Assessing Acrodont Dentition in Reptilia, with Special Attention to Replacement and Wear Adaptations

Total Page:16

File Type:pdf, Size:1020Kb

Assessing Acrodont Dentition in Reptilia, with Special Attention to Replacement and Wear Adaptations Assessing Acrodont Dentition in Reptilia, with Special Attention to Replacement and Wear Adaptations by Yara Haridy A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Yara Haridy 2018 Assessing Acrodont Dentition in Reptilia, with special Attention to Replacement as and Wear Adaptations Yara Haridy Master of Science Department of Ecology and Evolutionary Biology University of Toronto 2018 Abstract Tooth implantation has been conflated with other tooth characteristics, such as replacement, attachment, and morphology. Tooth attachment refers to the tissues that attach teeth, whilst implantation refers to the orientation of the tooth relative to the jaw. There are three main forms of tooth implantation identified in Reptilia: (1) thecodonty, where the tooth in implanted in a socket, (2) pleurodonty, the tooth is implanted against the side of the jaw, and (3) acrodonty the tooth is at the apex of the jaw; this thesis is concerned with the latter. Acrodonty has long been linked with a lack of replacement, which is because all modern acrodont reptiles do not replace their teeth; instead, they exhibit derived wear adaptations that help them counteract the loss of replacement. Here in this study, I explore the wear adaptations in extant acrodont reptiles, and analyze forms of acrodonty found within Reptilia in the Permian. ii Acknowledgments It has been quite the transition from an undergraduate heading to veterinary college, to the word of academia and paleontology. It would have been impossible to make this leap without the supportive community at University of Toronto Mississauga, I could not have found this path nor completed this thesis without everyone’s help, so I sincerely hope I do not forget anyone. Firstly, I would like to thank my supervisor Professor Robert Reisz, for initially taking me into his lab when I was a lost undergraduate looking to learn anatomy. I would like to especially thank him for putting up with my incessant questioning, stubbornness, and would like to acknowledge all the opportunities he has provided me that have fed and fueled my curiosity. I would like to extend a special thanks to Diane Scott, whom vouched for me when I first came into the lab with no previous knowledge of paleontology, she fostered my growing curiosity and answered every question I threw her way without fail. She is a consistent and unwavering pillar of support that is the hallmark of the Reisz lab experience. I would like to thank her for all her support over these years, and for all the endless knowledge she enthusiastically shared, from fossil preparation to scientific illustration. I would like to thank my supervisory committee for their assistance in the direction of these studies. Professor David Evans of the Royal Ontario Museum was a great help with his consistently innovative ideas, and for full access to the Paleohistology lab at the ROM. Professor Luke Mahler who’s extensive knowledge on all things reptilian aided in these studies. I would extend thanks to Dr. Aaron LeBlanc and Dr. Mark MacDougall, the two of which provided endless entertainment and support in the Reisz lab. Mark put up with me through my first ever publication as an undergrad, and Aaron co-designed the main questions that I addressed in my thesis, and taught me all I know about histology, a skill that I will continue to include in my future work. Aaron and Mark have taught me so much about being a diligent scientist I could not be more thankful for having them as senior students while completing my degree. I would like to extend a special thank you to Bryan Gee, for putting up with my constant attitude, for his valiant attempt at teaching me about amphibians, for being my diligent copy editor, and for being a friend. I would thank Professor Dave Mazierski for teaching me about scientific illustration and for patiently designing the developmental model in chapter 3. iii A huge thank you to Kevin Seymor who let me scour the collections at the ROM and allowed me to pick and choose from his precious collection to complete my studies, without his endless knowledge on all things living and dead these studies may not have come to fruition. The graduate students, and supports staff at the ROM always made for a welcoming and intellectually stimulating environment, and for that I am thankful. Finally, I would like to thank my immediate family. My mother Sherine Hafez, and grandmother Nadia El-Enany, without these two strong stubborn women in my life I would not be who I am today. They taught me the value of tenacity, and supported every turn my life took, I could not wish for better role models. I would like to thank my brother Youssef, who made me endless coffees on late nights and took care of my sanity. It takes an immense support network to be successful and happy in life, and I do not take mine for granted. iv Table of Contents Acknowledgements ........................................................................................................................ iii Table of Contents .............................................................................................................................v List of Figures ................................................................................................................................ ix Chapter 1 Histological analysis of post-eruption tooth wear adaptations, and ontogenetic changes in tooth implantation in the acrodontan squamate Pogona vitticeps .............................1 Introduction .................................................................................................................................1 Materials and Methods ................................................................................................................2 2.1 Histology ..............................................................................................................................3 2.2 Confounding factors.............................................................................................................3 Results .........................................................................................................................................4 3.1 External anatomy .................................................................................................................4 3.2 Histology ..............................................................................................................................6 Discussion .................................................................................................................................18 Conclusion ................................................................................................................................22 Literature Cited .........................................................................................................................23 Chapter 2 Histology of the coronoid dentition with evidence of replacement in the Permian parareptile Delorhynchus ..........................................................................................................32 Abstract .....................................................................................................................................32 Introduction ...............................................................................................................................33 Materials and Methods ..............................................................................................................34 Results .......................................................................................................................................35 10.1.1 Mandible ................................................................................................................35 10.1.2 Coronoids ...............................................................................................................43 10.1.3 Dentition ................................................................................................................44 10.1.4 Histology ................................................................................................................45 Discussion .................................................................................................................................48 v 11.1 Multiple coronoids and coronoid dentition among Palaeozoic reptiles .............................48 11.2 Taxonomic status of Bolterpeton carrolli ..........................................................................53 Conclusions ...............................................................................................................................55 Literature Cited .........................................................................................................................56 Chapter 3 Opisthodontosaurus as a model for acrodont tooth replacement and dental ontogeny . ..................................................................................................................................60 Abstract .....................................................................................................................................60 Introduction ...............................................................................................................................61 Materials and methods ..............................................................................................................62
Recommended publications
  • Evolutionary History of Spiny- Tailed Lizards (Agamidae: Uromastyx) From
    Received: 6 July 2017 | Accepted: 4 November 2017 DOI: 10.1111/zsc.12266 ORIGINAL ARTICLE Evolutionary history of spiny- tailed lizards (Agamidae: Uromastyx) from the Saharo- Arabian region Karin Tamar1 | Margarita Metallinou1† | Thomas Wilms2 | Andreas Schmitz3 | Pierre-André Crochet4 | Philippe Geniez5 | Salvador Carranza1 1Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), Barcelona, The subfamily Uromastycinae within the Agamidae is comprised of 18 species: three Spain within the genus Saara and 15 within Uromastyx. Uromastyx is distributed in the 2Allwetterzoo Münster, Münster, Germany desert areas of North Africa and across the Arabian Peninsula towards Iran. The 3Department of Herpetology & systematics of this genus has been previously revised, although incomplete taxo- Ichthyology, Natural History Museum of nomic sampling or weakly supported topologies resulted in inconclusive relation- Geneva (MHNG), Geneva, Switzerland ships. Biogeographic assessments of Uromastycinae mostly agree on the direction of 4CNRS-UMR 5175, Centre d’Écologie Fonctionnelle et Évolutive (CEFE), dispersal from Asia to Africa, although the timeframe of the cladogenesis events has Montpellier, France never been fully explored. In this study, we analysed 129 Uromastyx specimens from 5 EPHE, CNRS, UM, SupAgro, IRD, across the entire distribution range of the genus. We included all but one of the rec- INRA, UMR 5175 Centre d’Écologie Fonctionnelle et Évolutive (CEFE), PSL ognized taxa of the genus and sequenced them for three mitochondrial and three Research University, Montpellier, France nuclear markers. This enabled us to obtain a comprehensive multilocus time- calibrated phylogeny of the genus, using the concatenated data and species trees. We Correspondence Karin Tamar, Institute of Evolutionary also applied coalescent- based species delimitation methods, phylogenetic network Biology (CSIC-Universitat Pompeu Fabra), analyses and model- testing approaches to biogeographic inferences.
    [Show full text]
  • Checklist of Amphibians and Reptiles of Morocco: a Taxonomic Update and Standard Arabic Names
    Herpetology Notes, volume 14: 1-14 (2021) (published online on 08 January 2021) Checklist of amphibians and reptiles of Morocco: A taxonomic update and standard Arabic names Abdellah Bouazza1,*, El Hassan El Mouden2, and Abdeslam Rihane3,4 Abstract. Morocco has one of the highest levels of biodiversity and endemism in the Western Palaearctic, which is mainly attributable to the country’s complex topographic and climatic patterns that favoured allopatric speciation. Taxonomic studies of Moroccan amphibians and reptiles have increased noticeably during the last few decades, including the recognition of new species and the revision of other taxa. In this study, we provide a taxonomically updated checklist and notes on nomenclatural changes based on studies published before April 2020. The updated checklist includes 130 extant species (i.e., 14 amphibians and 116 reptiles, including six sea turtles), increasing considerably the number of species compared to previous recent assessments. Arabic names of the species are also provided as a response to the demands of many Moroccan naturalists. Keywords. North Africa, Morocco, Herpetofauna, Species list, Nomenclature Introduction mya) led to a major faunal exchange (e.g., Blain et al., 2013; Mendes et al., 2017) and the climatic events that Morocco has one of the most varied herpetofauna occurred since Miocene and during Plio-Pleistocene in the Western Palearctic and the highest diversities (i.e., shift from tropical to arid environments) promoted of endemism and European relict species among allopatric speciation (e.g., Escoriza et al., 2006; Salvi North African reptiles (Bons and Geniez, 1996; et al., 2018). Pleguezuelos et al., 2010; del Mármol et al., 2019).
    [Show full text]
  • A Stem Acrodontan Lizard in the Cretaceous of Brazil Revises Early Lizard Evolution in Gondwana
    ARTICLE Received 5 Apr 2015 | Accepted 23 Jul 2015 | Published 26 Aug 2015 DOI: 10.1038/ncomms9149 OPEN A stem acrodontan lizard in the Cretaceous of Brazil revises early lizard evolution in Gondwana Tiago R. Simo˜es1, Everton Wilner2, Michael W. Caldwell1,3, Luiz C. Weinschu¨tz2 & Alexander W.A. Kellner4 Iguanians are one of the most diverse groups of extant lizards (41,700 species) with acrodontan iguanians dominating in the Old World, and non-acrodontans in the New World. A new lizard species presented herein is the first acrodontan from South America, indicating acrodontans radiated throughout Gondwana much earlier than previously thought, and that some of the first South American lizards were more closely related to their counterparts in Africa and Asia than to the modern fauna of South America. This suggests both groups of iguanians achieved a worldwide distribution before the final breakup of Pangaea. At some point, non-acrodontans replaced acrodontans and became the only iguanians in the Amer- icas, contrary to what happened on most of the Old World. This discovery also expands the diversity of Cretaceous lizards in South America, which with recent findings, suggests sphenodontians were not the dominant lepidosaurs in that continent as previously hypothesized. 1 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G2E9. 2 Centro Paleontolo´gico da UnC (CENPALEO), Universidade do Contestado, Mafra, Santa Catarina, Brazil CEP 89300-000. 3 Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada T6G2E9. 4 Laboratory of Systematics and Taphonomy of Fossil Vertebrates, Departamento de Geologia e Paleontologia, Museu Nacional/ Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, Sa˜o Cristo´va˜o, Rio de Janeiro, Brazil CEP 20940-040.
    [Show full text]
  • On the Phylogeny and Taxonomy of the Genus Uromastyx Merrem, 1820 (Reptilia: Squamata: Agamidae: Uromastycinae) – Resurrection of the Genus Saara Gray, 1845
    Bonner zoologische Beiträge Band 56 (2007) Heft 1/2 Seiten 55–99 Bonn, März 2009 On the Phylogeny and Taxonomy of the Genus Uromastyx Merrem, 1820 (Reptilia: Squamata: Agamidae: Uromastycinae) – Resurrection of the Genus Saara Gray, 1845 Thomas M. WILMS1),4), WOLFGANG BÖHME2), Philipp WAGNER2), Nicolà LUTZMANN2) & Andreas SCHMITZ3) 1)Zoologischer Garten Frankfurt, Bernhard-Grzimek-Allee 1, D-60316 Frankfurt am Main, Germany; E-Mail: [email protected]; 2)Zoologisches Forschungsmuseum A. Koenig, Adenauerallee 160, D- 53113 Bonn, Germany; 3)Muséum d’Histoire naturelle, C. P. 6434, CH-1211 Genève 6, Switzerland; 4)Corresponding author Abstract. We assessed the taxonomic relationships within the genus Uromastyx Merrem, 1820 using morphologi- cal and genetic methods, resulting in the resurrection of the genus Saara Gray, 1845 for Saara hardwickii, S. as- mussi and S. loricata and in changes of the taxonomic rank of Uromastyx nigriventris, U. aegyptia leptieni and U. shobraki. A synopsis of all taxa considered to be valid is provided, including differential diagnosis, description and data on their respective distribution. A key for the species of Saara and Uromastyx is presented. Keywords. Reptilia; Sauria; Agamidae; Uromastycinae; Uromastyx; Saara; Saara hardwickii; Saara asmussi new comb.; Saara loricata new comb.; Uromastyx aegyptia leptieni new status; Uromastyx nigriventris new status; Uromastyx sho- braki new status; Phylogeny; Taxonomy; Morphology. 1. INTRODUCTION Within the Palearctic genus Uromastyx Merrem, 1820 a (KNAPP 2004, WILMS 2007a). But the consumption of total of 17 species are considered to be valid by WILMS spiny-tailed lizards in their countries of origin may be con- & SCHMITZ (2007) and WILMS & BÖHME (2007).
    [Show full text]
  • The Use of Spiny-Tailed Lizards for Medicinal Purposes In
    S H O R T C O M M U N I C A T I O N The use of spiny-tailed lizards Uromastyx spp. for medicinal purposes in Peninsular Malaysia Or Oi Ching and Serene C.L. Chng by the required CITES export permits. A study on CITES data trade records of Uromastyx spp. reported over 200 000 INTRODUCTION specimens traded internationally, with an increasing trend DIWHU .QDSS 6SLQ\WDLOHG OL]DUG VSHFLHV DUH piny-tailed lizards Uromastyx spp. consist of 20 also protected by national laws in many range countries. recognized species that inhabit the deserts and Unregulated and unsustainable hunting of spiny-tailed semi-deserts from northern Africa across the lizards may adversely affect the ecosystem (Yom-Tov, Middle East to north-western India (Wilms et al., DVWKH\DUHDQLPSRUWDQWSUH\VSHFLHV &RQVHUYDWLRQ 2009; Wilms, et al., $OVRNQRZQDVGDEERU ,QGLD DQGWKHLUEXUURZVVHUYHDVWKHUPDOUHIXJHV Sdhab lizards, they are hunted and traded for their purported for many other species (Wilms et al., 7KHVHOL]DUGV medicinal value, as well as for meat and for the pet trade feed on plants and insects, providing some degree of pest (Mahmood et al., 2011; Subramanean and Vikram Reddy, control, and are also scavengers (Castilla et al., 2011; 2012; Wilms et al., 2012; Das et al., 2013; Pradhan et al., 6XEUDPDQHDQDQG9LNUDP5HGG\ /DUJHQXPEHUVDUHWDNHQIURPWKHZLOGLQ6DXGL$UDELD DQGVROGWRPLGGOHPHQIRUDURXQG6$5± 86'± BACKGROUND 86' 1 $QRQ )DL]D 3RDFKLQJ WHFKQLTXHV include pouring water or blowing smoke into burrows to The sale of spiny-tailed lizard parts and products used for force
    [Show full text]
  • Fossil Lizards and Worm Lizards (Reptilia, Squamata) from the Neogene and Quaternary of Europe: an Overview
    Swiss Journal of Palaeontology (2019) 138:177–211 https://doi.org/10.1007/s13358-018-0172-y (0123456789().,-volV)(0123456789().,-volV) REGULAR RESEARCH ARTICLE Fossil lizards and worm lizards (Reptilia, Squamata) from the Neogene and Quaternary of Europe: an overview 1 1,2 Andrea Villa • Massimo Delfino Received: 16 August 2018 / Accepted: 19 October 2018 / Published online: 29 October 2018 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2018 Abstract Lizards were and still are an important component of the European herpetofauna. The modern European lizard fauna started to set up in the Miocene and a rich fossil record is known from Neogene and Quaternary sites. At least 12 lizard and worm lizard families are represented in the European fossil record of the last 23 Ma. The record comprises more than 3000 occurrences from more than 800 localities, mainly of Miocene and Pleistocene age. By the beginning of the Neogene, a marked faunistic change is detectable compared to the lizard fossil record of Palaeogene Europe. This change is reflected by other squamates as well and might be related to an environmental deterioration occurring roughly at the Oligocene/ Miocene boundary. Nevertheless, the diversity was still rather high in the Neogene and started to decrease with the onset of the Quaternary glacial cycles. This led to the current impoverished lizard fauna, with the southward range shrinking of the most thermophilic taxa (e.g., agamids, amphisbaenians) and the local disappearance of other groups (e.g., varanids). Our overview of the known fossil record of European Neogene and Quaternary lizards and worm lizards highlighted a substantial number of either unpublished or poorly known occurrences often referred to wastebasket taxa.
    [Show full text]
  • Multiple Evolutionary Origins and Losses of Tooth Complexity
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042796; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Multiple evolutionary origins and losses of tooth 2 complexity in squamates 3 4 Fabien Lafuma*a, Ian J. Corfe*a, Julien Clavelb,c, Nicolas Di-Poï*a 5 6 aDevelopmental Biology Program, Institute of Biotechnology, University of Helsinki, FIN- 7 00014 Helsinki, Finland 8 bDepartment of Life Sciences, The Natural History Museum, London SW7 5DB, United 9 Kingdom 10 cLaboratoire d’Écologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université 11 Claude Bernard Lyon 1 – UMR CNRS 5023, ENTPE, F-69622 Villeurbanne, France 12 13 *Mail: [email protected]; [email protected]; [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042796; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 14 Teeth act as tools for acquiring and processing food and so hold a prominent role in 15 vertebrate evolution1,2. In mammals, dental-dietary adaptations rely on tooth shape and 16 complexity variations controlled by cusp number and pattern – the main features of the 17 tooth surface3,4.
    [Show full text]
  • Mastication in the Tuatara, Sphenodon Punctatus (Reptilia: Rhynchocephalia): Structure and Activity of the Motor System
    JOURNAL OF MORPHOLOGY 171:321-353 (1982) Mastication in the Tuatara, Sphenodon punctatus (Reptilia: Rhynchocephalia): Structure and Activity of the Motor System G. C. GORNIAK, H. I. ROSENBERG, AND CARL GANS Division of Biological Sciences, The university of Michigan, Ann Arbor, Michigan 48109 ABSTRACT The masticatory pattern of Sphenodon punctatus, the sole re- maining rhynchocephalian, now restricted to islands off the coast of New Zealand, has been analyzed by detailed anatomy, cinematography, cinefluoroscopy, and electromyography. Food reduction consists of a closing, crushing bite followed by a propalineal sliding of the dentary row between the maxillary and palatine ones. The large, fleshy tongue can be protruded to pick up small prey, and also plays a major role in prey manipulation. The rotational closing movement of the j aw, sup- porting the basic crushing movement, is induced by the main adductor musculature. It is followed by a propalineal anterior displacement relying heavily on the action of the M. pterygoideus. The fiber lengths of the several muscles reflect the extent of shortening. The most obvious modification appears in the M. pterygoideus, which contains a central slip of pinnately arranged short fibers that act at a period different from that of the rest of the muscle; their action increases the power during the terminal portion of the propalineal phase. This also allows the animal to use its short teeth in an effective shearing bite that cuts fragments off large prey. The action of single cusped dentary teeth acting between the maxillary and palatine tooth rows provides a translational crushing-cutting action that may be an analog of the mammalian molar pattern.
    [Show full text]
  • The First Iguanian Lizard from the Mesozoic of Africa Sebastián Apesteguía, Juan D
    The first iguanian lizard from the Mesozoic of Africa Sebastián Apesteguía, Juan D. Daza, Tiago R. Simões, Jean Claude Rage To cite this version: Sebastián Apesteguía, Juan D. Daza, Tiago R. Simões, Jean Claude Rage. The first iguanian lizard from the Mesozoic of Africa. Royal Society Open Science, The Royal Society, 2016, 3 (9), pp.160462. 10.1098/rsos.160462. hal-01426066 HAL Id: hal-01426066 https://hal.sorbonne-universite.fr/hal-01426066 Submitted on 4 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Downloaded from http://rsos.royalsocietypublishing.org/ on January 4, 2017 The first iguanian lizard from the Mesozoic of Africa rsos.royalsocietypublishing.org Sebastián Apesteguía1,JuanD.Daza2, Tiago R. Simões3 and Jean Claude Rage4 Research 1CEBBAD (CONICET), Fundación de Historia Natural ‘Félix de Azara’, Universidad Maimónides, Hidalgo 775, 7°p (1405), Buenos Aires, Argentina Cite this article: Apesteguía S, Daza JD, 2Department of Biological Sciences, Sam Houston State University, 1900 Avenue I Lee Simões TR, Rage JC. 2016 The first iguanian Drain Building Suite 300, Huntsville, TX 77341-2116, USA lizard from the Mesozoic of Africa.
    [Show full text]
  • INDIAN SPINY-TAILED LIZARD First Record of Saara Hardwickii (Gray, 1827) in South- Western Hisar District of Haryana, India
    # 187 REPTILE RAP 21 October 2018 INDIAN SPINY-TAILED LIZARD First record of Saara Hardwickii (Gray, 1827) in south- western Hisar District of Haryana, India IUCN Red List: Not Assessed Indian Spiny-tailed Lizard basking in sun The Indian Spiny-tailed Lizard Saara hardwickii has Reptilia been recently resurrected from Uromastyx hardwickii (Wilms [Class of Reptiles] et al. 2009a) is a unique reptile that belongs to the family Squamata Uromastycidae. This reptile belongs to genus Saara which is [Order of Scaled reptiles] represented by three species worldwide including Saaraas Agamidae mussi (Strauch 1863), Saara loricata (Blanford 1874) and Saara [Family of Iguanian lizard] hardwickii (Gray 1827) which is the only species found, in Saara hardwickii [Indian spiny-tailed lizard] patchy distribution in India, Pakistan and Afghanistan (Knapp 2004; Wilms et al. 2009b; Das et al. 2013). These lizards are Species described by J.E. Gray in 1827 in the solitary in nature and adult lizards excavate twisting burrows genus Uromastix later moved to the genus Saara of 6–8 cm wide; over 2m long (Parashar et. al. 2014) where in 2009 they hibernate for the winters and can be seen nearby basking in summer. In recent studies it has been observed that these Zoo’s Print Vol. 33 | No. 10 9 # 187 REPTILE RAP 21 October 2018 A B A) Shy behaviour B) Slight angled (around 50-100) hold of Spiny-tailed Lizard active burrows are being used by a number of individuals so, this can be used to estimate population density (Dutta & Jhala 2007). The species Saara hardwickii popularly known as “Sandha/Sandho” is known to occur throughout the arid zones of northwestern India including Rajasthan, Gujarat and Uttar Pradesh in large numbers.
    [Show full text]
  • The First Iguanian Lizard from the Mesozoic of Africa Rsos.Royalsocietypublishing.Org Sebastián Apesteguía1,Juand.Daza2, Tiago R
    Downloaded from http://rsos.royalsocietypublishing.org/ on September 21, 2016 The first iguanian lizard from the Mesozoic of Africa rsos.royalsocietypublishing.org Sebastián Apesteguía1,JuanD.Daza2, Tiago R. Simões3 and Jean Claude Rage4 Research 1CEBBAD (CONICET), Fundación de Historia Natural ‘Félix de Azara’, Universidad Maimónides, Hidalgo 775, 7°p (1405), Buenos Aires, Argentina Cite this article: Apesteguía S, Daza JD, 2Department of Biological Sciences, Sam Houston State University, 1900 Avenue I Lee Simões TR, Rage JC. 2016 The first iguanian Drain Building Suite 300, Huntsville, TX 77341-2116, USA lizard from the Mesozoic of Africa. R. Soc. open 3Department of Biological Sciences, University of Alberta, Edmonton, Alberta, sci. 3: 160462. Canada T6G2E9 http://dx.doi.org/10.1098/rsos.160462 4CR2P,Sorbonne Universités, UMR 7207 CNRS, CNRS, Muséum National d’Histoire Naturelle, Université Paris 6, CP 38, rue Cuvier, 75231, Paris cedex 05, France SA, 0000-0002-0414-0524 Received: 28 June 2016 Accepted: 22 August 2016 The fossil record shows that iguanian lizards were widely distributed during the Late Cretaceous. However, the biogeographic history and early evolution of one of its most diverse and peculiar clades (acrodontans) remain poorly Subject Category: known. Here, we present the first Mesozoic acrodontan from Africa, which also represents the oldest iguanian lizard from Earth science that continent. The new taxon comes from the Kem Kem Beds in Morocco (Cenomanian, Late Cretaceous) and is based Subject Areas: on a partial lower jaw. The new taxon presents a number of palaeontology/taxonomy and systematics features that are found only among acrodontan lizards and shares greatest similarities with uromastycines, specifically.
    [Show full text]
  • Eocene Lizards of the Clade Geiseltaliellus from Messel and Geiseltal, Germany, and the Early Radiation of Iguanidae (Reptilia: Squamata) Author(S): Krister T
    Eocene Lizards of the Clade Geiseltaliellus from Messel and Geiseltal, Germany, and the Early Radiation of Iguanidae (Reptilia: Squamata) Author(s): Krister T. Smith Source: Bulletin of the Peabody Museum of Natural History, 50(2):219-306. 2009. Published By: Peabody Museum of Natural History at Yale University DOI: http://dx.doi.org/10.3374/014.050.0201 URL: http://www.bioone.org/doi/full/10.3374/014.050.0201 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Eocene Lizards of the Clade Geiseltaliellus from Messel and Geiseltal, Germany, and the Early Radiation of Iguanidae (Reptilia: Squamata) Krister T. Smith Abteilung Paläoanthropologie und Messelforschung, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany — email: [email protected] Abstract The historical biogeography of the lizard clade Iguanidae is complicated. In addition to difficul- ties within the New World, where most of the more than 900 living species are found, two extant iguanid clades, Brachylophus and Oplurinae, occur well outside it.
    [Show full text]