PACSIN2 and Septin 7 in Diabetic Kidney Disease: Roles in Intracellular Trafficking and Actin Cytoskeleton Organisation in Podocytes

Total Page:16

File Type:pdf, Size:1020Kb

PACSIN2 and Septin 7 in Diabetic Kidney Disease: Roles in Intracellular Trafficking and Actin Cytoskeleton Organisation in Podocytes Research Program for Clinical and Molecular Metabolism and Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Doctoral School in Health Sciences Doctoral Programme in Biomedicine PACSIN2 and septin 7 in diabetic kidney disease: Roles in intracellular trafficking and actin cytoskeleton organisation in podocytes Vincent Dumont ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Medicine of the University of Helsinki, for public examination in the PIII lecture hall in Porthania building, on Saturday the 18th of January 2020 at 12 noon. Helsinki 2020 Supervised by Professor Sanna Lehtonen Department of Pathology Research Program for Clinical and Molecular Metabolism Faculty of Medicine, University of Helsinki Helsinki, Finland Reviewed by Professor Jaakko Patrakka Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Center Department of Laboratory Medicine Karolinska Institutet at Karolinska University Hospital Huddinge Stockholm, Sweden and Professor Jari Ylänne Department of Biological and Environmental Sciences University of Jyväskylä Jyväskylä, Finland Official opponent Professor Nicole Endlich Greifswald Medical School University of Greifswald Greifswald, Germany ISBN 978-951-51-5720-1 (paperback) ISBN 978-951-51-5721-8 (PDF) https://ethesis.helsinki.fi/en Unigrafia Oy © Cover image by Omar Escalante CONTENTS LIST OF ORIGINAL PUBLICATIONS ........................................9 ABBREVIATIONS ................................................................... 10 ABSTRACT ............................................................................. 12 1. INTRODUCTION ................................................................. 14 2. REVIEW OF THE LITERATURE ......................................... 15 2.1. KIDNEY ................................................................................................................... 15 2.1.1. Structure and function of the kidney .............................................................. 15 2.1.2. Glomerulus and glomerular filtration barrier ............................................... 16 2.1.2.1. Structure and function of the glomerulus ................................................ 16 2.1.2.2. Glomerular endothelium .......................................................................... 17 2.1.2.3. Glomerular basement membrane ............................................................ 17 2.1.2.4. Glomerular mesangial cells ...................................................................... 17 2.1.2.5. Glomerular visceral epithelial cells or podocytes ................................... 18 2.1.2.5.1. The slit diaphragm .............................................................................. 19 2.1.2.5.2. Actin cytoskeleton in podocytes ........................................................ 20 2.1.2.5.3. Intracellular trafficking in podocytes ................................................ 21 2.1.3. Kidney tubules .................................................................................................. 23 2.2. DIABETES MELLITUS ............................................................................................. 23 2.2.1. Types of diabetes .............................................................................................. 23 2.2.2. Insulin: the key player in the development of diabetes ................................ 24 2.2.2.1. Insulin signalling ....................................................................................... 25 2.2.2.2. Glucose transporter (GLUT) 4 trafficking .............................................. 25 2.2.2.3. Insulin resistance ...................................................................................... 26 2.2.4. Complications of diabetes ............................................................................... 26 2.3. DIABETIC KIDNEY DISEASE .................................................................................. 27 2.3.1. Typical course of diabetic kidney disease and clinical features.................... 27 2.3.2. Risk factors for the progression of diabetic kidney disease ......................... 27 2.3.3. Pathology of diabetic kidney disease .............................................................. 28 2.3.3.1. Glomerular alterations .............................................................................. 28 2.3.3.2. Tubular changes ........................................................................................ 29 2.3.3.3. Vascular defects......................................................................................... 30 2.3.4. Mechanisms underlying the development of diabetic kidney disease ........ 30 2.3.4.1. Molecular pathways deregulated in diabetic kidney disease ................. 30 2.3.4.2. Inflammation ............................................................................................ 30 2.3.4.3. Hypoxia ...................................................................................................... 31 2.3.4.4. Alterations of the glomerular cell crosstalk ............................................ 31 2.3.4.5. Mechanisms driving podocyte injury in diabetic kidney disease .......... 31 2.3.4.5.1. Downregulation or mislocalisation of nephrin ................................. 32 2.3.4.5.2. Actin cytoskeleton deregulation ........................................................ 32 2.3.4.5.3. Defects in insulin signalling .............................................................. 32 2.3.6. Animal models of diabetes and diabetic kidney disease ............................... 33 2.3.6.1. Induction of diabetes by streptozotocin .................................................. 33 2.3.6.2. Naturally occurring diabetes in rodents .................................................. 34 2.3.6.3. Transgenic mouse models ........................................................................ 35 2.4. PACSIN2 ............................................................................................................... 35 2.4.1. Identification and tissue distribution of PACSINs ........................................ 35 2.4.2. Protein domains of PACSINs .......................................................................... 35 2.4.3. Functions of PACSINs ..................................................................................... 37 2.4.3.1. Role of PACSIN2 in endocytosis and intracellular trafficking ............... 37 2.4.3.2. Regulation of the cytoskeleton by PACSINs ........................................... 38 2.4.3.3. Regulation of receptor signalling by PACSIN2 ....................................... 38 2.4.4. PACSIN2 in the kidney .................................................................................... 39 2.4.5. PACSIN2 in diseases ........................................................................................ 39 2.5. SEPTIN 7 ................................................................................................................. 40 2.5.1. Septin family and structure of septin 7 ........................................................... 40 2.5.2. Function of septin 7 in the kidney .................................................................. 41 2.5.3. Other functions of septin 7 and its association with diseases ...................... 41 3. AIMS OF THE STUDY ......................................................... 43 4. MATERIALS AND METHODS .............................................44 4.1. RODENT MODELS (STUDIES I–IV) ...................................................................... 44 4.2. HUMAN MATERIAL (STUDIES II–IV) .................................................................. 44 4.3. METABOLIC MEASUREMENTS .............................................................................. 45 4.3.1. Blood glucose and FFA measurements (studies I–III) ................................. 45 4.3.2. Albumin excretion and estimation of the glomerular filtration rate (studies I and II) ....................................................................................................................... 45 4.4. CELL CULTURE ...................................................................................................... 45 4.4.1. Mouse podocytes (studies II and IV) .............................................................. 45 4.4.2. Human podocytes (study III) ......................................................................... 46 4.5. OVEREXPRESSION AND KNOCKDOWN STRATEGIES ........................................... 47 4.5.1. Transient overexpression (studies II–IV) ...................................................... 47 4.5.2. Silencing gene expression using siRNA (studies II and IV) ......................... 48 4.6. TREATING PODOCYTES WITH HIGH GLUCOSE, PALMITATE, PKC INHIBITOR OR INSULIN (STUDIES II–IV) ...................................................................................... 49 4.7. LYSIS OF CELLS AND TISSUES,WESTERN BLOTTING ......................................... 49 4.7.1. Isolation and lysis of glomeruli (studies II–IV) ............................................. 49 4.7.2. Lysis of cells (studies II–IV)............................................................................ 49 4.7.3. Western blotting (studies II–IV) .................................................................... 50 4.8. HISTOLOGY, IMMUNOHISTOCHEMISTRY AND IMMUNOFLUORESCENCE......... 50 4.8.1. Histological stainings (studies I, II and IV) ..................................................
Recommended publications
  • CD95 Ligand - Death Factor and Costimulatory Molecule?
    Cell Death and Differentiation (2003) 10, 1215–1225 & 2003 Nature Publishing Group All rights reserved 1350-9047/03 $25.00 www.nature.com/cdd Review CD95 ligand - death factor and costimulatory molecule? O Janssen*,1, J Qian1, A Linkermann1 and D Kabelitz1 Tissue and Cellular Expression of CD95L 1 Institute for Immunology, Medical Center Schleswig-Holstein, Campus Kiel, Michaelisstrasse 5, D-24105 Kiel, Germany The CD95 ligand (CD95L, Apo-1L, FasL, CD178) is a 281- * Corresponding author: O Janssen. Tel: þ 49-431-5973377; Fax: þ 49-431- amino-acid-containing type II transmembrane protein of the 5973335; E-mail: [email protected] TNF family of death factors (Figure 1).1 Its death-inducing function is best documented in the context of activation- Received 24.4.03; revised 12.6.03; accepted 20.6.03; published online 1 August 2003 induced cell death (AICD) in T cells.2 CD95L is expressed as a Edited by T Ferguson death factor in cytotoxic T lymphocytes (CTL) to kill virally infected or transformed target cells and in natural killer (NK) cells, where it is upregulated by CD16 engagement and 3 Abstract cytokines including IL-2 and IL-12. Similarly, high levels of intracellular CD95L have been detected in monocytic cells The CD95 ligand is involved as a death factor in the with an inducible release upon activation.4 Under physiologi- regulation of activation-induced cell death, establishment cal conditions, CD95L is implicated in the control of erythroid of immune privilege and tumor cell survival. In addition, differentiation,5 angiogenesis in the eye6 and skin home- 7 CD95L may serve as a costimulatory molecule for T-cell ostasis.
    [Show full text]
  • Supplementary Material Contents
    Supplementary Material Contents Immune modulating proteins identified from exosomal samples.....................................................................2 Figure S1: Overlap between exosomal and soluble proteomes.................................................................................... 4 Bacterial strains:..............................................................................................................................................4 Figure S2: Variability between subjects of effects of exosomes on BL21-lux growth.................................................... 5 Figure S3: Early effects of exosomes on growth of BL21 E. coli .................................................................................... 5 Figure S4: Exosomal Lysis............................................................................................................................................ 6 Figure S5: Effect of pH on exosomal action.................................................................................................................. 7 Figure S6: Effect of exosomes on growth of UPEC (pH = 6.5) suspended in exosome-depleted urine supernatant ....... 8 Effective exosomal concentration....................................................................................................................8 Figure S7: Sample constitution for luminometry experiments..................................................................................... 8 Figure S8: Determining effective concentration .........................................................................................................
    [Show full text]
  • WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/19 (2006.01) C12Q 1/02 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 15/81 (2006.01) C07K 14/47 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US20 15/049674 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 11 September 2015 ( 11.09.201 5) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/050,045 12 September 2014 (12.09.2014) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: WHITEHEAD INSTITUTE FOR BIOMED¬ DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, ICAL RESEARCH [US/US]; Nine Cambridge Center, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Cambridge, Massachusetts 02142-1479 (US).
    [Show full text]
  • An Expanded Proteome of Cardiac T-Tubules☆
    Cardiovascular Pathology 42 (2019) 15–20 Contents lists available at ScienceDirect Cardiovascular Pathology Original Article An expanded proteome of cardiac t-tubules☆ Jenice X. Cheah, Tim O. Nieuwenhuis, Marc K. Halushka ⁎ Department of Pathology, Division of Cardiovascular Pathology, Johns Hopkins University SOM, Baltimore, MD, USA article info abstract Article history: Background: Transverse tubules (t-tubules) are important structural elements, derived from sarcolemma, found Received 27 February 2019 on all striated myocytes. These specialized organelles create a scaffold for many proteins crucial to the effective Received in revised form 29 April 2019 propagation of signal in cardiac excitation–contraction coupling. The full protein composition of this region is un- Accepted 17 May 2019 known. Methods: We characterized the t-tubule subproteome using 52,033 immunohistochemical images covering Keywords: 13,203 proteins from the Human Protein Atlas (HPA) cardiac tissue microarrays. We used HPASubC, a suite of Py- T-tubule fi Proteomics thon tools, to rapidly review and classify each image for a speci c t-tubule staining pattern. The tools Gene Cards, Caveolin String 11, and Gene Ontology Consortium as well as literature searches were used to understand pathways and relationships between the proteins. Results: There were 96 likely t-tubule proteins identified by HPASubC. Of these, 12 were matrisome proteins and 3 were mitochondrial proteins. A separate literature search identified 50 known t-tubule proteins. A comparison of the 2 lists revealed only 17 proteins in common, including 8 of the matrisome proteins. String11 revealed that 94 of 127 combined t-tubule proteins generated a single interconnected network. Conclusion: Using HPASubC and the HPA, we identified 78 novel, putative t-tubule proteins and validated 17 within the literature.
    [Show full text]
  • Mouse Pacsin2 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Pacsin2 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Pacsin2 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Pacsin2 gene (NCBI Reference Sequence: NM_001159509 ; Ensembl: ENSMUSG00000016664 ) is located on Mouse chromosome 15. 11 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 11 (Transcript: ENSMUST00000171436). Exon 3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Pacsin2 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-63O19 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a null allele exhibit reduced running endurance, distance, and speed with impaired fetal cardiomyocyte electrophysiology. Exon 3 starts from about 4.18% of the coding region. The knockout of Exon 3 will result in frameshift of the gene. The size of intron 2 for 5'-loxP site insertion: 9209 bp, and the size of intron 3 for 3'-loxP site insertion: 1842 bp. The size of effective cKO region: ~657 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 3 4 11 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Pacsin2 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • A Framework to Identify Contributing Genes in Patients with Phelan-Mcdermid Syndrome
    www.nature.com/npjgenmed Corrected: Author Correction ARTICLE OPEN A framework to identify contributing genes in patients with Phelan-McDermid syndrome Anne-Claude Tabet 1,2,3,4, Thomas Rolland2,3,4, Marie Ducloy2,3,4, Jonathan Lévy1, Julien Buratti2,3,4, Alexandre Mathieu2,3,4, Damien Haye1, Laurence Perrin1, Céline Dupont 1, Sandrine Passemard1, Yline Capri1, Alain Verloes1, Séverine Drunat1, Boris Keren5, Cyril Mignot6, Isabelle Marey7, Aurélia Jacquette7, Sandra Whalen7, Eva Pipiras8, Brigitte Benzacken8, Sandra Chantot-Bastaraud9, Alexandra Afenjar10, Delphine Héron10, Cédric Le Caignec11, Claire Beneteau11, Olivier Pichon11, Bertrand Isidor11, Albert David11, Laila El Khattabi12, Stephan Kemeny13, Laetitia Gouas13, Philippe Vago13, Anne-Laure Mosca-Boidron14, Laurence Faivre15, Chantal Missirian16, Nicole Philip16, Damien Sanlaville17, Patrick Edery18, Véronique Satre19, Charles Coutton19, Françoise Devillard19, Klaus Dieterich20, Marie-Laure Vuillaume21, Caroline Rooryck21, Didier Lacombe21, Lucile Pinson22, Vincent Gatinois22, Jacques Puechberty22, Jean Chiesa23, James Lespinasse24, Christèle Dubourg25, Chloé Quelin25, Mélanie Fradin25, Hubert Journel26, Annick Toutain27, Dominique Martin28, Abdelamdjid Benmansour1, Claire S. Leblond2,3,4, Roberto Toro2,3,4, Frédérique Amsellem29, Richard Delorme2,3,4,29 and Thomas Bourgeron2,3,4 Phelan-McDermid syndrome (PMS) is characterized by a variety of clinical symptoms with heterogeneous degrees of severity, including intellectual disability (ID), absent or delayed speech, and autism spectrum disorders (ASD). It results from a deletion of the distal part of chromosome 22q13 that in most cases includes the SHANK3 gene. SHANK3 is considered a major gene for PMS, but the factors that modulate the severity of the syndrome remain largely unknown. In this study, we investigated 85 patients with different 22q13 rearrangements (78 deletions and 7 duplications).
    [Show full text]
  • Genetic and Functional Evidence for a Locus Controlling Otitis Media At
    Rye et al. BMC Medical Genetics 2014, 15:18 http://www.biomedcentral.com/1471-2350/15/18 RESEARCH ARTICLE Open Access Genetic and functional evidence for a locus controlling otitis media at chromosome 10q26.3 Marie S Rye1*, Elizabeth SH Scaman1, Ruth B Thornton1,2, Shyan Vijayasekaran4,5, Harvey L Coates4,5, Richard W Francis1, Craig E Pennell3, Jenefer M Blackwell1 and Sarra E Jamieson1* Abstract Background: Otitis media (OM) is a common childhood disease characterised by middle ear effusion and inflammation. Susceptibility to recurrent acute OM and chronic OM with effusion is 40-70% heritable. Linkage studies provide evidence for multiple putative OM susceptibility loci. This study attempts to replicate these linkages in a Western Australian (WA) population, and to identify the etiological gene(s) in a replicated region. Methods: Microsatellites were genotyped in 468 individuals from 101 multicase families (208 OM cases) from the WA Family Study of OM (WAFSOM) and non-parametric linkage analysis carried out in ALLEGRO. Association mapping utilized dense single nucleotide polymorphism (SNP) data extracted from Illumina 660 W-Quad analysis of 256 OM cases and 575 controls from the WA Pregnancy Cohort (Raine) Study. Logistic regression analysis was undertaken in ProbABEL. RT-PCR was used to compare gene expression in paired adenoid and tonsil samples, and in epithelial and macrophage cell lines. Comparative genomics methods were used to identify putative regulatory elements and transcription factor binding sites potentially affected by associated SNPs. Results: Evidence for linkage was observed at 10q26.3 (Zlr = 2.69; P = 0.0036; D10S1770) with borderline evidence for linkage at 10q22.3 (Zlr = 1.64; P = 0.05; D10S206).
    [Show full text]
  • A Proteomic Screen Reveals Novel Fas Ligand Interacting Proteins Within Nervous System Schwann Cells
    A Proteomic Screen Reveals Novel Fas Ligand Interacting Proteins within Nervous System Schwann cells Peter Thornhill Department of Physiology McGill University June, 2007 A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements of the degree of Master of Science (MSc.). © Peter Thornhill, 2007 Libraryand Bibliothèque et 1+1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada Your file Votre référence ISBN: 978-0-494-38437-4 Our file Notre référence ISBN: 978-0-494-38437-4 NOTICE: AVIS: The author has granted a non­ L'auteur a accordé une licence non exclusive exclusive license allowing Library permettant à la Bibliothèque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans loan, distribute and sell theses le monde, à des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, électronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in et des droits moraux qui protège cette thèse. this thesis. Neither the thesis Ni la thèse ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent être imprimés ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent Permalink https://escholarship.org/uc/item/7m04f0b0 Author Buchholz, Kyle Stephen Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioengineering by Kyle Stephen Buchholz Committee in Charge: Professor Jeffrey Omens, Chair Professor Andrew McCulloch, Co-Chair Professor Ju Chen Professor Karen Christman Professor Robert Ross Professor Alexander Zambon 2016 Copyright Kyle Stephen Buchholz, 2016 All rights reserved Signature Page The Dissertation of Kyle Stephen Buchholz is approved and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California, San Diego 2016 iii Dedication To my beautiful wife, Rhia. iv Table of Contents Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents ................................................................................................................ v List of Figures ...................................................................................................................
    [Show full text]
  • Identification of Neuronal Substrates Implicates Pak5 in Synaptic Vesicle Trafficking
    Identification of neuronal substrates implicates Pak5 in synaptic vesicle trafficking Todd I. Strochlica, Susanna Concilioa, Julien Viaudb, Ryan A. Eberwinea, Lisa Epstein Wongc, Audrey Mindenc, Benjamin E. Turkd, Markus Plomanne, and Jeffrey R. Petersona,1 aCancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111; bInstitut National de la Sante et de la Recherche Medicale U1048 Equipe B. Payrastre Bâtiment B, Pavillon Lefebvre, BP 3028, 31024 Toulouse, France; cSusan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway, NJ 08854; dDepartment of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520; and eCenter for Biochemistry, Medical Faculty of the University of Cologne, Joseph-Stelzmann-Strasse 52 50931 Cologne, Germany Edited by Pietro De Camilli, Yale University and Howard Hughes Medical Institute, New Haven, CT, and approved January 17, 2012 (received for review October 7, 2011) Synaptic transmission is mediated by a complex set of molecular in the brain (14, 15). Consistent with some level of functional re- events that must be coordinated in time and space. While many dundancy between these Pak isoforms, no phenotype has been proteins that function at the synapse have been identified, the reported for PAK5 or PAK6 single knockout mice (10, 16), but signaling pathways regulating these molecules are poorly under- PAK5/PAK6 double knockout mice exhibit defects in behavior, stood. Pak5 (p21-activated kinase 5) is a brain-specific isoform of memory, and learning (16). The molecular mechanisms underly- the group II Pak kinases whose substrates and roles within the ing these cognitive defects, however, have yet to be determined.
    [Show full text]
  • Native KCC2 Interactome Reveals PACSIN1 As a Critical Regulator of Synaptic Inhibition
    bioRxiv preprint doi: https://doi.org/10.1101/142265; this version posted May 25, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition Vivek Mahadevan1, 2, C. Sahara Khademullah1, #, Zahra Dargaei1, #, Jonah Chevrier1,, Pavel Uvarov3, Julian Kwan4, Richard D. Bagshaw5, Tony Pawson5, §, Andrew Emili4, Yves DeKoninck6, Victor Anggono7, Matti S. Airaksinen3, Melanie A. Woodin1* 1 Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada 2 Present address: Section on Cellular and Synaptic Physiology, NICHD, Bethesda, Maryland, USA 3 Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland 4 Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada 5 Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada 6 Institut Universitaire en Santé Mentale de Québec, Québec, QC G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, G1V 0A6, Canada 7 Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia # Equal contribution § Deceased August 7, 2013 * Corresponding author: [email protected], 416-978-8646 bioRxiv preprint doi: https://doi.org/10.1101/142265; this version posted May 25, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Ep 2287340 A2
    (19) TZZ ¥Z T (11) EP 2 287 340 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 23.02.2011 Bulletin 2011/08 C12Q 1/68 (2006.01) (21) Application number: 10075441.5 (22) Date of filing: 11.05.2006 (84) Designated Contracting States: • Severinsen, Jacob AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 8210 Århus C (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Mors, Ole SK TR 8240 Risskov (DK) Designated Extension States: • Muir, Walter AL BA HR MK YU Peebles EH45 8NA (GB) • Blackwood, Douglas (30) Priority: 11.05.2005 DK 200500680 Edinburgh EH10 4RY (GB) (62) Document number(s) of the earlier application(s) in (74) Representative: Didmon, Mark accordance with Art. 76 EPC: Potter Clarkson LLP 06742417.6 / 1 888 773 Park View House 58 The Ropewalk (71) Applicants: Nottingham NG1 5DD (GB) • Aarhus Universitet 8000 Århus C (DK) Remarks: • Region Midtjylland •ThecompletedocumentincludingReferenceTables 8800 Viborg (DK) and the Sequence Listing can be downloaded from the EPO website (72) Inventors: •This application was filed on 15-09-2010 as a • Ewald, Henrik divisional application to the application mentioned Deceased (DK) under INID code 62. • Børglum, Anders 6270 Hoejbjerg (DK) (54) Method for diagnosis and treatment of a mental disease (57) The present invention relates to association of one or more polymorphisms in the human NHP2L1, PACSIN2, SERHL, PIPPIN, BRD1, EP300, FAM19A5 and/or GPR24 genes to the occurrence of schizophrenia and/or bipolar disorder. The invention relates both to methods for diagnosing a predisposition to said diseases and for treating subjects having said diseases.
    [Show full text]