo and Justin Cantrell for taking care of our computers vii while working on their own research, and to Alvin Das for creating a template that made it easier to navigate the LaTeX dissertation jungle. Thanks also to the staff at the CHARA Array for keeping such a sophisticated instrument working so well that it seemed like I was witnessing science fiction come alive. I am grateful to have grown up in India, whose society gave me a strong foundation, built with a desire to learn and accomplish. I am also proud to call the the Unites States of America home, and am thankful to my fellow citizens for accepting and embracing me beyond my wildest expectations. There is no other country in the world where I could have traveled the paths I did, charting a uniquely individual course for my life, without once having to justify or explain the twists and turns I decided to take.
Recommended publications
  • Catalog of Nearby Exoplanets
    Catalog of Nearby Exoplanets1 R. P. Butler2, J. T. Wright3, G. W. Marcy3,4, D. A Fischer3,4, S. S. Vogt5, C. G. Tinney6, H. R. A. Jones7, B. D. Carter8, J. A. Johnson3, C. McCarthy2,4, A. J. Penny9,10 ABSTRACT We present a catalog of nearby exoplanets. It contains the 172 known low- mass companions with orbits established through radial velocity and transit mea- surements around stars within 200 pc. We include 5 previously unpublished exo- planets orbiting the stars HD 11964, HD 66428, HD 99109, HD 107148, and HD 164922. We update orbits for 90 additional exoplanets including many whose orbits have not been revised since their announcement, and include radial ve- locity time series from the Lick, Keck, and Anglo-Australian Observatory planet searches. Both these new and previously published velocities are more precise here due to improvements in our data reduction pipeline, which we applied to archival spectra. We present a brief summary of the global properties of the known exoplanets, including their distributions of orbital semimajor axis, mini- mum mass, and orbital eccentricity. Subject headings: catalogs — stars: exoplanets — techniques: radial velocities 1Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the Uni- versity of California and the California Institute of Technology. The Keck Observatory was made possible by the generous financial support of the W. M. Keck Foundation. arXiv:astro-ph/0607493v1 21 Jul 2006 2Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Broad Branch Road NW, Washington, DC 20015-1305 3Department of Astronomy, 601 Campbell Hall, University of California, Berkeley, CA 94720-3411 4Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 5UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 6Anglo-Australian Observatory, PO Box 296, Epping.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Download This Article in PDF Format
    A&A 646, A77 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039765 & c ESO 2021 Astrophysics Stellar chromospheric activity of 1674 FGK stars from the AMBRE-HARPS sample I. A catalogue of homogeneous chromospheric activity? J. Gomes da Silva1, N. C. Santos1,2, V. Adibekyan1,2, S. G. Sousa1, T. L. Campante1,2, P. Figueira3,1, D. Bossini1, E. Delgado-Mena1, M. J. P. F. G. Monteiro1,2, P. de Laverny4, A. Recio-Blanco4, and C. Lovis5 1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Departamento de Fiísica e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 3 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 4 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France 5 Observatoire Astronomique de l’Université de Genève, 51 Ch. des Maillettes, 1290 Versoix, Switzerland Received 26 October 2020 / Accepted 15 December 2020 ABSTRACT Aims. The main objective of this project is to characterise chromospheric activity of FGK stars from the HARPS archive. We start, in this first paper, by presenting a catalogue of homogeneously determined chromospheric emission (CE), stellar atmospheric parameters, and ages for 1674 FGK main sequence (MS), subgiant, and giant stars. The analysis of CE level and variability is also performed. Methods. We measured CE in the Ca ii H&K lines using more than 180 000 high-resolution spectra from the HARPS spectrograph, as compiled in the AMBRE project, obtained between 2003 and 2019.
    [Show full text]
  • Download This Article in PDF Format
    A&A 562, A92 (2014) Astronomy DOI: 10.1051/0004-6361/201321493 & c ESO 2014 Astrophysics Li depletion in solar analogues with exoplanets Extending the sample, E. Delgado Mena1,G.Israelian2,3, J. I. González Hernández2,3,S.G.Sousa1,2,4, A. Mortier1,4,N.C.Santos1,4, V. Zh. Adibekyan1, J. Fernandes5, R. Rebolo2,3,6,S.Udry7, and M. Mayor7 1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica de Canarias, C/ Via Lactea s/n, 38200 La Laguna, Tenerife, Spain 3 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 4 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 5 CGUC, Department of Mathematics and Astronomical Observatory, University of Coimbra, 3049 Coimbra, Portugal 6 Consejo Superior de Investigaciones Científicas, CSIC, Spain 7 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland Received 18 March 2013 / Accepted 25 November 2013 ABSTRACT Aims. We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods. In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600–5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results. We confirm significant differences in the Li distribution of solar twins (Teff = T ± 80 K, log g = log g ± 0.2and[Fe/H] = [Fe/H] ±0.2): the full sample of planet host stars (22) shows Li average values lower than “single” stars with no detected planets (60).
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • INAUGURAL–DISSERTATION Zur Erlangung Der Doktorwürde Der
    INAUGURAL{DISSERTATION zur Erlangung der Doktorwurde¨ der Naturwissentschaftlich{Mathematischen Gesamtfakult¨at der Ruprecht{Karls{Universit¨at Heidelberg vorgelegt von Dipl.{Phys. Agn`es D.F. Metanomski aus Paris Tag der mundl.¨ Prufung:¨ 22. April 1998 Optical study of F, G and K stars in the ROSAT All-Sky Survey Gutachter: Herr Prof. Dr. Joachim Krautter Herr Prof. Dr. Reiner Wehrse Zusammenfassung Ich untersuche eine Stichprobe von 107 Sudhimmels-Sternen¨ von Spektraltyp A bis K. Diese Sterne sind als die optischen Gegenstuc¨ ke zu R¨ontgen-Quellen, die der ROSAT Satellit w¨ahrend seines All-Sky Survey (RASS) entdeckte, iden- tifiziert wurden. Die Untersuchung wird mit Hilfe optischen Beobachtungen, sowohl photometrischer als auch spektroskopischer, durchgefuhrt.¨ Verschiedene Parameter werden fur¨ die untersuchten Objekte bestimmt, wie z.B. Spektraltyp und Leuchtkraftklasse, absolute Helligkeit, Entfernung, Radialgeschwindigkeit, projezierte Rotationsgeschwindigkeit, Effektivtemperatur, Lithium H¨aufigkeit. Ich vergleiche die R¨ontgen-Parameter meiner Stichproben-Sterne mit denen aus einer ahnlic¨ hen Stichprobe von Sternen, die vom Einstein Observatory w¨ahrend dessen Medium Sensitivity Survey (EMSS) entdeckt wurden. Ich suche auch nach Korrelationen zwischen verschiedenen Parametern, die fur¨ meine Stichproben- Sterne bestimmt wurden und vergleiche die Ergebnisse mit denen, die fur¨ die EMSS Stichprobe erhalten wurden, sowie mit den Ergebnissne anderer, fruherer¨ Studien. Abstract I analyze a sample of 107 southern stars of spectral types A to K, which were identified as the optical counterparts of X-ray sources detected by ROSAT during its All-Sky Survey. The study is conducted using optical observations, photometric as well as spectroscopic (high-resolution). Various parameters are determined for the sample objects, mainly spectral types and luminosity classes, absolute magnitudes, distances, radial velocities, projected rotational velocities, effective temperatures, Lithium abundances.
    [Show full text]
  • Ioptron CEM40 Center-Balanced Equatorial Mount
    iOptron®CEM40 Center-Balanced Equatorial Mount Instruction Manual Product CEM40 (#7400A series) and CEM40EC (#7400ECA series, as shown) Please read the included CEM40 Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper operation will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while using a telescope. 2 Table of Contents Table of Contents ........................................................................................................................................ 3 1. CEM40 Introduction ............................................................................................................................... 5 2. CEM40 Overview ................................................................................................................................... 6 2.1. Parts List .........................................................................................................................................
    [Show full text]
  • Transition from Spot to Faculae Domination--An Alternate
    Astronomy & Astrophysics manuscript no. AC2_arxiv c ESO 2018 October 30, 2018 Transition from spot to faculae domination An alternate explanation for the dearth of intermediate Kepler rotation periods Timo Reinhold1; 2, Keaton J. Bell1; 2, James Kuszlewicz1; 2, Saskia Hekker1; 2, Alexander I. Shapiro1 1 Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany 2 Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, 120 Ny Munkegade, Building 1520, DK- 8000 Aarhus C, Denmark Received day month year / Accepted day month year ABSTRACT Context. The study of stellar activity cycles is crucial to understand the underlying dynamo and how it causes magnetic activity signatures such as dark spots and bright faculae. Having knowledge about the dominant source of surface activity might allow us to draw conclusions about the star’s age and magnetic field topology, and to put the solar cycle in context. Aims. We investigate the underlying process that causes magnetic activity by studying the appearance of activity signatures in con- temporaneous photometric and chromospheric time series. Methods. Lomb-Scargle periodograms are used to search for cycle periods present in the photometric and chromospheric time series. To emphasize the signature of the activity cycle we account for rotation-induced scatter in both data sets by fitting a quasi-periodic Gaussian process model to each observing season. After subtracting the rotational variability, cycle amplitudes and the phase differ- ence between the two time series are obtained by fitting both time series simultaneously using the same cycle period. Results. We find cycle periods in 27 of the 30 stars in our sample.
    [Show full text]
  • Exoplanet Detection Techniques
    Exoplanet Detection Techniques Debra A. Fischer1, Andrew W. Howard2, Greg P. Laughlin3, Bruce Macintosh4, Suvrath Mahadevan5;6, Johannes Sahlmann7, Jennifer C. Yee8 We are still in the early days of exoplanet discovery. Astronomers are beginning to model the atmospheres and interiors of exoplanets and have developed a deeper understanding of processes of planet formation and evolution. However, we have yet to map out the full complexity of multi-planet architectures or to detect Earth analogues around nearby stars. Reaching these ambitious goals will require further improvements in instru- mentation and new analysis tools. In this chapter, we provide an overview of five observational techniques that are currently employed in the detection of exoplanets: optical and IR Doppler measurements, transit pho- tometry, direct imaging, microlensing, and astrometry. We provide a basic description of how each of these techniques works and discuss forefront developments that will result in new discoveries. We also highlight the observational limitations and synergies of each method and their connections to future space missions. Subject headings: 1. Introduction tary; in practice, they are not generally applied to the same sample of stars, so our detection of exoplanet architectures Humans have long wondered whether other solar sys- has been piecemeal. The explored parameter space of ex- tems exist around the billions of stars in our galaxy. In the oplanet systems is a patchwork quilt that still has several past two decades, we have progressed from a sample of one missing squares. to a collection of hundreds of exoplanetary systems. Instead of an orderly solar nebula model, we now realize that chaos 2.
    [Show full text]
  • Exoplanetary Geophysics--An Emerging Discipline
    Invited Review for Treatise on Geophysics, 2nd Edition Exoplanetary Geophysics { An Emerging Discipline Gregory Laughlin UCO/Lick Observatory, University of California, Santa Cruz, Santa Cruz, CA 95064, USA Jack J. Lissauer NASA Ames Research Center, Planetary Systems Branch, Moffett Field, CA 94035, USA 1. Abstract Thousands of extrasolar planets have been discovered, and it is clear that the galactic planetary census draws on a diversity greatly exceeding that exhibited by the solar system's planets. We review significant landmarks in the chronology of extrasolar planet detection, and we give an overview of the varied observational techniques that are brought to bear. We then discuss the properties of the planetary distribution that is currently known, using the mass-period diagram as a guide to delineating hot Jupiters, eccentric giant planets, and a third, highly populous, category that we term \ungiants", planets having masses M < 30 M⊕ and orbital periods P < 100 d. We then move to a discussion of the bulk compositions of the extrasolar planets, with particular attention given to the distribution of planetary densities. We discuss the long-standing problem of radius anomalies among giant planets, as well as issues posed by the unexpectedly large range in sizes observed for planets with mass somewhat greater than Earth's. We discuss the use of transit observations to probe the atmospheres of extrasolar planets; various measurements taken during primary transit, secondary eclipse, and through the full orbital period, can give clues to the atmospheric compositions, structures and meteorologies. The extrasolar planet catalog, along with the details of our solar system and observations of star-forming regions and protoplanetary disks, arXiv:1501.05685v1 [astro-ph.EP] 22 Jan 2015 provide a backdrop for a discussion of planet formation in which we review the elements of the favored pictures for how the terrestrial and giant planets were assembled.
    [Show full text]
  • Stellar Population Synthesis Models Between 2.5 and 5Μm Based on The
    MNRAS 449, 2853–2874 (2015) doi:10.1093/mnras/stv503 Stellar population synthesis models between 2.5 and 5 µm based on the empirical IRTF stellar library B. Rock,¨ 1,2‹ A. Vazdekis,1,2‹ R. F. Peletier,3‹ J. H. Knapen1,2 and J. Falcon-Barroso´ 1,2 1Instituto de Astrof´ısica de Canarias, V´ıa Calle Lactea,´ E-38205 La Laguna, Tenerife, Spain 2Departamento de Astrof´ısica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain 3Kapteyn Astronomical Institute, University of Groningen, Postbus 800, NL-9700 AV Groningen, the Netherlands Downloaded from https://academic.oup.com/mnras/article/449/3/2853/2893016 by guest on 27 September 2021 Accepted 2015 March 5. Received 2014 December 21; in original form 2014 July 23 ABSTRACT We present the first single-burst stellar population models in the infrared wavelength range between 2.5 and 5 µm which are exclusively based on empirical stellar spectra. Our models take as input 180 spectra from the stellar IRTF (Infrared Telescope Facility) library. Our final single-burst stellar population models are calculated based on two different sets of isochrones and various types of initial mass functions of different slopes, ages larger than 1 Gyr and metallicities between [Fe/H] =−0.70 and 0.26. They are made available online to the scien- tific community on the MILES web page. We analyse the behaviour of the Spitzer [3.6]−[4.5] colour calculated from our single stellar population models and find only slight dependences on both metallicity and age. When comparing to the colours of observed early-type galaxies, we find a good agreement for older, more massive galaxies that resemble a single-burst popu- lation.
    [Show full text]
  • Orders of Magnitude (Length) - Wikipedia
    03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre
    [Show full text]