Infrared and Ultra-Violet Regions
Total Page:16
File Type:pdf, Size:1020Kb
CQD Atomic Engineering of III-V Semiconductors for optoelectronic Quantum Devices from; Deep UV(200nm) to THZ( 300 microns) Manijeh Razeghi Center for Quantum Devices Dept. of Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 email: [email protected], Ph: (847) 491-7251, Fax: (847) 467-1817 Boston Chapter of IEEE Photonics Society: Emerging Optical Materials Workshop Wednesday, April 12, 2017 1 Major Achievements of 20th Century CQD Physical Science Q-mechanics Atomic Structure •Semiconductors •Superconductors •Simulation •Polymers •Interconnection Natural Information Electronics Science Science Computer& Internet •Artificial Neural •Simulation Networks •Interconnection •Fuzzy Logic Life Science Genetics Gene & Cell Structure 2 Quantum Optoelectronic Devices and ResearchCQD optoelectronic devices will be involved in all areas of a human’s life, trying to improve the functionality of its body and mind. Examples of Quantum device applications are given below. EXPLORATION (Space & Underwater) needs reliable electronics in all these domains • Pollution sensors • Food safety • Solar Cells • ... • Energy efficient • Virtual reality • Bullet medicine devices (LEDs...) Food • ... • Sensors • Biomimetrics Energy Health • ... Medicine Needs of each individual in Society Entertainment Transportation • Virtual reality Communication • Computers • Electrical vehicles • Optical fiber (WDM, DWDM) • Video games • Computers • Wireless • Interactive media • Sensors • Personal Digital Assistant • Internet • ... • ... • ... 3 What Is a Semiconductor? CQD conduction band n-doping p-doping E band gap valance band IIA III-V isolated atoms crystal distance in real space Be IIIA IVA VA VIA A B A C D E Mg B C N O Ca IIB Al Si P S Sr Zn Ga Ge As Se Ba Cd In Sn Sb Te Ra Hg Tl Pb Bi Po band gap engineering 4 4 CZOCHRALSKI Bulk SC, Epitaxy & CQD Processing Epitaxy Bulk Semiconductor Semiconductor lasers Photo Lithography 5 Artificial Atoms and Molecules “Mimicking” Nature CQD Toward 0-D confinement Density of State 3D Bulk Q-DOT 3D 3D Material DOS (3D) DOS • Artificial Atom such as Quantum Eg 2D Dots are the basic building blocks of the Artificial Molecules. 2D 2D Quantum • Artificial Atoms enhance our knowledge about the nano-structures DOS Well DOS (2D) due to their simple structures. E E E g 1 (c)2 (a) (b) 1D 1D 1D Quantum DOS Wire DOS (1D) Eg E11 E12 E13 (a) (b) (c) 0D • Information Technology can be revolutionized by Artificial Molecules: 0D Quantum • Artificial Active material can be Dot DOS produced: (0D) •Nano-Sensors and nano-Machines Eg E111 E112 E113E211 •Smart Material (adjustable (c) viscosity, density, elasticity, ...) 6 (a) (b) 6 Quantum Sensing CQD Inspirations from nature The five basic Neurons for human senses Moving Information The Human Brain Sight Hearing Signals from various Smell senses in the body are Basic functions of the brain: carried to the brain as • Signal Processing Taste • Cognition electrical pulses. Touch • Emotion • Judgment • Memory 7 Sense of Sight: CQD Electromagnetic Wave Detection Cone Rod Ganglion cells Axons to brain The rods and cones contain photo-sensitive pigments. Light strikes the pigments and causes the pigment to release energy. This ultimately leads to the nerve firing and eventually the perception of light. Optic nerve IEEE Spectrum May 96 8 Background: Human sense of sight and the EM spectrum CQD • Human Vision is limited to a very narrow band of the spectrum (400–700 nm). • Humans must rely on technology to extend the limits further into the infrared and ultra-violet regions. UV VIS NIR MWIR LWIR VLWIR 9 9 Our Goal: “Mimicking” Nature CQD To processing unit Interaction Nature inspires us Artificial sensors modify nature To processing unit 10 10 # CQD History: Razeghi’s Group in Paris (Thomson CSF-LCR) - Sep1980-1991 CQD 11 CQD 1.3 &1.5 mm Lasers for low Loss and Low Dispersion Silica Optical Fiber WDM 12 LP-MOCVD GaInAsP-InP BRS Laser Emitting at 1.3mm CQD Light-current and voltage-current characteristics of BRS laser under CW operation at 20C. M. Razeghi, The MOCVD Challenge Volume 1 (Philadelphia: Adam Hilger, 1989) 13 GaInAsP 1.3 mm Lasers on Silicon CQD M. Razeghi, The MOCVD Challenge Volume 1 (Philadelphia: Adam Hilger, 1989) 14 CQD 15 Results of Photonocs for near IR CQD !982-1992 M. Razeghi M. Razeghi M. Razeghi CRC press CRC press CRC press published 1989 published 1995 published 2010 16 Northwestern University CQD • Founded 1851, by John Evans and others • Private University • Spread over 2 campuses: – Evanston (240 acre) – Chicago (25 acre) 17 CQD History: Bringing Razeghi from Thomson to Northwestern CQD “It’s probably our biggest hire in 20 years,” said Cohen 18 19 CQD History: The Very Beginning of the CQD CQD 19 20 CQD’s First Open House: May 14th, 1992 CQD 20 SSE Curriculum General Overview CQD EECS / McCormick Engineering 202 Undergrad 223 Solid State Engineering Curriculum 250 Undergrad/ 381 Graduate 384 388 385 401 403 405 402 Materials, 409 Graduate Processing, 495 Physics Electronic Optoelectronics Transport 21 Books CQD M. Razeghi M. Razeghi M. Razeghi Springer Science Springer Science CRC press published 2009 published 2010 published 2010 22 Overview of CQD Approach and Research Facilities CQD • 5 MOCVD reactors • Windows PC • 2 MBE reactors • Matlab • Mathematica • X-ray diffractometer • Finite element • SEM Material • House engineered software • AFM Growth • PL, FTPL, topo-PL • FTIR • Ellipsometer Material Device • Optical pumping Characterization Physics • Hall Modeling • DLTS Chemistry Material Science • Focal plane arrays Mechanical Engineering • Laser pointers • E-beam evaporator Electrical Engineering • Ion beam sputtering Processing • Thermal evaporator Device Bio Engineering Systems • ECR-RF dry etcher • RTA Fabrication • PECVD • Optical lithography Device • E-beam lithography Measurement • Lapper / polisher • Wire bonder • Laser diode bench • UV photodetector bench • Laser diode life testing • IR photodetector bench • Electrical benches (for I-V, C-V, C-f) 23 • Black body 23 Inauguration of the CQD June 6th, 1993: Ribbon Cutting CQD Leo Esaki Manijeh Razeghi Klaus von Klitzing 24 Research at the Center for Quantum Devices CQD <0.2 mm Wavelength >300 mm UV VISIBLE I N F R A R E D THz III-NITRIDES QCL QDIP-QDWIP TYPE-II SL InP & Nitride QCLs AlSb AlSb GaSb GaSb GaSb GaSb InAs InAs InAs 25 Research at the Center for Quantum Devices CQD <0.2 mm Wavelength >300 mm UV VISIBLE I N F R A R E D THz III-NITRIDES QCL QDIP-QDWIP TYPE-II SL InP & Nitride QCLs AlSb AlSb GaSb GaSb GaSb GaSb InAs InAs InAs 26 Applications of UV Quantum Devices CQD Space UV Astronomy Situational (Various l) SUN Awareness UV countermeasures (l < 280 nm) Chemical/Biological agent detection (agent specific l) UV Flame detection and combustion monitoring (l < 340 nm) Ozone layer Bio-Florescence Imaging Power line monitoring (specific l) (l < 280 nm) 27 27 Overview of III-Nitrides Al2O3, SiC, Si substrates CQD Bandgap Tunability of III-Nitrides and III-Nitride Material System Select Materials Properties AlN Wurtzite crystal structure with hexagonal 6 symmetry Direct bandgap in the entire tunability: 5 AlXGaYIn(1-X-Y)N (Ideal for optoelectronic devices) Wide bandgap (Eg(AlN) = 6.2 eV, Eg(GaN) 4 ZnS MgSe = 3.4 eV, E (InN) ~ 0.7 eV) => Low ZnO g GaN intrinsic carrier density, low leakage, low dark current UV 3 ZnSe SiC ZnTe High thermal conductivity, High AlP CdS GaP breakdown voltage (Ideal for high- AlAs 2 CdSe frequency, high-power transistors) AlSb CdTe GaAs InP Strong piezoelectric effects (Lack of center IR of symmetry along c-axis – beneficial for 1 GaSb transistors) Bandgap Energy (eV) InN Direct Bandgap Indirect Bandgap InAs InSb Very strong chemical bonds (Large 0 difference in electronegativity between group 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 III elements and nitrogen) Robust materials: high melting point, Lattice Constant (A) mechanically strong, resistant to radiation damage 28 III-NitridesMaterial Growth Growth via Metal Organic Vapor Deposition (MOCVD) CQD • Growth method: Aixtron Horizontal flow, low-pressure MOCVD reactor • Group III sources: TMGa, TMIn, TMAl • Group V sources: NH3 • Dopants: n-type SiH4 & p-type DcpMg • Conditions: Pressure ~10-250 mbar, Temperature up to 1350 °C 29 Operation principles of photodetectors and lasers CQD p-Type - p-Type + n-Type - n-Type + Photodetector Laser / LED A V 30 30 World’s First Demonstration of AlGaN Photodetectors: Covering A Broad Range of The UV Spectrum CQD Ti/Au Thin Ni/Au -1 x=0 p-GaN:Mg (500 Å) 10 QE=1 p-Al0.36Ga0.64N (500Å) x=0.45 i-Al Ga N (2000Å) 0.36 0.64 10-2 x=0.30 n-Al0.45Ga0.55N (1000Å) x=0.70 x=0.18 Al Ga N:Si-In Ti/Al 0.5 0.5 -3 x=0.15 (600nm) Contact layer 10 AlN ~ 75nm x=0.05 Al0.85Ga0.15N/AlN -4 SL (30x100Å) 10 AlN (350nm) Responsivity (A/W) Responsivity -5 LT- AlN buffer 10 Sapphire (0001) -6 For Back-Illumination 10 200 300 400 500 600 Wavelength (nm) The Center for Quantum Devices has demonstrated photodetectors with cut-off wavelengths ranging from 360 nm down to 227 nm. D. Walker, …, M. Razeghi, Appl. Phys. Lett. 76(4), 4003 (1999). 31 World’s First 254, 265, 280, & 340 nm Biological and chemical Sensing p- p-type Ti/Au Current blocking layer Thin Ni/Au 2nd barrier: p-GaN:Mg (500 Å) Al0.4Ga0.6N, 5nm CQD p-Al0.45Ga0.55N (50nm) Quantum well: Al Ga N, 5nm p-Al0.6Ga0.4N:Mg (100 Å) CBL 0.36 0.64 Active layer (asymmetric SQW) 1st barrier: n-Al0.45Ga0.55N (100nm) Al0.4Ga0.6N(:Si), 10nm Ti/Al Al0.5Ga0.5N:Si:In n-type cladding layer (600nm) Contact layer UV Emitters AlN 50nm Al0.85Ga0.15N/AlN SL (30x100Å) AlN (350nm) LT- AlN buffer Sapphire (0001) 254 nm 265 nm 280 nm 340 nm EL Intensity (a.u.) EL Intensity (a.u.) Intensity EL EL Intensity (a.u.) EL Intensity (a.u.) 200 250 300 350 400 450 200 250 300 350 400 450 250 300 350 400 450 500 300 400 500 Wavelength (nm) Wavelength (nm) Wavelength (nm) Wavelength (nm) 340 nm 470 nm 257.5 nm 278 nm 279.5 nm 356 nm Tyrosine Tryptophan A A F F Normalized Intensity (a.u.) Normalized Intensity (a.u.) 250 300 350 400 450 500 550 250 300 350 400 450 500 550 Wavelength (nm) Wavelength (nm) A.