Archaeological Oceanography of Inundated Coastal Prehistoric Sites

Total Page:16

File Type:pdf, Size:1020Kb

Archaeological Oceanography of Inundated Coastal Prehistoric Sites University of Rhode Island DigitalCommons@URI Open Access Dissertations 2003 ARCHAEOLOGICAL OCEANOGRAPHY OF INUNDATED COASTAL PREHISTORIC SITES Dwight F. Coleman University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Coleman, Dwight F., "ARCHAEOLOGICAL OCEANOGRAPHY OF INUNDATED COASTAL PREHISTORIC SITES" (2003). Open Access Dissertations. Paper 1133. https://digitalcommons.uri.edu/oa_diss/1133 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. ARCHAEOLOGICAL OCEANOGRAPHY OF INUNDATED COAST AL PREHISTORIC SITES BY DWIGHT F. COLEMAN A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN OCEANOGRAPHY UNIVERSITY OF RHODE ISLAND 2003 ABSTRACT The field of shallow underwater archaeology has grown significantly during the last century, especially since the development of advanced technologies such as the self-contained underwater breathing apparatus (SCUBA) . Other advanced technologies, such as high-resolution geophysical surveying systems and robotic undersea vehicles, which have been used extensively in the oceanographic sciences during the last several decades, are now being used in the archaeological sciences to investigate underwater sites representing human history. These technologies , in addition to the oceanographic and geophysical methodologies for exploration, prospecting, and site surveying, now form the technological basis of the nascent discipline of "Archaeological Oceanography ." This discipline combines the traditional methodologies of archaeology with those of oceanography to search for, investigate, document, sample, and analyze submerged cultural remains. For the most part, these remains are shipwrecks, but other submerged sites, such as drowned prehistoric terrestrial sites, have been discovered and recognized as significant to our understanding of human history. The major process by which these sites become submerged is the inundation of low-elevation land masses due to the rising level of large bodies of water, both marine seas and inland freshwater lakes. It is well-established that prehistoric human populations existed in coastal environments. Since the last Ice Age, about 20,000 years before present, global sea level has risen more than 100 meters in response to melting continental ice sheets. Nearly all present-day coastal embayments, lagoons, coves, inlets, fjords, channels, sounds, and shallow outer continental shelves throughout the world were exposed above sea level for several millennia as the glaciers retreated. In addition, the shorelines of most large inland lakes were at a much lower level during the dry times associated with the last Ice Age. The exposed low-elevation coasts, in addition to interior lake shorelines and adjacent landscapes, were gradually or, in some cases, catastrophically flooded by rising water levels. Any sites of human occupation along these coasts are now under water and draped by modern sediments. Many shallow water prehistoric archaeological sites have been discovered throughout the world, but systematic approaches to the survey of these sites have been infrequent and poorly defined. Some researchers hypothesize that prehistoric humans migrated along coastal routes, but this has yet to be definitively proven. Most of these coastal routes followed shorelines that are now submerged on the continental shelves. In addition, inland bodies of fresh water would have been attractive to prehistoric humans during the last Ice Age as a valuable resource during a very dry climatic period in recent earth history . The paleo-environmental and archaeological features of these coastal settings are now preserved in the shallow offshore geologic record. Oceanographic and geophysical methodologies are directly applicable to the investigation of these features and used to study the "underwater environmental archaeology" of potential sites. Several diverse submerged coastal regions have been intensely surveyed for their prehistoric archaeological potential, and these represent the case studies presented in this investigation. Offshore southern New England , in the vicinity of what is now Block Island, was once a habitable coastal environment that has now been naturally inundated by about 100 meters of rising ocean water. This environment, which was located along the fringe of the glacial ice during its maximum extent, has also been slowly uplifted by glacial rebound and reworked by modern coastal oceanographic processes. A number of archaeological sites have been found on Block Island, and exploration off its southern and western coasts has revealed an interesting landscape that would have been favorable to early human populations. Several ancient river channels and coastal lagoon features were investigated using geophysical mapping methods and sediment coring. Although further visual investigation is required, the submerged environmental archaeology of a paleo-Block Island reveals significant potential for the discovery of ancient human occupation sites. During a dry time period critical to the advance of people in the New World, ancient Lake Huron was at a substantially lower elevation. From about 10,000 to 8,000 years before present, the shores of the lake were as much as 120 meters lower in elevation. Gradual refilling of the Lake Huron basin has occurred since that time, thereby inundating and preserving any potential sites of human occupation near the shoreline . A number of prehistoric archaeological sites and Pleistocene mammal remains have been discovered near the basin. Detailed mapping and exploration in Thunder Bay National Marine Sanctuary, off northeastern Lower Michigan, has revealed a number of submerged sinkholes , part of an evaporite and limestone karst geologic formation that can be traced onshore. Several sinkholes were investigated using geophysical mapping techniques and visually explored using a remotely operated vehicle. One sinkhole that was discovered in 90 meters water depth contains a unique deposit that could yield human cultural material, and this site will be the focus of future intensive geologic and archaeological sampling. The Black Sea was once an isolated, inland, freshwater lake. Several advanced Neolithic cultures are known to have populated the surrounding coastal regions of the Black Sea. For this and other reasons, the region is an ideal location to explore for inundated archaeological sites. This body of water is suspected of being catastrophically inundated by rising marine water about 7,500 years ago. The inundation would have driven away the coastal population, but the sites that represent their habitat could be preserved in what is now a shallow marine setting, up to about 150 meters water depth. In addition, and due in part to the inundation, the deep waters of the Black Sea are devoid of oxygen, which means submerged archaeological sites near and below the anoxic interface are very highly preserved , as no organisms can exist to destroy them. Exploration off the northern coast of Turkey in the southern Black Sea and off the western Black Sea coasts of Bulgaria and Romania has resulted in several interesting discoveries that could represent significant archaeological sites. One location in particular contained what appeared to be a stone and wooden structure that sat atop a topographic high point at about 95 meters water depth in the submerged landscape. This has enormous potential to represent a significant pre-flood Neolithic archaeological site, and will be intensely examined and sampled using an advanced remotely operated vehicle system during a future expedition. Although these case studies do not confirm or deny the existence of inundated prehistoric cultural sites in these locations, they do represent examples of diverse environmental settings that responded differently to the geologic and oceanographic processes following the last Ice Age. More work clearly needs to be done in this field, on the sites mentioned here and elsewhere, to learn more about the existence and preservation of submerged prehistoric archaeological sites. There is great potential for significant archaeological discoveries to be made using the available advanced oceanographic technologies to investigate submerged landscapes. Many mysteries surrounding the evolution, adaptation , and migration of the human species throughout the world could be solved by more detailed and advanced underwater exploration using the archaeological oceanographic approach described here. ACKNOWLEDGEMENTS This doctoral dissertation is a direct result of nearly four years of nonstop research, proposal writing, report writing, intense planning, design, engineering, and field work, coordinated and led primarily by myself, my supervisor, Dr. Robert Ballard, and the staff at the Institute for Exploration (IFE) in Mystic, CT. During that time, eight successful oceanographic expeditions were conducted that directly relate to the research presented here. These include two expeditions off Block Island, RI; two expeditions in Lake Huron, off Alpena, MI; and four expeditions to the Black Sea, two off northern Turkey and two off Bulgaria. During this time, I played an instrumental role in four other expeditions that are unrelated to this dissertation . Twelve expeditions
Recommended publications
  • Stone Tidal Weirs, Underwater Cultural Heritage Or Not? Akifumi
    Stone Tidal Weirs, Underwater Cultural Heritage or Not? Akifumi Iwabuchi Tokyo University of Marine Science and Technology, Tokyo, Japan, 135-8533 Email: [email protected] Abstract The stone tidal weir is a kind of fish trap, made of numerous rocks or reef limestones, which extends along the shoreline on a colossal scale in semicircular, half-quadrilateral, or almost linear shape. At the flood tide these weirs are submerged beneath the sea, while they emerge into full view at the ebb. Using with nets or tridents, fishermen, inside the weirs at low tides, catch fish that fails to escape because of the stone walls. They could be observed in the Pacific or the Yap Islands, in the Indian Ocean or the east African coast, and in the Atlantic or Oleron and Ré Islands. The UNESCO’s 2001 Convention regards this weir as underwater cultural heritage, because it has been partially or totally under water, periodically or continuously, for at least 100 years; stone tidal weirs have been built in France since the 11th century and a historical record notes that one weir in the Ryukyu Islands was built in the 17th century. In Japan every weir is considered not to be buried cultural property or cultural heritage investigated by archaeologists, but to be folk cultural asset studied by anthropologists, according to its domestic law for the protection of cultural properties. Even now in many countries stone tidal weirs are continuously built or restored by locals. Owing to the contemporary trait, it is not easy to preserve them under the name of underwater cultural heritage.
    [Show full text]
  • Side Scan Sonar and the Management of Underwater Cultural Heritage Timmy Gambin
    259 CHAPTER 15 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OAR@UM Side Scan Sonar and the Management of Underwater Cultural Heritage Timmy Gambin Introduction Th is chapter deals with side scan sonar, not because I believe it is superior to other available technologies but rather because it is the tool that I have used in the context of a number of off shore surveys. It is therefore opportune to share an approach that I have developed and utilised in a number of projects around the Mediterranean. Th ese projects were conceptualised together with local partners that had a wealth of local experience in the countries of operation. Over time it became clear that before starting to plan a project it is always important to ask oneself the obvious question – but one that is oft en overlooked: “what is it that we are setting out to achieve”? All too oft en, researchers and scientists approach a potential research project with blinkers. Such an approach may prove to be a hindrance to cross-fertilisation of ideas as well as to inter-disciplinary cooperation. Th erefore, the aforementioned question should be followed up by a second query: “and who else can benefi t from this project?” Benefi ciaries may vary from individual researchers of the same fi eld such as archaeologists interested in other more clearly defi ned historic periods (World War II, Early Modern shipping etc) to other researchers who may be interested in specifi c studies (African amphora production for example).
    [Show full text]
  • Inventory and Analysis of Archaeological Site Occurrence on the Atlantic Outer Continental Shelf
    OCS Study BOEM 2012-008 Inventory and Analysis of Archaeological Site Occurrence on the Atlantic Outer Continental Shelf U.S. Department of the Interior Bureau of Ocean Energy Management Gulf of Mexico OCS Region OCS Study BOEM 2012-008 Inventory and Analysis of Archaeological Site Occurrence on the Atlantic Outer Continental Shelf Author TRC Environmental Corporation Prepared under BOEM Contract M08PD00024 by TRC Environmental Corporation 4155 Shackleford Road Suite 225 Norcross, Georgia 30093 Published by U.S. Department of the Interior Bureau of Ocean Energy Management New Orleans Gulf of Mexico OCS Region May 2012 DISCLAIMER This report was prepared under contract between the Bureau of Ocean Energy Management (BOEM) and TRC Environmental Corporation. This report has been technically reviewed by BOEM, and it has been approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of BOEM, nor does mention of trade names or commercial products constitute endoresements or recommendation for use. It is, however, exempt from review and compliance with BOEM editorial standards. REPORT AVAILABILITY This report is available only in compact disc format from the Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, at a charge of $15.00, by referencing OCS Study BOEM 2012-008. The report may be downloaded from the BOEM website through the Environmental Studies Program Information System (ESPIS). You will be able to obtain this report also from the National Technical Information Service in the near future. Here are the addresses. You may also inspect copies at selected Federal Depository Libraries. U.S. Department of the Interior U.S.
    [Show full text]
  • Technologies for Underwater Archaeology and Maritime Preservation
    Technologies for Underwater Archaeology and Maritime Preservation September 1987 NTIS order #PB88-142559 Recommended Citation: U.S. Congress, Office of Technology Assessment, Technologies for Underwater Archaeol- ogy and Maritime Preservation— Background Paper, OTA-BP-E-37 (Washington, DC: U.S. Government Printing Office, September 1987). Library of Congress Catalog Card Number 87-619848 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form on the last page of this background paper) Foreword Exploration, trading, and other maritime activity along this Nation’s coast and through its inland waters have played crucial roles in the discovery, settlement, and develop- ment of the United States. The remnants of these activities include such varied cul- tural historic resources as Spanish, English, and American shipwrecks off the Atlantic and Pacific coasts; abandoned lighthouses; historic vessels like Maine-built coastal schooners, or Chesapeake Bay Skipjacks; and submerged prehistoric villages in the Gulf Coast. Together, this country’s maritime activities make up a substantial compo- nent of U.S. history. This background paper describes and assesses the role of technology in underwater archaeology and historic maritime preservation. As several underwater projects have recently demonstrated, advanced technology, often developed for other uses, plays an increasingly important role in the discovery and recovery of historic shipwrecks and their contents. For example, the U.S. Government this summer employed a powerful remotely operated vehicle to map and explore the U.S.S. Monitor, which lies on the bottom off Cape Hatteras. This is the same vehicle used to recover parts of the space shuttle Challenger from the ocean bottom in 1986.
    [Show full text]
  • Developing Protocols for Reconstructing Submerged Paleocultural Landscapes and Identifying Ancient Native American Archaeological Sites in Submerged Environments
    OCS Study BOEM 2020-024 Developing Protocols for Reconstructing Submerged Paleocultural Landscapes and Identifying Ancient Native American Archaeological Sites in Submerged Environments: Geoarchaeological Modeling US Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs OCS Study BOEM 2020-024 Developing Protocols for Reconstructing Submerged Paleocultural Landscapes and Identifying Ancient Native American Archaeological Sites in Submerged Environments: Geoarchaeological Modeling March 2020 Authors: David S. Robinson, Carol L. Gibson, Brian J. Caccioppoli, and John W. King Prepared under BOEM Award M12AC00016 by The Coastal Mapping Laboratory Graduate School of Oceanography, University of Rhode Island 215 South Ferry Road Narragansett, RI 02882 US Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs DISCLAIMER Study collaboration and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program, Washington, DC, under Agreement Number M12AC00016 between BOEM and the University of Rhode Island. This report has been technically reviewed by BOEM and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management Data and Information Systems webpage (http://www.boem.gov/Environmental-Studies- EnvData/), click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2020-024.
    [Show full text]
  • Distribution and Sedimentary Characteristics of Tsunami Deposits
    Sedimentary Geology 200 (2007) 372–386 www.elsevier.com/locate/sedgeo Distribution and sedimentary characteristics of tsunami deposits along the Cascadia margin of western North America ⁎ Robert Peters a, , Bruce Jaffe a, Guy Gelfenbaum b a USGS Pacific Science Center, 400 Natural Bridges Drive, Santa Cruz, CA 95060, United States b USGS 345 Middlefield Road, Menlo Park, CA 94025, United States Abstract Tsunami deposits have been found at more than 60 sites along the Cascadia margin of Western North America, and here we review and synthesize their distribution and sedimentary characteristics based on the published record. Cascadia tsunami deposits are best preserved, and most easily identified, in low-energy coastal environments such as tidal marshes, back-barrier marshes and coastal lakes where they occur as anomalous layers of sand within peat and mud. They extend up to a kilometer inland in open coastal settings and several kilometers up river valleys. They are distinguished from other sediments by a combination of sedimentary character and stratigraphic context. Recurrence intervals range from 300–1000 years with an average of 500–600 years. The tsunami deposits have been used to help evaluate and mitigate tsunami hazards in Cascadia. They show that the Cascadia subduction zone is prone to great earthquakes that generate large tsunamis. The inclusion of tsunami deposits on inundation maps, used in conjunction with results from inundation models, allows a more accurate assessment of areas subject to tsunami inundation. The application of sediment transport models can help estimate tsunami flow velocity and wave height, parameters which are necessary to help establish evacuation routes and plan development in tsunami prone areas.
    [Show full text]
  • The Geologic Implications of the Factors That Affected Relative Sea
    University of South Carolina Scholar Commons Theses and Dissertations 12-15-2014 The Geologic Implications of the Factors that Affected Relative Sea-level Positions in South Carolina During the Pleistocene and the Associated Preserved High-stand Deposits William Richardson Doar III University of South Carolina - Columbia Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Geology Commons Recommended Citation Doar, W. R.(2014). The Geologic Implications of the Factors that Affected Relative Sea-level Positions in South Carolina During the Pleistocene and the Associated Preserved High-stand Deposits. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/ etd/2969 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Geologic Implications of the Factors that Affected Relative Sea-level Positions in South Carolina During the Pleistocene and the Associated Preserved High-stand Deposits by William Richardson Doar, III Bachelor of Science East Carolina University, 1993 Master of Science East Carolina University, 1998 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Geological Sciences College of Arts and Sciences University of South Carolina 2014 Accepted by: George Voulgaris, Major Professor Christopher G. St. C. Kendall, Major Professor David L. Barbeau, Jr., Committee Member Robert E. Weems, Committee Member Lacy Ford, Vice Provost and Dean of Graduate Studies ©Copyright by William Richardson Doar, III, 2014 All rights reserved ii DEDICATION This project is dedicated to my family and friends who supported this endeavor and to Emily Ann Louder, my daughter, who at this time has no understanding of why her father is still in school, but is so excited that I am.
    [Show full text]
  • + Conservation Considerations for Archaeology Collections. the Following Discussion Is Adapted from the SHA Standards and Guidel
    + Conservation Considerations for Archaeology Collections. The following discussion is adapted from the SHA Standards and Guidelines for the Curation of Archaeological Collections (1993) and the NPS Museum Handbook, Part I (1996). Archaeological objects “in situ” have generally reached a state of equilibrium with their environment. Although taphonomic processes, (what happens to an object or organic material after disposal or death), might have altered the object in some manner and erosion and weathering may continue to alter the object, many artifacts are recovered from stable environments. The excavation process disturbs this stability and recommences deterioration. A critical task for any archaeological project is to reestablish equilibrium before total destruction of the object occurs. Different materials, i.e. glass, metal, ceramics, stone, etc., are subject to different destructive forces and require different preventative measures. Therefore, as mentioned in Chapter 2, it is recommended that archaeologists consult with conservators before excavation begins. This allows the archaeologist to become conversant with the types of artifacts that may be encountered, the conditions in which they are found, and preliminary conservation measures. At any time, when difficulties are encountered in the field, consultation with conservators can help in the recovery process. This allows for retention of as much factual information about the artifact as possible (Bourque, et. al. 1980, Storch 1997). The Table below lists the most common archaeological materials with their associated problems and curatorial requirements. This list is not inclusive and provides guidelines only. The optimal temperature listed varies among the materials. MHS’s storage facilities are kept at 65°(+/- 3% in 24 hours) with 50% relative humidity (+/- 3%), providing an average suitable for most materials.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Stress in the Lithosphere
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Stress in the Lithosphere from Non-Tectonic Loads with Implications for Plate Boundary Processes A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Earth Sciences by Karen Marie Luttrell Committee in charge: David Sandwell, Chair Bruce Bills Donna Blackman Steve Cande Yuri Fialko Xanthippi Markenscoff 2010 © 2010 Karen Marie Luttrell All rights reserved The Dissertation of Karen Marie Luttrell is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2010 iii DEDICATION To Chad and Oliver, with all my love iv EPIGRAPH Before the hills in order stood or earth received her frame from everlasting, thou art God to endless years the same Isaac Watts, 1719 v TABLE OF CONTENTS Signature Page iii Dedication iv Epigraph v Table of Contents vi List of Figures ix List of Tables xi Acknowledgements xii Vita xv Abstract of the Dissertation xvii Chapter 1 Introduction 1 1.1 Preface 1 1.2 Plate tectonics 2 1.3 Non-Tectonic sources of stress 4 1.3.1 Time varying surface loads 4 1.3.2 Topography loads 7 1.4 Conclusions 11 1.4.1 Summary of results 11 1.4.2 Future research 12 Chapter 2 Ocean loading effects on stress at near shore plate boundary fault 15 systems 2.1 Introduction 16 2.2 Methods 21 2.2.1 Plate bending stress from ocean loading 21 2.2.2 Ocean loading stress on plate boundary faults 27 2.3 Results 30 2.3.1 Eustatic ocean loading at the San Andreas system 30 2.3.2
    [Show full text]
  • The Marine Archaeological Resource
    The marine archaeological resource IFA Paper No. 4 Ian Oxley and David O’Regan IFA PAPER NO. 4 THE MARITIME ARCHAEOLOGICAL RESOURCE Published by the Institute of Field Archaeologists SHES, University of Reading, Whiteknights, PO Box 227, Reading RG6 6AB ISBN 0 948393 18 1 Copyright © the authors (text), illustrations by permission © IFA (typography and design) Edited by Jenny Moore and Alison Taylor The authors Ian Oxley, formerly Deputy Director of the Archaeological Diving Unit, University of St Andrews, is researching the management of historic wreck sites at the Centre for Environmental Resource Management, Department of Civil and Offshore Engineering, Heriot-Watt University, Edinburgh. David O’Regan is a freelance archaeologist, formerly Project Manager for the Defence of Britain Project, Imperial War Museum. Acknowledgements A document attempting to summarise a subject area as wide as UK maritime archaeology inevitably involves the input of a large number of people. It is impossible to name them all and therefore any omissions are regretted but their support is gratefully acknowledged. Particular thanks go to Martin Dean, Mark Lawrence, Ben Ferrari, Antony Firth, Karen Gracie-Langrick, Mark Redknap and Kit Watson. General thanks go to the past and present staff members of the Archaeological Diving Unit and the Scottish Institute of Maritime Studies at the University of St Andrews, and officers and Council members of the IFA and its Maritime Affairs Special Interest Group. The IFA gratefully acknowledges the assistance of the Royal Commission on the Historical Monuments of England, Royal Commission on the Ancient and Historical Monuments of Scotland, Historic Scotland, and the Environment and Heritage Service, Historic Buildings and Monuments, DoE(NI), for funding this paper.
    [Show full text]
  • Privateering, Faye Kert
    Measuring Effects of Treasure Salvors on Spanish Colonial Shipwreck Sites By Melissa R. Price he treasure salvage of submerged archaeological sites has been a topic of continuous discussion T within the realm of maritime archaeology. In Florida especially, a culture of treasure salvage developed in the 1950s and became widespread, as much a result of SCUBA technology as of romanticized tales of sunken treasure. As more shipwrecks were discovered and exploited, the State of Florida was faced with a dilemma: how should these underwater resources be managed? In 1964, as Florida’s shipwreck salvage movement accelerated, the state hired its first underwater archaeologist to oversee exploration and salvage activities. Starting in 1967, the Division of Archives, History, and Records Management retained responsibility for protecting Florida’s cultural heritage, including its underwater heritage. State-owned properties and territorial waters (three nautical miles from the mean low water mark) could only be salvaged with a contract from the Division, with field agents overseeing salvage activities. The state initially instituted a contract system, with contracts being issued for either exploration or salvage purposes, thus giving rise to the Florida Exploration and Salvage Program (now Exploration and Recovery Program). Eventually, the contract system was replaced with a permitting system, and more stringent requirements were placed on commercial salvors. Students from the East Carolina University investigate the Pillar Dollar Wreck in Biscayne Bay. What could an academic investigation of the (Photo courtesy of Charles Lawson/NPS). treasure salvage industry and looting activities reveal continued on page 3 INSIDE THIS ISSUE: Effects of Treasure Salvors ................................ 1 Two Oceans Aquarium ....................................
    [Show full text]
  • Marine Cultural and Historic Newsletter Monthly Compilation of Maritime Heritage News and Information from Around the World Volume 2.1, 2005 (January)1
    Marine Cultural and Historic Newsletter Monthly compilation of maritime heritage news and information from around the world Volume 2.1, 2005 (January)1 his newsletter is provided as a service by the All material contained within the newsletter is excerpted National Marine Protected Areas Center to share from the original source and is reprinted strictly for T information about marine cultural heritage and information purposes. The copyright holder or the historic resources from around the world. We also hope contributor retains ownership of the work. The to promote collaboration among individuals and Department of Commerce’s National Oceanic and agencies for the preservation of cultural and historic Atmospheric Administration does not necessarily resources for future generations. endorse or promote the views or facts presented on these sites. The information included here has been compiled from many different sources, including on-line news sources, To receive the newsletter, send a message to federal agency personnel and web sites, and from [email protected] with “subscribe MCH cultural resource management and education newsletter” in the subject field. Similarly, to remove professionals. yourself from the list, send the subject “unsubscribe MCH newsletter”. Feel free to provide as much contact We have attempted to verify web addresses, but make information as you would like in the body of the no guarantee of accuracy. The links contained in each message so that we may update our records. newsletter have been verified on the date of issue. Federal Agencies National Park Service (Department of the Interior) National Register of Historic Places (courtesy of Erika Martin Seibert, Archaeologist at the National Register of Historic Places) The National Register of Historic Places listed the Portland Shipwreck and remains on the National Register.
    [Show full text]