UCLA Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UCLA Electronic Theses and Dissertations UCLA UCLA Electronic Theses and Dissertations Title The ecological impacts of leaf drought tolerance Permalink https://escholarship.org/uc/item/1rf0x6hz Author Bartlett, Megan Kathleen Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles The ecological impacts of leaf drought tolerance A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Megan Kathleen Bartlett 2016 Copyright by Megan Kathleen Bartlett 2016 ABSTRACT OF THE DISSERTATION The ecological impacts of leaf drought tolerance by Megan Kathleen Bartlett Doctor of Philosophy in Biology University of California, Los Angeles, 2016 Professor Lawren Sack, Chair Climate change is expected to exacerbate drought for many plants, making drought tolerance a key driver of species and ecosystem responses. However, predicting responses from traits requires greater understanding of how physiological processes impact ecology. I developed new theory and methods and applied meta-analyses to characterize the ecological impacts of leaf drought tolerance. I compared the predictive ability of several traits for ecological drought tolerance and showed that the leaf water potential at turgor loss point, or wilting ( p tlp ), was the strongest predictor of species’ habitat water supply. I then showed that the main driver of p tlp was the osmotic potential at full hydration ( p o), or the solute concentration of a hydrated cell. Thus, plants achieve greater leaf drought tolerance by accumulating solutes in the leaf cells. I then developed a new method to rapidly estimate p tlp from measurements of p o. This method is 30x ii faster than the standard, making it feasible to characterize drought tolerance for many species within diverse clades and communities. Plasticity - the ability of individual plants to change trait values - is expected to strongly influence species’ responses to climate change. I meta-analyzed plasticity in p tlp and showed that, while most species became more drought tolerant under dry conditions, p tlp from wet or dry conditions and not plasticity predicted species distributions. Thus, p tlp measured in one season can reliably characterize most species’ ecological drought tolerances. Drought tolerance traits are also expected to impact species distributions within ecosystems through effects on habitat associations and competition. I showed that p tlp was a strong driver of habitat associations in a tropical community, and that drought tolerant species were significantly spatially clustered, suggesting drought tolerant species exclude sensitive species through hierarchical competition. Finally, plant drought tolerance is determined by multiple traits. I applied meta-analyses to evaluate general patterns in the relationships among hydraulic, stomatal, and wilting traits, and produce a framework for predicting plant responses to a wide range of water stress from one or two sampled traits. Overall, these findings provide insight into the impacts of leaf drought tolerance on plant ecology at community and global scales. iii The dissertation of Megan Kathleen Bartlett is approved. Philip Rundel Priyanga Amarasekare H. Jochen Schenk Stephen Hubbell Lawren Sack, Committee Chair University of California, Los Angeles 2016 iv TABLE OF CONTENTS ABSTRACT OF THE DISSERTATION …ii LIST OF TABLES …ix LIST OF SUPPLEMENTARY TABLES …x LIST OF FIGURES …xiii LIST OF SUPPLEMENTARY FIGURES …xv ACKNOWLEDGEMENTS …xvii VITA …xx CHAPTER 1: PREMISE OF THE DISSERTATION …1 REFERENCES …5 CHAPTER 2: THE DETERMINANTS OF LEAF TURGOR LOSS POINT AND PREDICTION OF DROUGHT TOLERANCE OF SPECIES AND BIOMES: A GLOBAL META-ANALYSIS ABSTRACT …8 INTRODUCTION …9 MATERIAL AND METHODS …15 RESULTS AND DISCUSSION …16 CONCLUSIONS …29 TABLES …32 FIGURE CAPTIONS …33 FIGURES …36 SUPPLEMENTARY MATERIAL …44 REFERENCES …57 v CHAPTER 3: RAPID DETERMINATION OF COMPARATIVE DROUGHT TOLERANCE TRAITS: USING AN OSMOMETER TO PREDICT TURGOR LOSS POINT ABSTRACT …76 INTRODUCTION …77 MATERIAL AND METHODS …79 RESULTS …85 DISCUSSION …89 TABLES …93 FIGURE CAPTIONS …95 FIGURES …97 SUPPLEMENTARY MATERIAL …101 REFERENCES …105 CHAPTER 4: GLOBAL ANALYSIS OF PLASTICITY IN TURGOR LOSS POINT, A KEY DROUGHT TOLERANCE TRAIT ABSTRACT …112 INTRODUCTION …112 MATERIAL AND METHODS …116 RESULTS …121 DISCUSSION …125 TABLES …130 FIGURE CAPTIONS …131 FIGURES …133 vi SUPPLEMENTARY MATERIAL …136 REFERENCES …147 CHAPTER 5: DROUGHT TOLERANCE AS A DRIVER OF TROPICAL FOREST ASSEMBLY: RESOLVING SPATIAL SIGNATURES FOR MULTIPLE PROCESSES ABSTRACT …161 INTRODUCTION …162 MATERIAL AND METHODS …166 RESULTS …170 DISCUSSION …173 TABLES …180 FIGURE CAPTIONS …183 FIGURES …185 SUPPLEMENTARY MATERIAL …187 REFERENCES …224 CHAPTER 6: RESOLVING THE TEMPORAL SEQUENCE AND CORRELATIONS OF PLANT DROUGHT RESPONSES: COORDINATION AMONG STOMATAL, HYDRAULIC, AND WILTING TRAITS ABSTRACT …230 INTRODUCTION …231 MATERIAL AND METHODS …234 RESULTS AND DISCUSSION …235 TABLES …245 FIGURE CAPTIONS …246 vii FIGURES …249 SUPPLEMENTARY MATERIAL …252 REFERENCES …287 CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS …315 REFERENCES …321 APPENDICES: SUPPLEMENTAL METHODS 2.1 …323 SUPPLEMENTAL RESULTS AND DISCUSSION 2.1 …326 SUPPLEMENTAL RESULTS AND DISCUSSION 2.2 …329 SUPPLEMENTAL REFERENCES FOR CHAPTER 2 …331 SUPPLEMENTAL METHODS 4.1 …335 SUPPLEMENTAL METHODS 4.2 …337 SUPPLEMENTAL METHODS 4.3 …338 SUPPLEMENTAL METHODS 4.4 …341 SUPPLEMENTAL RESULTS AND DISCUSSION 4.1 …343 SUPPLEMENTAL REFERENCES FOR CHAPTER 4 …345 SUPPLEMENTAL METHODS 5.1 …347 SUPPLEMENTAL METHODS 5.2 …349 SUPPLEMENTAL METHODS 5.3 …352 SUPPLEMENTAL REFERENCES FOR CHAPTER 5 …XX …357 SUPPLEMENTAL METHODS 6.1 …XX …360 SUPPLEMENTAL REFERENCES FOR CHAPTER 6 …XX …361 viii LIST OF TABLES CHAPTER 2 TABLE 2.1. A primer of terms and symbols used in leaf pressure-volume (p-v) …32 analysis of water relations and drought tolerance. CHAPTER 3 TABLE 3.1. Woody species tested, origin, leaf type and pressure-volume curve …93 parameters and osmotic potential at full turgor measured using osmometry. CHAPTER 4 TABLE 4.1. The proportion of variance of drought tolerance traits explained by …130 climate. CHAPTER 5 TABLE 5.1. Hypothesized relationships between key ecological processes and …180 spatial patterns in trait variation. …181 TABLE 5.2. The habitat variable relationships to light and water supply underlying the hypotheses for their correlations with traits. …182 TABLE 5.3. The best-fit models predicting traits from habitat that were more predictive than autocorrelation. CHAPTER 6 TABLE 6.1. The symbol, definition, and functional significance of the drought …245 tolerance traits and the environmental water supply and plant water status variables. ix LIST OF SUPPLEMENTARY TABLES CHAPTER 2 TABLE S2.1. Summary of mean values ± standard error from a global database for …44 pressure-volume parameters and for leaf mass per area (LMA). CHAPTER 3 TABLE S3.1. Regression equations predicting pressure-volume curve measurements …102 of osmotic potential (π pv ) and turgor loss point (π tlp ) from osmometry measurements. CHAPTER 4 TABLE S4.1. Summary of site-level means for pre- and post-drought turgor loss …138 point (π tlp, ), the plasticity of π tlp (Δπ tlp ), and habitat water supply. TABLE S4.2. Summary of biome-level means for pre- and post-drought turgor loss …141 point (π tlp, ), the plasticity of π tlp (Δπ tlp ), and habitat water supply. TABLE S4.3. Mean pre- and post-drought treatment turgor loss point (π tlp ) and π tlp …142 plasticity for cultivars of 37 crop species. CHAPTER 5 TABLE S5.1. Mean trait values and percent relative abundances for each of the 43 …194 study species. TABLE S5.2. Species mean habitat variables. …196 TABLE S5.3. Species mean habitat variables, corrected for local quadrat density. …198 x TABLE S5.4. Correlation coefficients for univariate correlations among species …200 means for trait and habitat variables uncorrected for differences in quadrat density. TABLE S5.5. Correlation coefficients values for univariate correlations among ...202 means trait and habitat variables, with habitat means corrected for quadrat density. TABLE S5.6. Model structures used to predict habitat associations from trait means. …204 TABLE S5.7. Observed r values for the best-fit habitat models, compared to the 95% …205 confidence interval of the r values obtained from 1000 torus translations. TABLE S5.8. Pagel’s l values for each trait and habitat variable. …207 TABLE S5.9. Pagel’s l values for the univariate correlations among the trait and …208 habitat variables. TABLE S5.10. Pagel’s l values for each univariate correlation among the trait and …209 habitat variables, with habitat variables corrected by tree density …210 TABLE S5.11. Pagel’s l values estimated for the best-fit multivariate models between traits and habitat variables. CHAPTER 6 TABLE S6.1. Drought tolerance trait values compiled from the literature. …255 TABLE S6.2. Paired t-tests comparing each trait combination. …272 TABLE S6.3. Paired t-tests showing that the angiosperm temporal sequence is …274 xi largely robust to leaf phenology. TABLE S6.4. Paired t-tests showing that the angiosperm temporal sequence is robust …276 to differences in the shape of the stem vulnerability curves, but potentially influenced by the shape of the root vulnerability curves. TABLE S6.5. Univariate standardized maJor axis (SMA) correlations between each …278 pair of traits. TABLE S6.6. Univariate standardized maJor axis (SMA)
Recommended publications
  • Fl. China 11: 121–124. 2008. 11. AGLAIA Loureiro, Fl. Cochinch. 1
    Fl. China 11: 121–124. 2008. 11. AGLAIA Loureiro, Fl. Cochinch. 1: 98, 173. 1790, nom. cons., not F. Allamand (1770). 米仔兰属 mi zi lan shu Peng Hua (彭华); Caroline M. Pannell Trees or shrubs, dioecious, young parts usually lepidote or stellately pubescent. Leaves alternate to subopposite, odd-pinnate, 3- foliolate, or rarely simple; leaflet blade margins entire. Flowers in axillary thyrses, small, usually globose. Calyx slightly or deeply 3– 5-lobed. Petals 3–5, short, concave, quincuncial or imbricate in bud, distinct or rarely basally connate and adnate to staminal tube. Stamens as many as or more than petals; staminal tube usually subglobose, obovoid, or cup-shaped with apex incurved, apical margin entire, crenate, or shallowly lobed; anthers 5 or 6(–12), included, slightly exserted, or rarely semiexserted. Disk absent. Ovary 1–3(or 4)-locular, with 1 or 2 ovules per locule; style short or absent; stigma ovoid or shortly cylindric. Fruit with fibrous pericarp, indehiscent with 1 or 2 locules or loculicidally dehiscent with 3 locules; locules without seeds or each containing 1 seed; pericarp often containing latex. Seeds usually surrounded by a colloidal and fleshy aril; endosperm absent. About 120 species: tropical and subtropical Asia, tropical Australia, Pacific islands; eight species in China. Aglaia is the only source of the group of about 50 known representatives of compounds that bear a unique cyclopenta[b]tetrahydrobenzofuran skeleton. These compounds are more commonly called rocaglate or rocaglamide derivatives, or flavaglines, and have been found to have anticancer and pesticidal properties. Since the first representative in this group was only discovered in 1982, this is one of the few recent examples of a completely new class of plant secondary metabolites of biological promise (see B.
    [Show full text]
  • Hygroscopic Weight Gain of Pollen Grains from Juniperus Species
    Int J Biometeorol (2015) 59:533–540 DOI 10.1007/s00484-014-0866-9 ORIGINAL PAPER Hygroscopic weight gain of pollen grains from Juniperus species Landon D. Bunderson & Estelle Levetin Received: 12 June 2013 /Revised: 26 June 2014 /Accepted: 27 June 2014 /Published online: 10 July 2014 # ISB 2014 Abstract Juniperus pollen is highly allergenic and is pro- Introduction duced in large quantities across Texas, Oklahoma, and New Mexico. The pollen negatively affects human populations ad- The Cupressaceae is a significant source of airborne allergens, and jacent to the trees, and since it can be transported hundreds of the genus Juniperus is a major component of many ecosystems kilometers by the wind, it also affects people who are far from across the northern hemisphere (Mao et al. 2010; Pettyjohn and the source. Predicting and tracking long-distance transport of Levetin 1997). New Mexico, Texas, and Oklahoma are home to pollen is difficult and complex. One parameter that has been many species of juniper. Three species that represent a significant understudied is the hygroscopic weight gain of pollen. It is allergy contribution are Juniperus ashei, Juniperus monosperma, believed that juniper pollen gains weight as humidity increases and Juniperus pinchotii. J. ashei pollen is considered the most which could affect settling rate of pollen and thus affect pollen allergenic species of Cupressaceae in North America (Rogers and transport. This study was undertaken to examine how changes Levetin 1998). This species is distributed throughout central in relative humidity affect pollen weight, diameter, and settling Texas, Northern Mexico, the Arbuckle Mountains of south central rate.
    [Show full text]
  • Spatial Patterns in a Prosopis – Juniperus Savannah
    The Texas Journal of Agriculture and Natural Resources 30:63-77 (2017) 63 © Agricultural Consortium of Texas Spatial Patterns in a Prosopis – Juniperus Savannah Steven Dowhower Richard Teague*1 Department of Ecosystem Science and Management, Texas A&M University System, Texas A&M AgriLife Research Center, P.O. Box 1658, Vernon, TX, USA. ABSTRACT We determined the distribution patterns and distance to nearest neighbor for Prosopis glandulosa and Juniperus pinchotii trees and saplings in west Texas to examine the intra- and interspecific spacing patterns of juvenile and mature trees to relate these patterns to their establishment dynamics on deep and shallow soils. Ordination was used to compare microsite vegetation associated with open grassland habitat and habitat proximal to big and small Prosopis and Juniperus plants. Analysis of similarities provided a multivariate index and probability of differences of vegetation between and among groups. Big Juniperus trees were randomly distributed on both soils, while the big Prosopis trees were random on the deep soil but aggregated on the shallow soil. Saplings of both species were strongly aggregated on both soils. Big and small Juniperus plants were positively associated with the dominant, established Prosopis trees and with litter cover but were negatively associated with bare soil and C4 grasses. In contrast, small Prosopis plants were negatively associated with both Juniperus and Prosopis trees on either soil and were positively associated with bare soil and C4 grasses. Prosopis trees facilitate establishment of Juniperus on deep or shallow soils, but Prosopis presence is probably not necessary for Juniperus establishment on either soil. The presence of big and small Juniperus plants close to and under the canopies of Prosopis trees and the inability of Prosopis seedlings to establish near Prosopis or Juniperus plants indicates that Juniperus trees would eventually dominate on the deep as well as the shallow soils.
    [Show full text]
  • Phylogenetic Analyses of Juniperus Species in Turkey and Their Relations with Other Juniperus Based on Cpdna Supervisor: Prof
    MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY AYSUN DEMET GÜVENDİREN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY APRIL 2015 Approval of the thesis MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA submitted by AYSUN DEMET GÜVENDİREN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Department of Biological Sciences, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Orhan Adalı Head of the Department, Biological Sciences Prof. Dr. Zeki Kaya Supervisor, Dept. of Biological Sciences METU Examining Committee Members Prof. Dr. Musa Doğan Dept. Biological Sciences, METU Prof. Dr. Zeki Kaya Dept. Biological Sciences, METU Prof.Dr. Hayri Duman Biology Dept., Gazi University Prof. Dr. İrfan Kandemir Biology Dept., Ankara University Assoc. Prof. Dr. Sertaç Önde Dept. Biological Sciences, METU Date: iii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Aysun Demet GÜVENDİREN Signature : iv ABSTRACT MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA Güvendiren, Aysun Demet Ph.D., Department of Biological Sciences Supervisor: Prof.
    [Show full text]
  • Vol: Ii (1938) of “Flora of Assam”
    Plant Archives Vol. 14 No. 1, 2014 pp. 87-96 ISSN 0972-5210 AN UPDATED ACCOUNT OF THE NAME CHANGES OF THE DICOTYLEDONOUS PLANT SPECIES INCLUDED IN THE VOL: I (1934- 36) & VOL: II (1938) OF “FLORA OF ASSAM” Rajib Lochan Borah Department of Botany, D.H.S.K. College, Dibrugarh - 786 001 (Assam), India. E-mail: [email protected] Abstract Changes in botanical names of flowering plants are an issue which comes up from time to time. While there are valid scientific reasons for such changes, it also creates some difficulties to the floristic workers in the preparation of a new flora. Further, all the important monumental floras of the world have most of the plants included in their old names, which are now regarded as synonyms. In north east India, “Flora of Assam” is an important flora as it includes result of pioneering floristic work on Angiosperms & Gymnosperms in the region. But, in the study of this flora, the same problems of name changes appear before the new researchers. Therefore, an attempt is made here to prepare an updated account of the new names against their old counterpts of the plants included in the first two volumes of the flora, on the basis of recent standard taxonomic literatures. In this, the unresolved & controversial names are not touched & only the confirmed ones are taken into account. In the process new names of 470 (four hundred & seventy) dicotyledonous plant species included in the concerned flora are found out. Key words : Name changes, Flora of Assam, Dicotyledonus plants, floristic works.
    [Show full text]
  • Texas Big Tree Registry a List of the Largest Trees in Texas Sponsored by Texas a & M Forest Service
    Texas Big Tree Registry A list of the largest trees in Texas Sponsored by Texas A & M Forest Service Native and Naturalized Species of Texas: 320 ( D indicates species naturalized to Texas) Common Name (also known as) Latin Name Remarks Cir. Threshold acacia, Berlandier (guajillo) Senegalia berlandieri Considered a shrub by B. Simpson 18'' or 1.5 ' acacia, blackbrush Vachellia rigidula Considered a shrub by Simpson 12'' or 1.0 ' acacia, Gregg (catclaw acacia, Gregg catclaw) Senegalia greggii var. greggii Was named A. greggii 55'' or 4.6 ' acacia, Roemer (roundflower catclaw) Senegalia roemeriana 18'' or 1.5 ' acacia, sweet (huisache) Vachellia farnesiana 100'' or 8.3 ' acacia, twisted (huisachillo) Vachellia bravoensis Was named 'A. tortuosa' 9'' or 0.8 ' acacia, Wright (Wright catclaw) Senegalia greggii var. wrightii Was named 'A. wrightii' 70'' or 5.8 ' D ailanthus (tree-of-heaven) Ailanthus altissima 120'' or 10.0 ' alder, hazel Alnus serrulata 18'' or 1.5 ' allthorn (crown-of-thorns) Koeberlinia spinosa Considered a shrub by Simpson 18'' or 1.5 ' anacahuita (anacahuite, Mexican olive) Cordia boissieri 60'' or 5.0 ' anacua (anaqua, knockaway) Ehretia anacua 120'' or 10.0 ' ash, Carolina Fraxinus caroliniana 90'' or 7.5 ' ash, Chihuahuan Fraxinus papillosa 12'' or 1.0 ' ash, fragrant Fraxinus cuspidata 18'' or 1.5 ' ash, green Fraxinus pennsylvanica 120'' or 10.0 ' ash, Gregg (littleleaf ash) Fraxinus greggii 12'' or 1.0 ' ash, Mexican (Berlandier ash) Fraxinus berlandieriana Was named 'F. berlandierana' 120'' or 10.0 ' ash, Texas Fraxinus texensis 60'' or 5.0 ' ash, velvet (Arizona ash) Fraxinus velutina 120'' or 10.0 ' ash, white Fraxinus americana 100'' or 8.3 ' aspen, quaking Populus tremuloides 25'' or 2.1 ' baccharis, eastern (groundseltree) Baccharis halimifolia Considered a shrub by Simpson 12'' or 1.0 ' baldcypress (bald cypress) Taxodium distichum Was named 'T.
    [Show full text]
  • Woodlands Author: Kerry Dooley Historically the Primary Interest Area for National Inventories Was Timber
    Woodlands Author: Kerry Dooley Historically the primary interest area for national inventories was timber. Consequently, the national inventory framework and collection protocols were focused on productive timber- lands (USDA Forest Service 2005). Over time, information such as estimations of carbon sequestration, wildfire fuel loads, and nontimber forest products and services (e.g., biofuels and wildlife habitat) has become topics of increasing interest. The FIA program—the national inventory used in the United States—broadened the focus of its surveys to include non- timberland forests, including woodlands, better aligning with these changing focus areas. Woodlands generally occur in less productive growing condi- tions, such as the arid Southwestern United States. Woodlands provide much, if not all, of the same services provided by forests; that is, they function as important wildlife habitat, improve water quality, serve as carbon sinks (or sources, in the event of wildfires), and provide fuel during wildfire season. The species that comprise woodlands differ in characteristics from most trees. On average, woodland species tend to be slower growing, smaller in stature, and of a form with more forks and branches near the base of the tree. Woodland species often grow as clumps of stems rather than one central stem. Beyond the characteristics of the trees classified as woodland species, specific parameters pertain to classification of the land use category of woodlands, while the Resources Planning Act (RPA) derives calculations of woodland for this report from the FIA data, the FIA and RPA definitions of woodland differ somewhat, as outlined in the following paragraphs. Forest Inventory and Analysis Definitions and Parameters FIA defines woodlands strictly along the lines of species com- position and associated forest types, and considers woodlands a subset of forest lands.
    [Show full text]
  • Cytotoxic Sesquiterpenoid from the Stembark of Aglaia Argentea
    Research Journal of Chemistry and Environment_______________________________Vol. 22(Special Issue II) August (2018) Res. J. Chem. Environ. Cytotoxic Sesquiterpenoid from the Stembark of Aglaia argentea (Meliaceae) Harneti Desi1, Farabi Kindi1, Nurlelasari1, Maharani Rani1, Supratman Unang1* and Shiono Yoshihito2 1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadajaran, Jatinangor 45363, INDONESIA 2. Department of Food, Life and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, JAPAN *[email protected] Abstract reducing fever and for treating contused wound, coughs and Aglaia argentea also known as langsat hutan in skin diaseases16-18. Previous phytochemical studies of A. Indonesia is a higher plant traditionally used for argentea have revealed the presence of compounds with moisturizing the lungs, reducing fever and treating cytotoxic activity including cycloartane-type triterpenoids against KB cells19 and 3,4-secoapotirucallane-type contused wound, coughs and skin diseases. The triterpenoids against KB cells20, but there are no reports of stembark of A. argentea was successively extracted sesquiterpenes of this species before. with methanol. The methanolic extract then partitioned by n-hexane, ethyl acetate and n-butanol. The n-hexane Herein we isolated, determined the chemical structure and extract was chromatographed over a vacuum-liquid tested at P388 murine leukemia cells of one sesquiterpenoid chromatographed (VLC) column packed with silica gel compound from n-hexane extract of A. argentea. 60 by gradient elution. Material and Methods The VLC fractions were repeatedly subjected to General: The IR spectra were recorded on a Perkin-Elmer normal-phase column chromatography and spectrum-100 FT-IR in KBr. Mass spectra were obtained with a Synapt G2 mass spectrometer instrument.
    [Show full text]
  • Discovery of Anticancer Agents of Diverse Natural Origin By
    Discovery of Anticancer Agents of Diverse Natural Origin By: Douglas Kinghorn, Esperanza J. Carcache De Blanco, David M. Lucas, H. Liva Rakotondraibe, Jimmy Orjala, D. Doel Soejarto, Nicholas H. Oberlies, Cedric J. Pearce, Mansukh C. Wani, Brent R. Stockwell, Joanna E. Burdette, Steven M. Swanson, James R. Fuchs, Mitchell A. Phelps, Lihui Xu, Xiaoli Zhang, and Young Yongchun Shen “Discovery of Anticancer Agents of Diverse Natural Origin.” Douglas Kinghorn, Esperanza J. Carcache De Blanco, David M. Lucas, H. Liva Rakotondraibe, Jimmy Orjala, D. Doel Soejarto, Nicholas H. Oberlies, Cedric J. Pearce, Mansukh C. Wani, Brent R. Stockwell, Joanna E. Burdette, Steven M. Swanson, James R. Fuchs, Mitchell A. Phelps, Lihui Xu, Xiaoli Zhang, and Young Yongchun Shen. Anticancer Research, 2016, 36 (11), 5623-5637. Made available courtesy of the International Institute of Anticancer Research: http://ar.iiarjournals.org/content/36/11/5623 ***© 2016 International Institute of Anticancer Research. Reprinted with permission. No further reproduction is authorized without written permission from International Institute of Anticancer Research. *** Abstract: Recent progress is described in an ongoing collaborative multidisciplinary research project directed towards the purification, structural characterization, chemical modification, and biological evaluation of new potential natural product anticancer agents obtained from a diverse group of organisms, comprising tropical plants, aquatic and terrestrial cyanobacteria, and filamentous fungi. Information is provided on how these organisms are collected and processed. The types of bioassays are indicated in which initial extracts, chromatographic fractions, and purified isolated compounds of these acquisitions are tested. Several promising biologically active lead compounds from each major organism class investigated are described, and these may be seen to be representative of a very wide chemical diversity.
    [Show full text]
  • Gardens and Stewardship
    GARDENS AND STEWARDSHIP Thaddeus Zagorski (Bachelor of Theology; Diploma of Education; Certificate 111 in Amenity Horticulture; Graduate Diploma in Environmental Studies with Honours) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy October 2007 School of Geography and Environmental Studies University of Tasmania STATEMENT OF AUTHENTICITY This thesis contains no material which has been accepted for any other degree or graduate diploma by the University of Tasmania or in any other tertiary institution and, to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by other persons, except where due acknowledgement is made in the text of the thesis or in footnotes. Thaddeus Zagorski University of Tasmania Date: This thesis may be made available for loan or limited copying in accordance with the Australian Copyright Act of 1968. Thaddeus Zagorski University of Tasmania Date: ACKNOWLEDGEMENTS This thesis is not merely the achievement of a personal goal, but a culmination of a journey that started many, many years ago. As culmination it is also an impetus to continue to that journey. In achieving this personal goal many people, supervisors, friends, family and University colleagues have been instrumental in contributing to the final product. The initial motivation and inspiration for me to start this study was given by Professor Jamie Kirkpatrick, Dr. Elaine Stratford, and my friend Alison Howman. For that challenge I thank you. I am deeply indebted to my three supervisors Professor Jamie Kirkpatrick, Dr. Elaine Stratford and Dr. Aidan Davison. Each in their individual, concerted and special way guided me to this omega point.
    [Show full text]
  • Systematic Conservation Planning in Thailand
    SYSTEMATIC CONSERVATION PLANNING IN THAILAND DARAPORN CHAIRAT Thesis submitted in total fulfilment for the degree of Doctor of Philosophy BOURNEMOUTH UNIVERSITY 2015 This copy of the thesis has been supplied on condition that, anyone who consults it, is understood to recognize that its copyright rests with its author. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. i ii Systematic Conservation Planning in Thailand Daraporn Chairat Abstract Thailand supports a variety of tropical ecosystems and biodiversity. The country has approximately 12,050 species of plants, which account for 8% of estimated plant species found globally. However, the forest cover of Thailand is under threats: habitat degradation, illegal logging, shifting cultivation and human settlement are the main causes of the reduction in forest area. As a result, rates of biodiversity loss have been high for some decades. The most effective tool to conserve biodiversity is the designation of protected areas (PA). The effective and most scientifically robust approach for designing networks of reserve systems is systematic conservation planning, which is designed to identify conservation priorities on the basis of analysing spatial patterns in species distributions and associated threats. The designation of PAs of Thailand were initially based on expert consultations selecting the areas that are suitable for conserving forest resources, not systematically selected. Consequently, the PA management was based on individual management plans for each PA. The previous work has also identified that no previous attempt has been made to apply the principles and methods of systematic conservation planning. Additionally, tree species have been neglected in previous analyses of the coverage of PAs in Thailand.
    [Show full text]
  • Report on the Grimwade Plant Collection of Percival St John and Botanical Exploration of Mt Buffalo National Park (Victoria, Australia)
    Report on the Grimwade Plant Collection of Percival St John and Botanical Exploration of Mt Buffalo National Park (Victoria, Australia) Alison Kellow Michael Bayly Pauline Ladiges School of Botany, The University of Melbourne July, 2007 THE GRIMWADE PLANT COLLECTION, MT BUFFALO Contents Summary ...........................................................................................................................3 Mt Buffalo and its flora.....................................................................................................4 History of botanical exploration........................................................................................5 The Grimwade plant collection of Percival St John..........................................................8 A new collection of plants from Mt Buffalo - The Miegunyah Plant Collection (2006/2007) ....................................................................................................................................13 Plant species list for Mt Buffalo National Park...............................................................18 Conclusion.......................................................................................................................19 Acknowledgments...........................................................................................................19 References .......................................................................................................................20 Appendix 1 Details of specimens in the Grimwade Plant Collection.............................22
    [Show full text]