Impacts of a Non-Native Gastropod with a Limited Distribution; Less Conspicuous Invaders Matter Too
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Gastropoda: Batillariidae) from Elkhorn Slough, California, USA
Mitochondrial DNA Part B Resources ISSN: (Print) 2380-2359 (Online) Journal homepage: https://www.tandfonline.com/loi/tmdn20 The complete mitogenome of the invasive Japanese mud snail Batillaria attramentaria (Gastropoda: Batillariidae) from Elkhorn Slough, California, USA Hartnell College Genomics Group, Paulina Andrade, Lisbeth Arreola, Melissa Belnas, Estefania Bland, Araceli Castillo, Omar Cisneros, Valentin Contreras, Celeste Diaz, Kevin T. Do, Carlos Donate, Estevan Espinoza, Nathan Frater, Garry G. Gabriel, Eric A. Gomez, Gino F. Gonzalez, Myrka Gonzalez, Paola Guido, Dylan Guidotti, Mishell Guzman Espinoza, Ivan Haro, Javier Hernandez Lopez, Caden E. Hernandez, Karina Hernandez, Jazmin A. Hernandez-Salazar, Jeffery R. Hughey, Héctor Jácome-Sáenz, Luis A. Jimenez, Eli R. Kallison, Mylisa S. King, Luis J. Lazaro, Feifei Zhai Lorenzo, Isaac Madrigal, Savannah Madruga, Adrian J. Maldonado, Alexander M. Medina, Marcela Mendez-Molina, Ali Mendez, David Murillo Martinez, David Orozco, Juan Orozco, Ulises Ortiz, Jennifer M. Pantoja, Alejandra N. Ponce, Angel R. Ramirez, Israel Rangel, Eliza Rojas, Adriana Roque, Beatriz Rosas, Colt Rubbo, Justin A. Saldana, Elian Sanchez, Alicia Steinhardt, Maria O. Taveras Dina, Judith Torres, Silvestre Valdez-Mata, Valeria Vargas, Paola Vazquez, Michelle M. Vazquez, Irene Vidales, Frances L. Wong, Christian S. Zagal, Santiago Zamora & Jesus Zepeda Amador To cite this article: Hartnell College Genomics Group, Paulina Andrade, Lisbeth Arreola, Melissa Belnas, Estefania Bland, Araceli Castillo, Omar Cisneros, Valentin Contreras, Celeste Diaz, Kevin T. Do, Carlos Donate, Estevan Espinoza, Nathan Frater, Garry G. Gabriel, Eric A. Gomez, Gino F. Gonzalez, Myrka Gonzalez, Paola Guido, Dylan Guidotti, Mishell Guzman Espinoza, Ivan Haro, Javier Hernandez Lopez, Caden E. Hernandez, Karina Hernandez, Jazmin A. -
Mineralogisch Museum Leiden”
collection, a label of the former museum is retained for all registered specimens. The names of museum in the labels are “Rijksmuseum van Geologie en Mineralogie”, “Rijksmuseum van Geologie Leiden”, or “Rijks Geologisch-Mineralogisch Museum Leiden”. Labels in Japanese letters: The limited number of specimens are accompanied by Japanese labels. In most cases, labels are directly pasted on specimens. Names are written in Katakana letters only (e.g. Fig. 1E) or both in Chinese and Katakana letters (e.g. Figs. 1B, 3C, 3F). Identification of a few specimens in Japanese label is different from current our recognition and interesting. “Ryôkotsu” in Figs. 3F and 3H means dragon bones, but they are actually fragments of molluscan shells and eroded mammalian bones, respectively. In China, fossil vertebrate bones are called “Longgu” which is written in the same Chinese characters as “Ryôkotsu” in Japan, and have been used as a crude medicine. “Mimizu-ishi” in Fig. 2E stands for an earthworm stone, and winding tubes on the rock are bore holes of boring bivalve (“Teredo” sp.) with interior lining. Other fossils were precisely identified at phylum or class level. Examples are fossil fish (“Sekigyo”: Fig. 1B), fossil of wood (“Moku-kwaseki”: Fig. 4A), stone clam (“Ishi-hamaguri”: Fig. 11A), and fossil of heart urchin (“Kaien-no-kwaseki”: Fig. 3A). Molluscan specimens in Siebold fossil collection The molluscs in the Siebold fossil collection consist of more than 40 species as described below (Figs. 5-14). This number, however, does not contain the shell fragments in sandstone (Figs. 1D-G, 2A). In the following accounts, the depository of the specimens is in the mineralogical collection in Naturalis, unless otherwise mentioned. -
Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science
Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science Scientific Name: Batillaria attramentaria Phylum Mollusca Common Name Japanese false cerith Class Gastropoda Order Neotaenioglossa Family Batillariidae Z:\GAP\NPRB Marine Invasives\NPRB_DB\SppMaps\BATATT.png 153 Final Rank 46.00 Data Deficiency: 12.50 Category Scores and Data Deficiencies Total Data Deficient Category Score Possible Points Distribution and Habitat: 12.25 23 7.50 Anthropogenic Influence: 6 10 0 Biological Characteristics: 17 25 5.00 Impacts: 5 30 0 Figure 1. Occurrence records for non-native species, and their geographic proximity to the Bering Sea. Ecoregions are based on the classification system by Spalding et al. (2007). Totals: 40.25 87.50 12.50 Occurrence record data source(s): NEMESIS and NAS databases. General Biological Information Tolerances and Thresholds Minimum Temperature (°C) -2 Minimum Salinity (ppt) 7 Maximum Temperature (°C) 40 Maximum Salinity (ppt) 33 Minimum Reproductive Temperature (°C) Minimum Reproductive Salinity (ppt) Maximum Reproductive Temperature (°C) Maximum Reproductive Salinity (ppt) Additional Notes Size of adult shells ranges from 10 to 34 mm. The shell is usually gray-brown, often with a white band below the suture, but can range from light brown to dirty-black. Historically introduced with the Pacific oyster, Crassostrea gigas, but in recent years, it has been found in areas where oysters are not cultivated. Nevertheless, its spread has been attributed to anthropogenic vectors rather than natural dispersal. Report updated on Wednesday, December 06, 2017 Page 1 of 13 1. Distribution and Habitat 1.1 Survival requirements - Water temperature Choice: Considerable overlap – A large area (>75%) of the Bering Sea has temperatures suitable for year-round survival Score: A 3.75 of High uncertainty? 3.75 Ranking Rationale: Background Information: Temperatures required for year-round survival occur over a large Based on its geographic distribution, B. -
Environmental Stressors Induced Strong Small-Scale Phenotypic
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.06.327767; this version posted March 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Environmental stressors induced strong small-scale phenotypic 2 differentiation in a wide-dispersing marine snail 3 Nicolás Bonel1,2,3*, Jean-Pierre Pointier4 & Pilar Alda1,2 4 5 6 1 Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS—CCT—CONICET Bahía 7 Blanca), Camino de la Carrindanga km 7, Bahía Blanca 8000, Argentina. 8 9 10 2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. 11 12 13 3 Centre d’Écologie Fonctionnelle et Évolutive, UMR 5175, CNRS—Université de Montpellier, 14 Université Paul-Valéry Montpellier—École Pratique des Hautes Études—IRD, 34293 Montpellier Cedex 15 05, France. 16 17 4 PSL Research University, USR 3278 CNRS–EPHE, CRIOBE Université de Perpignan, Perpignan, 18 France. 19 20 * To whom correspondence should be addressed: [email protected] (N. Bonel) 21 22 23 24 25 Running head: Small-scale phenotypic differentiation in a wide-dispersing snail 26 27 28 29 30 31 Key words: adaptive plasticity, shell characters, genital morphology, intertidal 32 zonation, contrasting selection pressures, planktotrophic snail, high dispersal potential. 33 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.06.327767; this version posted March 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. -
E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
!e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore. -
Las Prácticas Individuales Y La Práctica De Consenso En La Historia De La Helmintología: Un Estudio a Partir De La Filosofía De La Ciencia De Philip Kitcher
Las prácticas individuales y la práctica de consenso en la historia de la helmintología: Un estudio a partir de la filosofía de la ciencia de Philip Kitcher Tesis doctoral Lic. Martín Orensanz Director: Dr. Guillermo Denegri Co-directora: Dra. Susana Gisela Lamas Ilustración del siglo XVI, del médico y cirujano Ambroise Paré. El texto que acompaña la imagen dice “La figura de un gusano que fue expelido mediante el vómito”. Ilustración del siglo XVII, del médico Edward Tyson. Se trata de una lombriz solitaria que fue encontrada en el intestino de un perro doméstico. ÍNDICE Introducción Capítulo 1 El conocimiento de los helmintos en la Época Antigua 1. Comentarios generales 2. Hipócrates 3. Aristóteles 4. La práctica de consenso en la Época Antigua Capítulo 2 La Edad Media 1. Comentarios generales 2. Avicena 3. Arnauld de Villaneuve 4. La práctica de consenso en la Edad Media Capítulo 3 El siglo XVI 1. Comentarios generales 2. Paracelso 3. Ambroise Paré 4. La práctica de consenso en el siglo XVI Capítulo 4 El siglo XVII 1. Comentarios generales 2. William Ramesey 3. Francesco Redi 4. Edward Tyson 5. Anthony van Leeuwenhoek 6. La práctica de consenso en el siglo XVII Capítulo 5 El siglo XVIII 1. Comentarios generales 2. Nicholas Andry de Boisregard 3. Antonio Vallisneri 4. Carlos Linneo 5. Marcus Elieser Bloch 6. Johann August Ephraim Goeze 7. La práctica de consenso en el siglo XVIII Capítulo 6 El siglo XIX 1. Comentarios generales 2. Karl Asmund Rudolphi 2 3. Johannes Japetus Steenstrup 4. Gottlieb Heinrich Friedrich Küchenmeister 5. Patrick Manson 6. -
Four Marine Digenean Parasites of Austrolittorina Spp. (Gastropoda: Littorinidae) in New Zealand: Morphological and Molecular Data
Syst Parasitol (2014) 89:133–152 DOI 10.1007/s11230-014-9515-2 Four marine digenean parasites of Austrolittorina spp. (Gastropoda: Littorinidae) in New Zealand: morphological and molecular data Katie O’Dwyer • Isabel Blasco-Costa • Robert Poulin • Anna Falty´nkova´ Received: 1 July 2014 / Accepted: 4 August 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract Littorinid snails are one particular group obtained. Phylogenetic analyses were carried out at of gastropods identified as important intermediate the superfamily level and along with the morpholog- hosts for a wide range of digenean parasite species, at ical data were used to infer the generic affiliation of least throughout the Northern Hemisphere. However the species. nothing is known of trematode species infecting these snails in the Southern Hemisphere. This study is the first attempt at cataloguing the digenean parasites Introduction infecting littorinids in New Zealand. Examination of over 5,000 individuals of two species of the genus Digenean trematode parasites typically infect a Austrolittorina Rosewater, A. cincta Quoy & Gaim- gastropod as the first intermediate host in their ard and A. antipodum Philippi, from intertidal rocky complex life-cycles. They are common in the marine shores, revealed infections with four digenean species environment, particularly in the intertidal zone representative of a diverse range of families: Philo- (Mouritsen & Poulin, 2002). One abundant group of phthalmidae Looss, 1899, Notocotylidae Lu¨he, 1909, gastropods in the marine intertidal environment is the Renicolidae Dollfus, 1939 and Microphallidae Ward, littorinids (i.e. periwinkles), which are characteristic 1901. This paper provides detailed morphological organisms of the high intertidal or littoral zone and descriptions of the cercariae and intramolluscan have a global distribution (Davies & Williams, 1998). -
Soft-Bottom Benthic Communities Otago Harbour and Blueskin Bay
ISSN 0083-7903, 80 (Print) ISSN 2538-1016; 80 (Online) ISS 0083-7903 Soft-bottom Benthic Communities m• Otago Harbour and Blueskin Bay, New Zealand by S. F. RAINER New Zealand Oceanographic Institute Memoir 80 1981 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH Soft-bottom Benthic Communities Otago Harbour and Blueskin Bay, New Zealand by S. F. RAINER Portobello Marine Laboratory, Portobello, New Zealand New Zealand Oceanographic Institute Memoir 80 1981 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ ISSN 0083-7903 Received for publication: July 1974 <O Crown Copyright 1981 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page LIST OF FIGURES 4 LIST OFTABLES 4 ABSTRACT 5 INTRODUCTION 6 SAMPLINGAND LABORA TORY METHODS 6 THEBENTinC ENVIRONMENT 7 General description and sample locations 7 Water temperature and salinity 8 Tides and currents 13 Sediments 14 Pollution 14 THEBENTiilC CoMMUNITIES. 14 Harbour mud corr.munity 14 Harbour fine sand community 15 Harbour stable shell-sand community 15 Harbour unstable sand community 16 Shallow off-shore fine sand community 20 DISCUSSION 21 The classification of benthic communities in a shallow-water deposit environment 21 The effect of shell and macroscopic algae on species composition 22 Patternsof diversity 24 Comparison with other shallow-water soft-bottom communities 28 ACKNOWLEDGMENTS 31 REFERENCES 31 APPENDICES 33 1. -
Quantifying Geographic Variation in Physiological Performance to Address the Absence of Invading Species1
12 (3): 358-365 (2005) Quantifying geographic variation in physiological performance to address the absence of invading species1 James E. BYERS, Department of Zoology, University of New Hampshire, 46 College Road, Durham, New Hampshire 03824, USA, e-mail: [email protected] Abstract: An estuarine snail (Batillaria attramentaria), introduced to northern California marshes, is displacing a native confamilial mudsnail (Cerithidea californica) through superior competition for shared, limiting food resources. Batillaria, however, is absent from similar marsh habitats in southern California. I tested whether regional-scale variation in relative performance (growth) of the snails may have influenced Batillaria’s invasion pattern. I quantified growth using RNA:DNA ratios (a growth index that I ground-truthed with direct growth measurements) for snails collected throughout their entire collective North American distribution. Batillaria exhibited a high growth rate that was more than double Cerithidea’s growth rate in sympatric populations. A broad-scale relationship of species’ growth rates against latitude projected an amply adequate growth rate for Batillaria in southern California where it is presently absent. Furthermore, growth rates of Cerithidea did not increase in southern California, suggesting that Batillaria would maintain its dramatic relative performance advantage. Thus, even if resources are limiting at southern latitudes, biotic resistance through competition with Cerithidea does not explain Batillaria’s absence. Among alternative, untested hypotheses for Batillaria’s absence, insufficient propagule inoculation has strongest support. Because transplant experiments with nonindigenous species are unethical, examination of species’ performance over geographic scales provides a powerful alternative approach for invasion studies. Keywords: estuaries, exotic species, exploitative competition, invasibility, latitudinal gradients, macroecology, nonindigenous species, RNA:DNA ratios. -
2006-2007 Intertidal Reef Biodiversity on Kangaroo
2006-2007 Kangaroo Island Natural Resources Management Board INTERTIDAL REEF BIODIVERSITY Intertidal Reef Biodiversity on Kangaroo Island – 2007 ON KANGAROO ISLAND 1 INTERTIDAL REEF BIODIVERSITY ON KANGAROO ISLAND Oceans of Blue: Coast, Estuarine and Marine Monitoring Program A report prepared for the Kangaroo Island Natural Resources Management Board by Kirsten Benkendorff Martine Kinloch Daniel Brock June 2007 2006-2007 Kangaroo Island Natural Resources Management Board Intertidal Reef Biodiversity on Kangaroo Island – 2007 2 Oceans of Blue The views expressed and the conclusions reached in this report are those of the author and not necessarily those of persons consulted. The Kangaroo Island Natural Resources Management Board shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. Project Officer Contact Details Martine Kinloch Coast and Marine Program Manager Kangaroo Island Natural Resources Management Board PO Box 665 Kingscote SA 5223 Phone: (08) 8553 4980 Fax: (08) 8553 0122 Email: [email protected] Kangaroo Island Natural Resources Management Board Contact Details Jeanette Gellard General Manager PO Box 665 Kingscote SA 5223 Phone: (08) 8553 0111 Fax: (08) 8553 0122 Email: [email protected] © Kangaroo Island Natural Resources Management Board This document may be reproduced in whole or part for the purpose of study or training, subject to the inclusion of an acknowledgment of the source and to its not being used for commercial purposes or sale. Reproduction for purposes other than those given above requires the prior written permission of the Kangaroo Island Natural Resources Management Board. -
M 12001 Supplement
The following supplement accompanies the article Biological mechanisms of marine invasions Katherine J. Papacostas, Elizabeth W. Rielly-Carroll, Samuel E. Georgian, Dustin J. Long, Sarah D. Princiotta, Andrea M. Quattrini, Kim E. Reuter, Amy L. Freestone* *Corresponding author: [email protected] Marine Ecology Progress Series 565: 251–268 (2017) Table S1: Search parameters used in ISI Web of Science. General search terms used for all mechanisms were (non-native* OR nonnative* OR invasi* OR introduc* OR non-indigenous OR nonindigenous OR alien OR exotic OR invade*) AND (estuar* OR marine OR coastal OR ocean* OR sea OR *tidal), followed by mechanism-specific terms outlined below. Search results were then refined using Web of Science tools to those pertaining only to Marine and Freshwater Biology, and all research areas that were clearly not relevant (e.g., not biological) were excluded. All remaining papers were then individually evaluated for relevance. Over 2500 papers were evaluated for negative interactions alone. Mechanism Search terms Negative Interactions AND (“biotic resistance” OR “invasion resistance” OR diversity OR “diversity invasibility” OR “empty niche*” OR “limiting similarity” OR “Darwin’s naturalization” OR pre-adaptation OR “enemy release” OR “enemy escape” OR “natural enem*” OR “native enem*” OR allelopath* OR “chemical defense*” OR “novel weapon*” OR “novel chemical*” OR predat* OR herbivor* OR parasit* OR compet* OR consum*) Positive Interactions AND (meltdown OR facilitat* OR mutual* OR “positive interact*” -
Ecological Performance and Possible Origin of a Ubiquitous but Under-Studied Gastropod
Estuarine, Coastal and Shelf Science 87 (2010) 501e509 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Ecological performance and possible origin of a ubiquitous but under-studied gastropod Mad S. Thomsen a,b,*, Thomas Wernberg b,c, Fernando Tuya b,d, Brian R. Silliman e a Marine Department, National Environmental Research Institute, University of Aarhus, PO. Box 4000, Roskilde, Denmark b Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup Drive, 6017 Western Australia, Australia c School of Plant Biology, University of Western Australia, Hackett Drive, Crawley 6009 WA, Australia d BIOGES, University of Las Palmas de G.C., 35017, Las Palmas, Canary Islands, Spain e Department of Biology, University of Florida, Gainesville, FL 32609, USA article info abstract Article history: Invasions by non-indigenous species (NIS) have been suggested to alter local, regional and global biota on Received 6 October 2009 unprecedented scales. To manage NIS, it is pivotal to identify whether a species is introduced or native, Accepted 19 February 2010 but even today the geographical origin of thousands of species worldwide remain uncertain. Most of Available online 16 March 2010 these ‘cryptogenic species’ are inconspicuous and rare, but in a few instances, they can also be abundant and conspicuous species, with large impacts on community structure. The identification of cryptogenic Keywords: species, and summarizing information on their most likely origin, is an important task in invasion Batillaria australis biology, and can highlight the need for research and management. Here, we document that the uncertain origin shell-producer gastropod Batillaria australis in the Swan River estuary (Perth, Western Australia) is a conspicuous species habitat-former/modifier of uncertain origin.