INAUGURAL–DISSERTATION Zur Erlangung Der Doktorwürde Der

Total Page:16

File Type:pdf, Size:1020Kb

INAUGURAL–DISSERTATION Zur Erlangung Der Doktorwürde Der INAUGURAL{DISSERTATION zur Erlangung der Doktorwurde¨ der Naturwissentschaftlich{Mathematischen Gesamtfakult¨at der Ruprecht{Karls{Universit¨at Heidelberg vorgelegt von Dipl.{Phys. Agn`es D.F. Metanomski aus Paris Tag der mundl.¨ Prufung:¨ 22. April 1998 Optical study of F, G and K stars in the ROSAT All-Sky Survey Gutachter: Herr Prof. Dr. Joachim Krautter Herr Prof. Dr. Reiner Wehrse Zusammenfassung Ich untersuche eine Stichprobe von 107 Sudhimmels-Sternen¨ von Spektraltyp A bis K. Diese Sterne sind als die optischen Gegenstuc¨ ke zu R¨ontgen-Quellen, die der ROSAT Satellit w¨ahrend seines All-Sky Survey (RASS) entdeckte, iden- tifiziert wurden. Die Untersuchung wird mit Hilfe optischen Beobachtungen, sowohl photometrischer als auch spektroskopischer, durchgefuhrt.¨ Verschiedene Parameter werden fur¨ die untersuchten Objekte bestimmt, wie z.B. Spektraltyp und Leuchtkraftklasse, absolute Helligkeit, Entfernung, Radialgeschwindigkeit, projezierte Rotationsgeschwindigkeit, Effektivtemperatur, Lithium H¨aufigkeit. Ich vergleiche die R¨ontgen-Parameter meiner Stichproben-Sterne mit denen aus einer ahnlic¨ hen Stichprobe von Sternen, die vom Einstein Observatory w¨ahrend dessen Medium Sensitivity Survey (EMSS) entdeckt wurden. Ich suche auch nach Korrelationen zwischen verschiedenen Parametern, die fur¨ meine Stichproben- Sterne bestimmt wurden und vergleiche die Ergebnisse mit denen, die fur¨ die EMSS Stichprobe erhalten wurden, sowie mit den Ergebnissne anderer, fruherer¨ Studien. Abstract I analyze a sample of 107 southern stars of spectral types A to K, which were identified as the optical counterparts of X-ray sources detected by ROSAT during its All-Sky Survey. The study is conducted using optical observations, photometric as well as spectroscopic (high-resolution). Various parameters are determined for the sample objects, mainly spectral types and luminosity classes, absolute magnitudes, distances, radial velocities, projected rotational velocities, effective temperatures, Lithium abundances. I compare the X-ray parameters of my sample stars with those of a similar sample, detected by the Einstein Observatory during its Medium Sensitivity Sur- vey (EMSS). I also look for correlations between the different stellar parameters determined for my sample, and compare those results to those obtained for the EMSS sample, and also to some results obtained from other, earlier studies. Contents 1 Introduction 1 1.1 Stellar X-ray emission . 1 1.1.1 Pre-Einstein Era . 1 1.1.2 Einstein Era . 2 1.2 Results from the Einstein Observatory . 2 1.3 Dissertation project . 5 2 The ROSAT All-Sky Survey 7 2.1 The survey . 7 2.2 The sample . 7 3 Observations 10 3.1 Photometry . 10 3.2 High-resolution spectroscopy . 12 4 Analysis 14 4.1 Photometry . 14 4.1.1 Spectral classification . 14 4.1.2 The (U B) colour index . 14 4.1.3 Effective−temperature . 17 4.1.4 Absolute magnitude, distance and X-ray luminosity . 18 4.1.5 Hipparcos data . 20 4.2 Spectroscopy . 20 4.2.1 Radial and rotational velocity . 20 4.2.2 Lithium abundance . 25 5 Results 29 5.1 Distribution of spectral types . 29 5.2 X-ray luminosity as a function of spectral type . 30 5.3 Luminosity function . 36 5.4 Distribution with distance . 43 5.5 Lithium abundances . 53 5.6 Rotational velocity . 59 6 Discussion 61 A X-ray data of the sample 70 B Stellar parameters 75 C Spectroscopic Data 84 D Standards 89 E Northern Sample 95 2 List of Figures 1.1 Representation of X-ray activity on the Hertzsprung-Russel diagram. 3 1.2 Comparison of the Einstein spectrum of Ori with the shock model of Lucy (1982). The best fit to the observations requires strong, but infrequent shocks (image taken from Cassinelli and Swank 1983). 4 1.3 The relation between X-ray luminosity and projected rotation rate. 5 2.1 Schematic view of the ROSAT satellite and X-ray telescope. 8 2.2 Location of the fields studied in the southern and northern identi- fication programs. 9 4.1 Color-color plots for the southern sample. 15 4.2 Spectrum, solar template and cross-correlation function with fit, for a slow rotating single star, RXJ 1121.8-2411, v sin i = 5 km/s. 21 4.3 Spectrum, solar template and cross-correlation function with fit, for a single fast rotator, RXJ 0135.8-3956, v sin i = 33 km/s. 22 4.4 Spectrum, solar template and cross-correlation function with fit, for one of the triple systems in the sample, RXJ 2331.4-4209. 23 4.5 The fits for the rotaional velocity determination. 24 4.6 Examples of synthetic spectra. 27 5.1 log(LX =LV ) vs. the (B V ) color index. 31 5.2 Luminosity distribution−for the single stars and binaries. 31 5.3 Luminosity distribution for the RASS sample, by spectral type. 33 5.4 Luminosity distribution for the RASS, EMSS and EXOSAT samples. 33 5.5 Luminosity function for the RASS single stars and binaries. 37 5.6 Luminosity functions for the southern sample. 37 5.7 X-ray luminosity as a function of distance for the RASS and EMSS samples. 39 5.8 Histrogram of the distance distribution for the RASS and EMSS samples. 39 5.9 Histogram of the distance distribution for single stars and binaries. 45 5.10 Lithium abundances for single stars as a function of effective tem- perature. 45 5.11 Lithium abundances for the binaries and multiple systems as a function of effective temperature. 47 5.12 Lithium abundance vs rotational velocity. 47 5.13 Lithium abundance vs X-ray luminosity for the single stars. 49 5.14 Lithium abundance vs. rotational velocity for the single stars, by spectral type. 49 5.15 X-ray luminosity vs. rotational velocityfor the single stars. 51 5.16 X-ray luminosity vs. rotational velocity for the multiple systems. 51 5.17 X-ray luminosity vs. radius. 57 List of Tables 3.1 Observing periods, for photometry. 11 3.2 The ESO Cousins filters. 11 3.3 The references used for the brightest sources in the sample. 11 3.4 Observing periods, for spectroscopy. The observing period be- tween Sept. 23d abd 29th corresponds to reserved time for the 1.4 m CAT and CES. 12 4.1 The sources of the southern sample for which Hipparcos data was found. 19 5.1 Distribution of the X-ray sources among the spectral types studied, for my sample, the EMSS sample (Stocke et al. 1991) and the EXOSAT sample (Cutispoto et al. 1996) . 29 5.2 Results of the χ2 tests for the X-ray luminosity distributions. 36 5.3 Results of the χ2 tests for the distance distributions. 44 5.4 Results of the correlation tests Pearson's r and Spearman's rs tests for the lithium abundance. 56 5.5 Results of the correlation tests Pearson's r and Spearman's rs tests for correlations between the X-ray luminosity and the rotational velocity or the radius. 59 A.1 ROSAT X-ray data for the sources in the studied southern sample. 71 B.1 Data for the counterparts of the sample sources. 76 C.1 Velocities, Li abundances for the southern hemisphere sample. 85 D.1 The photometric standards from the E-regions used in the pho- tometry for the southern sample. Data from Vogt et al. (1981) . 89 D.2 The open clusters used for standard stars in the photometry for the northern sample. The standards from the clusters and their colors are taken from: 1: Christian et al. (1985), 2: Odewahn et al. (1992). 91 D.3 The radial velocity standards used for the southern sample. The standards were taken from 1: Duquennoy and Mayor (1991) 2: The Astronomical Almanach (1996) . 91 D.4 The v sin i standards used for the southern sample. The standards were taken from 1: Soderblom (1982), 2: Sletteback et al. (1975), 3: Randich et al. (1993), 4: Soderblom et al. (1989) . 92 D.5 The radial velocity standards used for the northern sample.The standards were taken from Duquennoy and Mayor (1991). 93 D.6 The v sin i standards used for the northern sample.The standards were taken from 1: Soderblom (1982), 2: Sletteback et al. (1975), 3: Randich et al. (1993). 93 D.7 A- and B-type stars used in the Ca II H & K and He I D3 observations. 93 E.1 The northern sample stars. 96 5 1 Introduction 1.1 Stellar X-ray emission From observations of the Sun during solar eclipses, it was known that the atmosphere extends itself well beyond the normally visible solar \surface", into regions that only have a thin, but very hot plasma. Through models and ob- servations the atmosphere was divided into three zones: the photosphere, where most absorption lines are created, the chromosphere and the corona. The chro- mosphere appears were the temperature inversion occurs, ie. after the point at which the temperature of the atmospheric plasma starts rising again. The corona has a very low density but high temperatures, of the order 106 107 − K. At such temperatures the plasma emits the most in the higher energy bands. If the plasma can be approximated to a black body, then the maximum of the emission lies in the range around 0.1 keV, that is in the soft X-ray range. Studies made of the solar corona have shown that its luminosity varies strongly over time. The X-ray luminosity of the Sun has a minimal value of 1025erg s−1 − ∼ and a maximum around 1027erg s 1. As a matter of fact, the Sun shows variations in many different features, the most visible being the variation of the number and position of solar spots. The variations extend over a period of 11 years, which is considered now as the activity cycle of the Sun.
Recommended publications
  • Ioptron CEM40 Center-Balanced Equatorial Mount
    iOptron®CEM40 Center-Balanced Equatorial Mount Instruction Manual Product CEM40 (#7400A series) and CEM40EC (#7400ECA series, as shown) Please read the included CEM40 Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper operation will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while using a telescope. 2 Table of Contents Table of Contents ........................................................................................................................................ 3 1. CEM40 Introduction ............................................................................................................................... 5 2. CEM40 Overview ................................................................................................................................... 6 2.1. Parts List .........................................................................................................................................
    [Show full text]
  • Transition from Spot to Faculae Domination--An Alternate
    Astronomy & Astrophysics manuscript no. AC2_arxiv c ESO 2018 October 30, 2018 Transition from spot to faculae domination An alternate explanation for the dearth of intermediate Kepler rotation periods Timo Reinhold1; 2, Keaton J. Bell1; 2, James Kuszlewicz1; 2, Saskia Hekker1; 2, Alexander I. Shapiro1 1 Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany 2 Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, 120 Ny Munkegade, Building 1520, DK- 8000 Aarhus C, Denmark Received day month year / Accepted day month year ABSTRACT Context. The study of stellar activity cycles is crucial to understand the underlying dynamo and how it causes magnetic activity signatures such as dark spots and bright faculae. Having knowledge about the dominant source of surface activity might allow us to draw conclusions about the star’s age and magnetic field topology, and to put the solar cycle in context. Aims. We investigate the underlying process that causes magnetic activity by studying the appearance of activity signatures in con- temporaneous photometric and chromospheric time series. Methods. Lomb-Scargle periodograms are used to search for cycle periods present in the photometric and chromospheric time series. To emphasize the signature of the activity cycle we account for rotation-induced scatter in both data sets by fitting a quasi-periodic Gaussian process model to each observing season. After subtracting the rotational variability, cycle amplitudes and the phase differ- ence between the two time series are obtained by fitting both time series simultaneously using the same cycle period. Results. We find cycle periods in 27 of the 30 stars in our sample.
    [Show full text]
  • Revised Astrometric Calibration of the Gemini Planet Imager
    Revised Astrometric Calibration of the Gemini Planet Imager Robert J. De Rosaa, Meiji M. Nguyenb, Jeffrey Chilcotec, Bruce Macintosha, Marshall D. Perrind, Quinn Konopackye, Jason J. Wangf, Gaspard Ducheneˆ b,g, Eric L. Nielsena, Julien Rameaug,h, S. Mark Ammonsi, Vanessa P. Baileyj, Travis Barmank, Joanna Bulgerl,m, Tara Cottenn, Rene Doyonh, Thomas M. Espositob, Michael P. Fitzgeraldo, Katherine B. Follettep, Benjamin L. Gerardq,r, Stephen J. Goodsells, James R. Grahamb, Alexandra Z. Greenbaumt, Pascale Hibonu, Li-Wei Hungv, Patrick Ingrahamw, Paul Kalasb,x, James E. Larkino,Jer´ omeˆ Mairee, Franck Marchisx, Mark S. Marleyy, Christian Maroisr,q, Stanimir Metchevz,1, Maxwell A. Millar-Blanchaerj, Rebecca Oppenheimer2, David Palmeri, Jennifer Patience3, Lisa Poyneeri, Laurent Pueyod, Abhijith Rajand, Fredrik T. Rantakyro¨4, Jean-Baptiste Ruffioa, Dmitry Savransky5, Adam C. Schneider3, Anand Sivaramakrishnand, Inseok Songn, Remi Soummerd, Sandrine Thomasw, J. Kent Wallacej, Kimberly Ward-Duongp, Sloane Wiktorowicz6, Schuyler Wolff7 aKavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA bDepartment of Astronomy, University of California, Berkeley, CA 94720, USA cDepartment of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN, 46556, USA dSpace Telescope Science Institute, Baltimore, MD 21218, USA eCenter for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093, USA fDepartment of Astronomy, California Institute of Technology, Pasadena,
    [Show full text]
  • Target Selection for the SUNS and DEBRIS Surveys for Debris Discs in the Solar Neighbourhood
    Mon. Not. R. Astron. Soc. 000, 1–?? (2009) Printed 18 November 2009 (MN LATEX style file v2.2) Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood N. M. Phillips1, J. S. Greaves2, W. R. F. Dent3, B. C. Matthews4 W. S. Holland3, M. C. Wyatt5, B. Sibthorpe3 1Institute for Astronomy (IfA), Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ 2School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS 3UK Astronomy Technology Centre (UKATC), Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ 4Herzberg Institute of Astrophysics (HIA), National Research Council of Canada, Victoria, BC, Canada 5Institute of Astronomy (IoA), University of Cambridge, Madingley Road, Cambridge, CB3 0HA Accepted 2009 September 2. Received 2009 July 27; in original form 2009 March 31 ABSTRACT Debris discs – analogous to the Asteroid and Kuiper-Edgeworth belts in the Solar system – have so far mostly been identified and studied in thermal emission shortward of 100 µm. The Herschel space observatory and the SCUBA-2 camera on the James Clerk Maxwell Telescope will allow efficient photometric surveying at 70 to 850 µm, which allow for the detection of cooler discs not yet discovered, and the measurement of disc masses and temperatures when combined with shorter wavelength photometry. The SCUBA-2 Unbiased Nearby Stars (SUNS) survey and the DEBRIS Herschel Open Time Key Project are complimentary legacy surveys observing samples of ∼500 nearby stellar systems. To maximise the legacy value of these surveys, great care has gone into the target selection process. This paper describes the target selection process and presents the target lists of these two surveys.
    [Show full text]
  • Ioptron CEM26 Center Balanced Equatorial Mount
    iOptron® CEM26 Center Balanced Equatorial Mount Instruction Manual Product CEM26 and CEM26EC Read the included Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument and uses a magnetic gear meshing mechanism. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging or adjusting the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper gear meshing/slippage will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing. 2 Table of Content Table of Content ................................................................................................................................................. 3 1. CEM26 Overview ........................................................................................................................................... 5 2. CEM26 Terms ................................................................................................................................................ 6 2.1. Parts List .................................................................................................................................................
    [Show full text]
  • Propiedades F´Isicas De Estrellas Con Exoplanetas Y Anillos Circunestelares Por Carlos Saffe
    Propiedades F´ısicas de Estrellas con Exoplanetas y Anillos Circunestelares por Carlos Saffe Presentado ante la Facultad de Matem´atica, Astronom´ıa y F´ısica como parte de los requerimientos para la obtenci´on del grado de Doctor en Astronom´ıa de la UNIVERSIDAD NACIONAL DE CORDOBA´ Marzo de 2008 c FaMAF - UNC 2008 Directora: Dr. Mercedes G´omez A Mariel, a Juancito y a Ramoncito. Resumen En este trabajo, estudiamos diferentes aspectos de las estrellas con exoplanetas (EH, \Exoplanet Host stars") y de las estrellas de tipo Vega, a fin de comparar ambos gru- pos y analizar la posible diferenciaci´on con respecto a otras estrellas de la vecindad solar. Inicialmente, compilamos la fotometr´ıa optica´ e infrarroja (IR) de un grupo de 61 estrellas con exoplanetas detectados por la t´ecnica Doppler, y construimos las dis- tribuciones espectrales de energ´ıa de estos objetos. Utilizamos varias cantidades para analizar la existencia de excesos IR de emisi´on, con respecto a los niveles fotosf´ericos normales. En particular, el criterio de Mannings & Barlow (1998) es verificado por 19-23 % (6-7 de 31) de las estrellas EH con clase de luminosidad V, y por 20 % (6 de 30) de las estrellas EH evolucionadas. Esta emisi´on se supone que es producida por la presencia de polvo en discos circunestelares. Sin embargo, en vista de la pobre resoluci´on espacial y problemas de confusi´on de IRAS, se requiere mayor resoluci´on y sensibilidad para confirmar la naturaleza circunestelar de las emisiones detectadas. Tambi´en comparamos las propiedades de polarizaci´on.
    [Show full text]
  • Instruction Manual
    iOptron® GEM28 German Equatorial Mount Instruction Manual Product GEM28 and GEM28EC Read the included Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument and uses a magnetic gear meshing mechanism. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging or adjusting the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper gear meshing/slippage will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing. 2 Table of Content Table of Content ................................................................................................................................................. 3 1. GEM28 Overview .......................................................................................................................................... 5 2. GEM28 Terms ................................................................................................................................................ 6 2.1. Parts List .................................................................................................................................................
    [Show full text]
  • High Resolution Spectroscopy of Some Very Active Southern Stars David R
    Clemson University TigerPrints Publications Physics and Astronomy 7-1-1998 High Resolution Spectroscopy of Some Very Active Southern Stars David R. Soderblom Space Telescope Science Institute Jeremy R. King Clemson University, [email protected] Todd J. Henry Harvard University Follow this and additional works at: https://tigerprints.clemson.edu/physastro_pubs Recommended Citation Please use publisher's recommended citation. This Article is brought to you for free and open access by the Physics and Astronomy at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE ASTRONOMICAL JOURNAL, 116:396È413, 1998 July ( 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. HIGH-RESOLUTION SPECTROSCOPY OF SOME VERY ACTIVE SOUTHERN STARS DAVID R. SODERBLOM1 AND JEREMY R. KING Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218; soderblom=stsci.edu, jking=stsci.edu AND TODD J. HENRY Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138; thenry=cfa.harvard.edu Received 1998 January 28; revised 1998 March 9 ABSTRACT We have obtained high-resolution echelle spectra of 18 solar-type stars that an earlier survey showed to have very high levels of Ca II H and K emission. Most of these stars belong to close binary systems, but Ðve remain as probable single stars or well-separated binaries that are younger than the Pleiades on the basis of their lithium abundances and Ha emission. Three of these probable single stars also lie more than 1 mag above the main sequence in a color-magnitude diagram, and appear to have ages of 10 to 15 Myr.
    [Show full text]
  • A Survey of Stellar Families: Multiplicity of Solar-Type Stars
    to appear in the Astrophysical Journal A Survey of Stellar Families: Multiplicity of Solar-Type Stars Deepak Raghavan1,2, Harold A. McAlister1, Todd J. Henry1, David W. Latham3, Geoffrey W. Marcy4, Brian D. Mason5, Douglas R. Gies1, Russel J. White1, Theo A. ten Brummelaar6 ABSTRACT We present the results of a comprehensive assessment of companions to solar- type stars. A sample of 454 stars, including the Sun, was selected from the Hipparcos catalog with π > 40 mas, σπ/π < 0.05, 0.5 ≤ B − V ≤ 1.0 (∼ F6– K3), and constrained by absolute magnitude and color to exclude evolved stars. These criteria are equivalent to selecting all dwarf and subdwarf stars within 25 pc with V -band flux between 0.1 and 10 times that of the Sun, giving us a physical basis for the term “solar-type”. New observational aspects of this work include surveys for (1) very close companions with long-baseline interferometry at the Center for High Angular Resolution Astronomy (CHARA) Array, (2) close companions with speckle interferometry, and (3) wide proper motion companions identified by blinking multi-epoch archival images. In addition, we include the re- sults from extensive radial-velocity monitoring programs and evaluate companion information from various catalogs covering many different techniques. The results presented here include four new common proper motion companions discovered by blinking archival images. Additionally, the spectroscopic data searched reveal five new stellar companions. Our synthesis of results from many methods and sources results in a thorough evaluation of stellar and brown dwarf companions to nearby Sun-like stars. 1Center for High Angular Resolution Astronomy, Georgia State University, P.O.
    [Show full text]
  • What's in a Name?
    Brief Chronicles Vol. II (2010) 1 What’s in a Name? Hugh Trevor-Roper From Réalités (English Edition), November 1962 We reprint this essay by historian Hugh Trevor-Roper for its perspective on a topic that has generated very little scholarly effort in 400 years—determining Shakespeare’s philosophy and character from the contents of the canon. His methodology, in fact, is that of J.T. Looney, the man who proposed the Earl of Oxford as the man behind the name William Shakespeare. Looney analyzed the plays and poetry of Shakespeare for consistency in theme, plot and characterization and found that the author evinced the following general characteristics: Shakespeare was a matured man of recognized genius, eccentric and unconventional in behavior with an intense sensibility, an enthusiast of drama, a lyric poet of recognized talent who also possessed a superior education classical in foundation, and was the habitual associate of educated people. Looney further proposed that Shakespeare’s particular characteristics included having feudal connections as a member of the higher aristocracy, to be a supporter of the Lancastrian faction, an enthusiast for Italy, a follower of sport (including falconry), a lover of music, loose and improvident in money matters, doubtful and somewhat conflicting in his attitudes to women, and of probable Catholic leanings, Brief Chronicles Vol. II (2010) 2 but touched with skepticism. Trevor-Roper used a variant of this methodology to uncover Shakespeare’s personality and philosophy. Examining the works from the inside, he looked, first, to the range and limitations of Shakespeare’s conscious knowledge and thought; secondly, to the underlying assumptions which are taken for granted by all his characters; thirdly, to the world from which he draws his customary images.
    [Show full text]
  • Instruction Manual
    iOptron® Center-Balanced Equatorial Mount Instruction Manual Product CEM40, CEM40G and CEM40EC (C40XXX) Please read the included CEM40 Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper operation will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while using a telescope. Table of Contents Table of Contents ............................................................................................................................................... 4 1. CEM40 Introduction ....................................................................................................................................... 6 2. CEM40G Overview ........................................................................................................................................ 7 2.1. Parts List .................................................................................................................................................. 7 2.2.
    [Show full text]
  • Revised Astrometric Calibration of the Gemini Planet Imager
    Revised Astrometric Calibration of the Gemini Planet Imager Robert J. De Rosaa,b, Meiji M. Nguyenc, Jeffrey Chilcoted, Bruce Macintoshb, Marshall D. Perrine, Quinn Konopackyf, Jason J. Wangg, Gaspard Ducheneˆ c,h, Eric L. Nielsenb, Julien Rameauh,i, S. Mark Ammonsj, Vanessa P. Baileyk, Travis Barmanl, Joanna Bulgerm,n, Tara Cotteno, Rene Doyoni, Thomas M. Espositoc, Michael P. Fitzgeraldp, Katherine B. Folletteq, Benjamin L. Gerardr,s, Stephen J. Goodsellt, James R. Grahamc, Alexandra Z. Greenbaumu, Pascale Hibona, Li-Wei Hungv, Patrick Ingrahamw, Paul Kalasc,x, James E. Larkinp,Jer´ omeˆ Mairef, Franck Marchisx, Mark S. Marleyy, Christian Maroiss,r, Stanimir Metchevz,1, Maxwell A. Millar-Blanchaerk, Rebecca Oppenheimer2, David Palmerj, Jennifer Patience3, Lisa Poyneerj, Laurent Pueyoe, Abhijith Rajane, Fredrik T. Rantakyro¨4, Jean-Baptiste Ruffiob, Dmitry Savransky5, Adam C. Schneider3, Anand Sivaramakrishnane, Inseok Songo, Remi Soummere, Sandrine Thomasw, J. Kent Wallacek, Kimberly Ward-Duongq, Sloane Wiktorowicz6, Schuyler Wolff7 aEuropean Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile bKavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA cDepartment of Astronomy, University of California, Berkeley, CA 94720, USA dDepartment of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA eSpace Telescope Science Institute, Baltimore, MD 21218, USA fCenter for Astrophysics and Space Science, University of California San Diego, La Jolla,
    [Show full text]