Contribution to the Taxonomy and Biodiversity of Crustose Lichens from the Family Teloschistaceae

Total Page:16

File Type:pdf, Size:1020Kb

Contribution to the Taxonomy and Biodiversity of Crustose Lichens from the Family Teloschistaceae School of Doctoral Studies in Biological Sciences University of South Bohemia in České Budějovice Faculty of Science Contribution to the taxonomy and biodiversity of crustose lichens from the family Teloschistaceae Ph.D. Thesis Ivan Frolov Supervisor: Jan Vondrák, Ph.D. Faculty of Science, University of South Bohemia and Institute of Botany of the Czech Academy of Sciences České Budějovice, 2021 This thesis should be cited as: Frolov I., 2021: Contribution to the taxonomy and biodiversity of crustose lichens from the family Teloschistaceae. Ph.D. Thesis Series, No. 5. University of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Sciences, České Budějovice, Czech Republic, 260 pp. Annotation The PhD thesis is composed of five published papers and one manuscript accepted for publication. The main research goal was the investigation of the taxonomy and diversity of crustose Teloschistaceae in Europe and Northern Asia with special emphasis on the genus Pyrenodesmia . The first paper investigated the delimitation of the genus Pyrenodesmia and its relationships with the closely related Caloplaca haematites and C. xerica groups and some other species. The second paper proposed standardized methods for the measurement of the morphological characters of the crustose Teloschistaceae and suggested a phenotype evaluation process for the delimitation of species that are difficult to phenotypically distinguish. The method was practically employed in the third paper for the separation of three seemingly cryptic species from the genus Pyrenodesmia , which were formally described in the paper. Another new Pyrenodesmia species was described in the fourth paper. Investigations presented in the fifth paper substantially extended the known geographical distribution of several species of crustose Teloschistaceae in Europe and Northern Asia. The accepted manuscripts proposes the description of the new species of crustose Teloschistaceae in Siberia and the Russian Far East. Our studies provide a basis for future summarizing papers on the taxonomy and diversity of the genus Pyrenodesmia in the Holarctic and the family Teloschistaceae in Russia. Declaration I hereby declare that I am the author of this dissertation and that I have used only those sources and literature detailed in the list of references. České Budějovice, …………………….. ............................................... Ivan Frolov Financial support This work was supported by: The Grant Agency of the University of South Bohemia, grant 04−133/2014/P Visegrad Fund Scholarship 51100848 Russian Foundation for Fundamental Research, grant 19-04-00074 Acknowledgements During my work on the thesis, I received valuable help from many people. First, I would like to express my sincere gratitude to my supervisor Jan Vondrák. Without his help my research and the writing of this thesis would not have been possible. I deeply appreciate the time he has spent discussing our results, his patience and support. He has willingly shared his wide knowledge on Teloschistaceae diversity. I am grateful to Jiří Košnar who was always ready to help me with my work in the molecular lab as well as with the phylogenetic analyses. I would like to acknowledge Jan Kučera, Martina Vašutová, and Marie Šmilauerová for their help and guidance during my postgraduate study. I am grateful to Milan Štech, Karel Prach, Petr Koutecký, and Libor Ekrt, who gave me the opportunity to look at a large part of Europe during the interdisciplinary excursions of the University of South Bohemia they organized. During several of those trips, I got to know local biomes, collected a lot of material for my thesis, and had a lot of fun. I am also grateful to all participants of the excursions for the friendly and cheerful atmosphere on those journeys. My friend and colleague Liudmila Konoreva supported me a lot during my postgraduate study and often helped to organize the field trips. Trips to the regions of Southern Siberia, the Mediterranean, and the Macaronesia were possible largely thanks to my supervisor Jan Vondrák. Many friends shared the joys and difficulties of the field trips with me: Olga Flegontova, Pavel Flegontov, Václav Mikeš, Ilnur Baygildin. I would like to acknowledge Helmut Mayrhofer (Graz), Anton Igersheim (Vienna), Harrie Sipman (Berlin), Lucyna Śliwa (Krakow), and Mikhail Andreev (Saint Petersburg) for their help during my work in the local herbaria. I also thank Philipp Resl and Toby Spribille for their hospitality during my stays in Graz, and Karina Wilk and Natalia Matura in Krakow. My friends Olga Flegontova and Iosif Kaurov gave me much useful advice during the writing and formatting of the thesis. Olga Flegontova also helped me a lot during the remote stage of my postgraduate study. I thank Olga Flegontova, Mikhail Buldakov, and Iraida Dolgova for their revision of the first version of the thesis. My friend and teacher Christopher Steer kindly revised the English. I also thank Olga Vondráková for her hospitality and help during my life in České Budějovice. Finally yet importantly, I would like to thank my relatives and especially my mother, father and brother, who have supported me throughout my long-standing postgraduate study. List of papers and author’s contribution The thesis is based on the following papers: Paper 1 Frolov I. , Vondrák J., Košnar J., Arup U. 2020. Phylogenetic relationships within Pyrenodesmia sensu lato and the role of pigments in its taxonomic interpretation. Journal of Systematics and Evolution. doi: 10.1111/jse.12717. Ivan Frolov made 70 % of the study: he designed the study, participated in the collection of the material, production, analysis, and interpretation of the data, and wrote the manuscript. Paper 2 Vondrák J., Frolov I., Arup U., Khodosovtsev A. 2013. Methods for phenotypic evaluation of crustose lichens with emphasis on Teloschistaceae. Chornomorskiy botanichniy zhurnal 9: 382–405. Ivan Frolov made 20 % of the study: he participated in the study design and editing of the manuscript. Paper 3 Frolov I. , Vondrák J., Fernández-Mendoza F., Wilk K., Khodosovtsev A., Halıcı M.G. 2016. Three new, seemingly-cryptic species in the lichen genus Caloplaca (Teloschistaceae) distinguished in two-phase phenotype evaluation. Annales Botanici Fennici 53: 243–262. Ivan Frolov made 60 % of the study: he participated in the study design, collection of the material, production, analysis, and interpretation of the data, and writing of the manuscript. Paper 4 Vondrák J., Frolov I. , Říha P., Hrouzek P., Palice Z., Nadyeina O., Halıcı G., Khodosovtsev A., Roux C. 2013. New crustose Teloschistaceae in Central Europe. The Lichenologist 45: 701–722. Ivan Frolov made 20 % of the study: he participated in the collection of the material, production, analysis and interpretation of the data, and writing of the manuscript. Paper 5 Vondrák J., Frolov I. , Davydov E.A., Urbanavichene I., Chesnokov S., Zhdanov I., Muchnik E., Konoreva L., Himelbrant D., Tchabanenko S. 2016. The extensive geographical range of several species of Teloschistaceae: evidence from Russia. The Lichenologist 48: 181–189. Ivan Frolov made 20 % of the study: he participated in the collection of the material and production of the molecular data. Paper 6 Frolov I. , Vondrák J., Konoreva L.A., Chesnokov S.V., Himelbrant D.E., Arup U., Stepanchikova I.S., Prokopiev I.A., Yakovchenko L., Davydov E.A. (accepted manuscript). Three new species of crustose Teloschistaceae in Siberia and the Far East. The Lichenologist. Ivan Frolov made 70 % of the study: he designed the study, participated in the collection of the material, produced and analyzed the data, participated in the interpretation of the data, and wrote the manuscript. ____________________________________________________________________ Co-author agreement Jan Vondrák, the supervisor of this Ph.D. thesis, on behalf of all the co-authors, fully acknowledges the contribution of Ivan Frolov. …………………………………………. Jan Vondrák, Ph.D. Contents 1 Introduction ........................................................................................................... 1 1.1 Lichen symbiosis and the taxonomy of lichens as complex organisms ..... 1 1.2 Species concepts and their application in lichenology .............................. 2 1.3 Species complexes in lichenized fungi ..................................................... 7 1.4 Molecular phylogenetic methods applied in the species delimitation of lichenized fungi .................................................................................... 11 1.5 Generic delimitation in lichenized fungi ................................................ 14 1.6 Taxonomy and diversity of the family Teloschistaceae .......................... 17 2 Aims of the study ................................................................................................ 21 3 Summary ............................................................................................................. 22 4 References ........................................................................................................... 26 5 Original publications ........................................................................................... 43 5.1 Paper 1 .................................................................................................. 43 5.2 Paper 2 .................................................................................................. 89 5.3 Paper 3 ...............................................................................................
Recommended publications
  • Cryptic Species and Species Pairs in Lichens: a Discussion on the Relationship Between Molecular Phylogenies and Morphological Characters
    cryptic species:07-Cryptic_species 10/12/2009 13:19 Página 71 Anales del Jardín Botánico de Madrid Vol. 66S1: 71-81, 2009 ISSN: 0211-1322 doi: 10.3989/ajbm.2225 Cryptic species and species pairs in lichens: A discussion on the relationship between molecular phylogenies and morphological characters by Ana Crespo & Sergio Pérez-Ortega Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, E-28040 Madrid, Spain [email protected], [email protected] Abstract Resumen Crespo, A. & Pérez-Ortega, S. 2009. Cryptic species and species Crespo, A. & Pérez-Ortega, S. 2009. Especies crípticas y pares de pairs in lichens: A discussion on the relationship between mole- especies en líquenes: una discusión sobre la relación entre la fi- cular phylogenies and morphological characters. Anales Jard. logenia molecular y los caracteres morfológicos. Anales Jard. Bot. Madrid 66S1: 71-81. Bot. Madrid 66S1: 71-81 (en inglés). As with most disciplines in biology, molecular genetics has re- Como en otras disciplinas, el impacto producido por la filogenia volutionized our understanding of lichenized fungi. Nowhere molecular en el conocimiento de los hongos liquenizados ha has this been more true than in systematics, especially in the de- producido avances y cambios conceptuales importantes. Esto limitation of species. In many cases, molecular research has ve- ha sido especialmente cierto en la sistemática y ha afectado de rified long-standing hypotheses, but in others, results appear to una manera muy notable en aspectos
    [Show full text]
  • Journal of Systematics and Evolution
    Journal of Systematics JSE and Evolution doi: 10.1111/jse.12503 Research Article Substrate switches, phenotypic innovations and allopatric speciation formed taxonomic diversity within the lichen genus Blastenia Jan Vondrák1,2* , Ivan Frolov2,3,JiříKošnar2, Ulf Arup4, Tereza Veselská5, Gökhan Halıcı6,Jiří Malíček1, and Ulrik Søchting7 1Institute of Botany of the Czech Academy of Sciences, Průhonice CZ‐252 43, Czech Republic 2Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice CZ‐370 05, Czech Republic 3Russian Academy of Sciences, Ural Branch: Institute Botanic Garden, Vosmogo Marta 202a st., Yekaterinburg 620144, Russia 4Botanical Museum, Lund University, Lund SE‐221 00, Sweden 5Institute of Microbiology, Academy of Sciences of the Czech Republic, Praha 4‐Krč CZ‐142 20, Czech Republic 6Gökhan Halıcı, Department of Biology, Faculty of Science, Erciyes University, Kayseri 38039, Turkey 7Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Copenhagen DK‐2100, Denmark *Author for correspondence. E‐mail: [email protected]; Tel.: 420776280011. Received 9 January 2019; Accepted 11 April 2019; Article first published online 29 April 2019 Abstract Blastenia is a widely distributed lichen genus in Teloschistaceae. We reconstructed its phylogeny in order to test species delimitation and to find evolutionary drivers forming recent Blastenia diversity. The origin of Blastenia is dated to the early Tertiary period, but later diversification events are distinctly younger. We recognized 24 species (plus 2 subspecies) within 6 infrageneric groups. Each species strongly prefers a single type of substrate (17 species occur on organic substrates, 7 on siliceous rock), and most infrageneric groups also show a clear substrate preference.
    [Show full text]
  • Opuscula Philolichenum, 6: 1-XXXX
    Opuscula Philolichenum, 15: 56-81. 2016. *pdf effectively published online 25July2016 via (http://sweetgum.nybg.org/philolichenum/) Lichens, lichenicolous fungi, and allied fungi of Pipestone National Monument, Minnesota, U.S.A., revisited M.K. ADVAITA, CALEB A. MORSE1,2 AND DOUGLAS LADD3 ABSTRACT. – A total of 154 lichens, four lichenicolous fungi, and one allied fungus were collected by the authors from 2004 to 2015 from Pipestone National Monument (PNM), in Pipestone County, on the Prairie Coteau of southwestern Minnesota. Twelve additional species collected by previous researchers, but not found by the authors, bring the total number of taxa known for PNM to 171. This represents a substantial increase over previous reports for PNM, likely due to increased intensity of field work, and also to the marked expansion of corticolous and anthropogenic substrates since the site was first surveyed in 1899. Reexamination of 116 vouchers deposited in MIN and the PNM herbarium led to the exclusion of 48 species previously reported from the site. Crustose lichens are the most common growth form, comprising 65% of the lichen diversity. Sioux Quartzite provided substrate for 43% of the lichen taxa collected. Saxicolous lichen communities were characterized by sampling four transects on cliff faces and low outcrops. An annotated checklist of the lichens of the site is provided, as well as a list of excluded taxa. We report 24 species (including 22 lichens and two lichenicolous fungi) new for Minnesota: Acarospora boulderensis, A. contigua, A. erythrophora, A. strigata, Agonimia opuntiella, Arthonia clemens, A. muscigena, Aspicilia americana, Bacidina delicata, Buellia tyrolensis, Caloplaca flavocitrina, C. lobulata, C.
    [Show full text]
  • New Records of Crustose Teloschistaceae (Lichens, Ascomycota) from the Murmansk Region of Russia
    vol. 37, no. 3, pp. 421–434, 2016 doi: 10.1515/popore-2016-0022 New records of crustose Teloschistaceae (lichens, Ascomycota) from the Murmansk region of Russia Ivan FROLOV1* and Liudmila KONOREVA2,3 1 Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, CZ-37005, Czech Republic 2 Laboratory of Flora and Vegetations, The Polar-Alpine Botanical Garden and Institute KSC RAS, Kirovsk, Murmansk region, 184209, Russia 3 Laboratory of Lichenology and Bryology, Komarov Botanical Institute RAS, Professor Popov St. 2, St. Petersburg, 197376, Russia * corresponding author <[email protected]> Abstract: Twenty-three species of crustose Teloschistaceae were collected from the northwest of the Murmansk region of Russia during field trips in 2013 and 2015. Blas- tenia scabrosa is a new combination supported by molecular data. Blastenia scabrosa, Caloplaca fuscorufa and Flavoplaca havaasii are new to Russia. Blastenia scabrosa is also new to the Caucasus Mts and Sweden. Detailed morphological measurements of the Russian specimens of these species are provided. Caloplaca exsecuta, C. grimmiae and C. sorocarpa are new to the Murmansk region. The taxonomic position of C. alcarum is briefly discussed. Key words: Arctic, Rybachy Peninsula, Caloplaca s. lat., Blastenia scabrosa. Introduction Although the Murmansk region is one of the best studied regions of Russia in terms of lichen diversity, there are numerous reports in recent literature of new discoveries there (e.g. Fadeeva et al. 2013; Konoreva 2015; Melechin 2015; Urbanavichus 2015). Several localities in the northwest of the Murmansk region, mainly on the Pechenga Tundra Mountains and the Rybachy Peninsula, were visited in 2013 and 2015.
    [Show full text]
  • Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska
    AN ABSTRACT OF THE THESIS OF Kaleigh Spickerman for the degree of Master of Science in Botany and Plant Pathology presented on June 11, 2015 Title: Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska Abstract approved: ______________________________________________________ Bruce McCune Functional traits of vascular plants have been an important component of ecological studies for a number of years; however, in more recent times vascular plant ecologists have begun to formalize a set of key traits and universal system of trait measurement. Many recent studies hypothesize global generality of trait patterns, which would allow for comparison among ecosystems and biomes and provide a foundation for general rules and theories, the so-called “Holy Grail” of ecology. However, the majority of these studies focus on functional trait patterns of vascular plants, with a minority examining the patterns of cryptograms such as lichens. Lichens are an important component of many ecosystems due to their contributions to biodiversity and their key ecosystem services, such as contributions to mineral and hydrological cycles and ecosystem food webs. Lichens are also of special interest because of their reliance on atmospheric deposition for nutrients and water, which makes them particularly sensitive to air pollution. Therefore, they are often used as bioindicators of air pollution, climate change, and general ecosystem health. This thesis examines the functional trait patterns of lichens in two contrasting regions with fundamentally different kinds of data. To better understand the patterns of lichen functional traits, we examined reproductive, morphological, and chemical trait variation along precipitation and temperature gradients in Oregon.
    [Show full text]
  • BELARUS 245 OP342 the Lichenized Fungus Genus
    OP342 The Lichenized Fungus Genus Gyalolechia (Teloschistales, Ascomycota) in Turkey Mehmet Gökhan HALICI1& Mithat GÜLLÜ1 1Erciyes University, Faculty of Science, Department of Biology, Kayseri, TURKEY [email protected] Aim of the study: This study has been made to examine as phylogenetic relationships of some species belong to genus Gyalolechia Trevis., which widely spreaded in our country. Material and Methods: Samples of lichens belonging to genus Gyalolechia were collected from different parts of Turkey.Total DNA was extracted from apothecia by using the DNeasy Plant Mini Kit (Qiagen) according to the manufacturer’s instructions. PCR analysis was performed by using ITS (ITS1 and ITS4).ITS sequence results of lichen samples were analysed by using Clustal W option in the BioEdit program. The phylogenetic analysis of lichen samples belonging to genus Gyalolechia were performed by using the Maximum Likelihood method of the Mega 6 (Molecular Evolutionary Genetics Analysis) software program. Results: Gyalolechia was recently established to accommodate a monophyletic group of crustose lichens of Teloschistaceae that were formerly placed in the large genus Caloplaca. Members of this genus usually have well developed thalli which are crustose, squamulose or lobate. In this study, numbers of samples belonging to this genus collected from Turkey. After morphological examinations; molecular analyses of ITS nrDNA were carried in the samples. This genus is represented by 25 species in Turkey and 6 of them are present in Turkey:G. flavorubescens, G. flavovirescens, G. fulgida, G. juniperina, G. klementii and G. subbracteata. In this presentation we will discuss the morphological and ecological characters of these species along with distributional data of the species in Turkey.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Huneckia Pollinii </I> and <I> Flavoplaca Oasis
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2017 October–December 2017—Volume 132, pp. 895–901 https://doi.org/10.5248/132.895 Huneckia pollinii and Flavoplaca oasis newly recorded from China Cong-Cong Miao 1#, Xiang-Xiang Zhao1#, Zun-Tian Zhao1, Hurnisa Shahidin2 & Lu-Lu Zhang1* 1 Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, 250014, P. R. China 2 Lichens Research Center in Arid Zones of Northwestern China, College of Life Science and Technology, Xinjiang University, Xinjiang , 830046 , P. R. China * Correspondence to: [email protected] Abstract—Huneckia pollinii and Flavoplaca oasis are described and illustrated from Chinese specimens. The two species and the genus Huneckia are recorded for the first time from China. Keywords—Asia, lichens, taxonomy, Teloschistaceae Introduction Teloschistaceae Zahlbr. is one of the larger families of lichenized fungi. It includes three subfamilies, Caloplacoideae, Teloschistoideae, and Xanthorioideae (Gaya et al. 2012; Arup et al. 2013). Many new genera have been proposed based on molecular phylogenetic investigations (Arup et al. 2013; Fedorenko et al. 2012; Gaya et al. 2012; Kondratyuk et al. 2013, 2014a,b, 2015a,b,c,d). Currently, the family contains approximately 79 genera (Kärnefelt 1989; Arup et al. 2013; Kondratyuk et al. 2013, 2014a,b, 2015a,b,c,d; Søchting et al. 2014a,b). Huneckia S.Y. Kondr. et al. was described in 2014 (Kondratyuk et al. 2014a) based on morphological, anatomical, chemical, and molecular data. It is characterized by continuous to areolate thalli, paraplectenchymatous cortical # Cong-Cong Miao & Xiang-Xiang Zhao contributed equally to this research.
    [Show full text]
  • Kondratyuk Et Al
    Three new Orientophila species (Teloschistaceae, Ascomycota) from eastern Asia Kondratyuk, Sergii; Lőkös, Lázló; Kärnefelt, Ingvar; Thell, Arne; Elix, John A.; Oh, Soon-Ok; Hur, Jae-Seoun Published in: Graphis Scripta 2016 Document Version: Early version, also known as pre-print Link to publication Citation for published version (APA): Kondratyuk, S., Lőkös, L., Kärnefelt, I., Thell, A., Elix, J. A., Oh, S-O., & Hur, J-S. (2016). Three new Orientophila species (Teloschistaceae, Ascomycota) from eastern Asia. Graphis Scripta, 28(1–2), 50-58. Total number of authors: 7 Creative Commons License: Other General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Download date: 11. Oct. 2021 GRAPHIS SCRIPTA 28 (2016) Three new Orientophila species (Teloschistaceae, Ascomycota) from eastern Asia SERGII KONDRATYUK, LÁSZLÓ LŐKÖS, INGVAR KÄRNEFELT, ARNE THELL, JOHN A.
    [Show full text]
  • Diversification and Species Delimitation of Lichenized Fungi in Selected Groups of the Family Parmeliaceae (Ascomycota)
    Diversification and species delimitation of lichenized fungi in selected groups of the family Parmeliaceae (Ascomycota) Kristiina Mark Tartu 7.10.2016 Publications I Mark, K., Saag, L., Saag, A., Thell, A., & Randlane, T. (2012) Testing morphology-based delimitation of Vulpicida juniperinus and V. tubulosus (Parmeliaceae) using three molecular markers. The Lichenologist 44 (6): 752−772. II Saag, L., Mark, K., Saag, A., & Randlane, T. (2014) Species delimitation in the lichenized fungal genus Vulpicida (Parmeliaceae, Ascomycota) using gene concatenation and coalescent-based species tree approaches. American Journal of Botany 101 (12): 2169−2182. III Mark, K., Saag, L., Leavitt, S. D., Will-Wolf, S., Nelsen, M. P., Tõrra, T., Saag, A., Randlane, T., & Lumbsch, H. T. (2016) Evaluation of traditionally circumscribed species in the lichen-forming genus Usnea (Parmeliaceae, Ascomycota) using six-locus dataset. Organisms Diversity & Evolution 16 (3): 497–524. IV Mark, K., Randlane, T., Hur, J.-S., Thor, G., Obermayer, W. & Saag, A. Lichen chemistry is concordant with multilocus gene genealogy and reflects the species diversification in the genus Cetrelia (Parmeliaceae, Ascomycota). Manuscript submitted to The Lichenologist. V Mark, K., Cornejo, C., Keller, C., Flück, D., & Scheidegger, C. (2016) Barcoding lichen- forming fungi using 454 pyrosequencing is challenged by artifactual and biological sequence variation. Genome 59 (9): 685–704. Systematics • Provides units for biodiversity measurements and investigates evolutionary relationships •
    [Show full text]
  • Brief Curriculum Vitae
    Brief curriculum vitae David Leslie HAWKSWORTH (b. Sheffield, UK 1946) Qualifications and awards CBE (Commander of the British Empire), 1996 [appointed by HM Queen Elizabeth II for "services to science"]. FD(hc) (Filosophie Hedersdoktor, Honorary Higher Doctorate, Umeå University, Sweden, 1996). DSc (Leicester University), 1980 PhD (Leicester University), 1970. BSc (Hons) (Leicester University), 1967. Fellows Medal, International Mycological Association, 2018 Founders' Award, European Mycological Association, Funchal, 2015 Ainsworth Medal, International Mycological Association, Bangkok, 2014. Josef von Arx Award, KNAW-CBS, Amsterdam, 2011. Acharius Medal, International Association for Lichenology, Oslo, 2002. Bicentenary Medal, Linnean Society of London (first award), London, 1978. Registered Environmental Biologist (no. REB 672), Institute of Biology, 1990 CBiol, Chartered Biologist, 1986 FRSB, Fellow of the Royal Society of Biology (formerly Institute of Biology and Society of Biology), 1982 FLS, Fellow of the Linnean Society of London, 1969 FRSA, Fellow of the Royal Society for the Advancement of Arts, Manufacture and Commerce, 1997 MCSFS, Professional Member, Chartered Society for Forensic Science, 2011 Honorary Member: Mycological Society of America; British Mycological Society (Centenary Fellow); Latin American Mycological Association; British Lichen Society; Lichenological Society of Japan; Italian Lichen Society Employment Councillor, Mole Valley District Council, 2016–19. Profesor Contratado Doctor, Universidad Complutense de Madrid, 2001–2016. Professor of Biology and Ecology, University of Gloucestershire, 2007-09, 2013-14. Council Member, English Nature, 1996-99. Director, International Mycological Institute, Kew and Egham, 1983-97. Scientific Assistant to the Executive Director, Commonwealth Agricultural Bureaux, Farnham Royal, 1981-83. Mycologist, Commonwealth/International Mycological Institute, Kew, 1969-81. Academic positions Honorary Research Associate, Royal Botanic Gardens, Kew, 2014 on.
    [Show full text]
  • Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
    (topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota.
    [Show full text]