OAK RIDGE NATIONAL LABORATORY Operated by UNION CARBIDE CORPORATION for the U.S

Total Page:16

File Type:pdf, Size:1020Kb

OAK RIDGE NATIONAL LABORATORY Operated by UNION CARBIDE CORPORATION for the U.S ORNL-3537 UC-4 - Chemistry . TID-4500 (26th ed.) --TJ bv *->cT ' 3 -> ANALYTICAL CHEMISTRY DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING NOVEMBER 15, 1963 ,/- OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. I compl&enen, or ursfwlnesa of the informefian contaknsd in this repert. or thot thw vrs- a) any iwfo~~iorr,sppmotus. mthnd, @ praaws disclosad in this report my nor inft5h& prirotnly owned rilhts; or . Assumes an8 tlabit4?ips with tu &he use of* ~t f0m dm- rrsulttirp bm.6u~& my informatiun, awarrzfus, tmfiod, or pro&ss disclo~din *hie tq&. hs ahove, "parsw ~EtingMI bnHolt tha Cmmirsion, 4 employw pf uu of rke bmnriss~on, or emplww ss to, -any Infotmaliuh pwrmaf ta ORN L-3537 Contract No. W-7405-eng-26 ANALYTICAL CHEMISTRY DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING NOVEMBER 15, 1963 M. T. Kelley, Director C. D. Susano, Associate Director DATE ISSUED OAK RIDGE NATIONAL LABORATORY ' Ook Ridge, Tennessee opwrutrrrl by UNION CARBIDE CORPORATION for the U. 5. ATOMIC ENERGY COMMISSION THIS PAGE WAS INTENTIONALLY LEFT BLANK Summary PART I. ANALYTICAL RESEARCH A dc preamplifier and an ac-to-dc converter, both having high input impedance and providing buffering to the voltage source being measured, were designed for the Non-Linear Systems, Inc.. model V35A 1. Analytical Instrumentation . digital voltmeter. The converter can serve as a standard for ac voltage measurements because of its dc calibration. Several instruments were modified for specialized The design, construction, and evaluation of the applications. Detailed design information was pro- high-sensitivity, direct-reading, linear, recording, vided for the modification of an ORNL model Q- conductometric titrator was completed. A propor- 1988 controlled-potential and derivative polarograph tional temperature controller that provides essen- for molten-salt voltammetry, and of a model Q-1988A tially stepless control of titration cell temperature for use at fast scan rates with dropping-mercury to within fO.Ol°C was designed to supplement the electrodes having drop times of +2 sec, or less. A automatic temperature-compensation circuit for high- Beckman model B spectrophotometer was modified sensitivity work. The performance of the conduc- for continuous recording of the titration of free tometric titrator on about forty different chemical fluoride ion. The time per analysis was reduced systems met, or exceeded, design criteria. from 75 to 15 min, and the precision of analysis was The controlled-potential ac polarograph was re- improved. For a fused salt application, the preci- built with a new potentiostat having improved per- sion chronopotentiometer was altered to function formance characteristics. Test runs made with a with system ground isolated from earth ground. D.M. E. on solutions that contained M ~d 2+ in Also, an improved constant-current supply was 0.1 M KC1 show that the instrument achieves' ex- incorporated in the modified instrument. cellent rejection of the double-layer charging cur- Progress in controlled-potential coulometry was rent. Other tests indicate that excellent resolution achieved with the fabrication of two ORNL model of the 1n3+ and cd2+ waves (bEIl2 = 38 mv) is 4-2564 high-sensitivity coulometric titrators, and obtained. with revision to the method that describes the A model VII high-resolution, flame spectropho- ORNL model Q-2005 electronic, controlled-potential tometer, which uses a single multiplier phototube coulometric titrator. A check-out and test proce- (EM1 type 9558QA) to cover the entire wavelength dure for the Q2564 is being written. range from 2000 to 8700 A, was designed and put Development and improvement of apparatus for into service for emission photometry. Either the remotely controlled analysis of highly radio- instantaneous or integrated flame emission inten- active samples, primarily those associated with the sities can be recorded for measurement. The unit MSRE, was continued. The aligning, crushing, and can also be used with an absorption source assem- powder-transfer devices are being used in the ORNL bly for atomic absorption work. ~i~h-~adiation-LevelAnalytical Facility for the It has been observed that it is necessary to limit remotely controlled preparation of samples obtained the initial current delivered by the potentiostat in from the Volatility Pilot Plant. A hot-cell exhaust the controlled-potential coulometric titrations of filter assembly, which can be removed and replaced any of several ionic species. The reason for a by the master-slave manipulators, was designed and positive bias at high initial current (1 to 2% for installed in the hot cell of the Building 3038 Hot uranium) is not known. A study to determine the Laboratory. cause of this error has been initiatGd. iii In controlled-potential coulometry, the reference uses several operational amplifier modules to electrode may be placed arbitrarily in any position achieve the functions necessary. The cells, fabri- in the current density gradient present in the cell. cated from graphite or metal, contain a stationary One theory of electrochemical behavior suggests polarized electrode, a counter electrode, and a that when the reference electrode is placed in a reference electrode and may have a variable, uncon- region of low current density, an error in potential trolled resistive leakage to earth ground. For the can exist in the reaction zone in the region of high uninsulated cell vessels, system ground must float current density. This error, conceivably, could with respect to earth ground. Performance tests of cause the discharge of a second ion, and thereby this voltammeter are in progress. Another con- contribute an error in analysis. A study to deter- trolled-potential instrument that will have chrono- mine the importance of reference-electrode place- potentiometric and stripping-voltammetric functions ment in controlled-potential coulometry was under- in addition to the voltammetric function is to be taken. So far, no chemical evidence for the designed. existence of a potential error, even under drastic cell conditions, has been obtained. An investigation has been completed of the 2. Chemical Analysis of Advanced Reactor Fuels. feasibility of polarography for the direct determina- tion of metal complexes in the organic phase follow- Studies in this program were concerned mainly ing solvent extractions. The ORNL model Q-1988- wit11 the controlled-potet~tial cuululrrelric Lilralion FES dc polarograph was used to produce controlled- of uranium in solutions of uranium-bearing fuels potential regular and first-derivative polarograms and on the determination of various reaction prod- of cadmium and uranium in several solvent- ucts resulting from the dissolution of uranium car- extraction systems, including those of the ion- bides and thorium carbides. association and chelate types. The average-current A coulometric cell of 15-ml capacity was de- and derivative computer circuits were modified to signed especially for use with the ORNL 4-2564 permit the use of a f'z-sec, Smoler type, vertical- high-sensitivity, controlled-potential, coulometric orifice D.M.E. and the use of scan rates up to 3 titrator; uranium in the amounts of 2.5 and 48 pg in v/min. A quantitative method for the determination a total volume of 5 ml was determined with a of microgram quantities of uranium in tri-n-octyl- relative standard deviation of 0.8 to 0.2%, respec- phosphine oxide extract was developed. Polarog- tively. raphy in the organic extracts from solvent extrac- A controlled-potential, coulometric method for . tion offers the following advantages: the substance the dctcrl~linatisi~sf ilraiiclln ill ~ulliu~lllluu~lde to be determined can be concentrated selectively, solutions was developed. At the 6-mg level, Ure matrix elements that interfere are removed, and a relative standard deviation is 0.2%. separate stripping step into an aqueous medium is Sb~dieson the determination of carbon in aqueous not required. Also, the possibility exists of per- and nitric acid solutions from the dissolution of forming polarographic analysis on species unstable carbide type fuels were continued. A gas chroma- in water. tographic measurement of the CO, produced by The compensation of cell resistance by con- oxidation of the carbon-containing compounds was trolled-potential polarography was studied. It was incorporated into the procedure to effect an im- found necessary to place the reference electrode within a distance of 0.1 r (where r is the radius of provement in sensitivity of some twentyfold over the drop) from the mercury drop in order to avoid the manometric measurement of CO,. The inter- distorted polarograms in solutions of high specific ference of residual oxides of nitrogen is also elim- resistance. An electrode apparatus consisting of a inated by use of the gas chromatographic measure- sharpened, Smoler type, vertical-orifice, '/,-sec ment. Gas chromatography was used to resolve and D.M.E. and a reference electrode probe was con- determine the products from the reaction of carbide structed for this study. fuels with CC14 in the presence of air.
Recommended publications
  • The Discoverers of the Ruthenium Isotopes
    •Platinum Metals Rev., 2011, 55, (4), 251–262• The Discoverers of the Ruthenium Isotopes Updated information on the discoveries of the six platinum group metals to 2010 http://dx.doi.org/10.1595/147106711X592448 http://www.platinummetalsreview.com/ By John W. Arblaster This review looks at the discovery and the discoverers Wombourne, West Midlands, UK of the thirty-eight known ruthenium isotopes with mass numbers from 87 to 124 found between 1931 and 2010. Email: [email protected] This is the sixth and fi nal review on the circumstances surrounding the discoveries of the isotopes of the six platinum group elements. The fi rst review on platinum isotopes was published in this Journal in October 2000 (1), the second on iridium isotopes in October 2003 (2), the third on osmium isotopes in October 2004 (3), the fourth on palladium isotopes in April 2006 (4) and the fi fth on rhodium isotopes in April 2011 (5). An update on the new isotopes of palladium, osmium, iridium and platinum discovered since the previous reviews in this series is also included. Naturally Occurring Ruthenium Of the thirty-eight known isotopes of ruthenium, seven occur naturally with the authorised isotopic abun- dances (6) shown in Table I. The isotopes were fi rst detected in 1931 by Aston (7, 8) using a mass spectrograph at the Cavendish Laboratory, Cambridge University, UK. Because of diffi cult experimental conditions due to the use of poor quality samples, Aston actually only detected six of the isotopes and obtained very approximate Table I The Naturally Occurring Isotopes of Ruthenium Mass number Isotopic Abundance, % 96Ru 5.54 98Ru 1.87 99Ru 12.76 100Ru 12.60 101Ru 17.06 102Ru 31.55 104Ru 18.62 251 © 2011 Johnson Matthey http://dx.doi.org/10.1595/147106711X592448 •Platinum Metals Rev., 2011, 55, (4)• percentage abundances.
    [Show full text]
  • Properties and Applications of Ruthenium
    Chapter 17 Properties and Applications of Ruthenium Anil K. Sahu, Deepak K. Dash, Koushlesh Mishra, Saraswati P. Mishra, Rajni Yadav and Pankaj Kashyap Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.76393 Abstract Ruthenium (Ru) with atomic number of 44 is one of the platinum group metals, the others being Rh, Pd, Os, Ir and Pt. In earth’s crust, it is quite rare, found in parts per billion quantities, in ores containing some of the other platinum group metals. Ruthenium is silvery whitish, lustrous hard metal with a shiny surface. It has seven stable isotopes. Recently, coordination and organometallic chemistry of Ru has shown remarkable growth. In this chapter, we review the application of Ru in diverse fields along with its physical and chemical properties. In the applications part of Ru we have primarily focused on the biomedical applications. The biomedical applications are broadly divided into diagnostic and treatment aspects. Ru and their complexes are mainly used in determination of ferritin, calcitonin and cyclosporine and folate level in human body for diagnosis of diseases. Treat- ment aspects focuses on immunosuppressant, antimicrobial and anticancer activity. Keywords: ruthenium, platinum group, biomedical application, rare element, cancer, isotopes 1. Discovery of ruthenium Ruthenium is one of the 118 chemical elements given in the periodic table. Out of these 118 elements, 92 elements originated from natural sources and remaining 26 elements have been synthesized in laboratories [1, 2]. The last naturally occurring element to be discovered was Uranium in 1789 [1, 3]. Technetium was the first man-made element to be synthesized in the year 1937 [2].
    [Show full text]
  • Salts in Organic Synthesis: an Overview and Their Diversified Use
    Salts in Organic Synthesis: an overview and their diversified use Dirgha Raj Joshi1* and Nisha Adhikari2 1. College of Pharmacy, Yonsei University International Campus, Incheon, Republic of Korea 2. College of Pharmacy, Gachon University Medical Campus, Incheon, Republic of Korea *Correspondence: Dirgha Raj Joshi Email:[email protected], [email protected] ORCID ID: 0000-0002-0303-5677 Abstract The chemistry of salt is of great importance due to its immense potential from the daily life use to the synthetic chemistry like as workup material, as reagents, as phase transfer catalyst, as acid, as base, as catalyst, as agents for asymmetric synthesis, for some specific reaction transformation, to increase yield, decrease reaction time, ecofriendly synthesis, handling easiness and many more. This review summarizes the basic background of salts, its application, synthesis of new salts, and list of individual categories of major commercially available salts with some structure. Keywords: Organic synthesis, green chemistry, salts, catalyst, reagent, asymmetric synthesis, acid, base Introduction In chemistry, the salt is usually a solid chemical compound having related numbers of positively charged ions called cation and negatively charged ions called anions which are assembled to form a solid mass, so the whole mass is electrically neutral 2- (no net charge). These ions particle can be either organic (acetate- CH3CO ) or inorganic (chloride- Cl-, fluoride- F- etc.) and can be as a monoatomic (chloride- - 2- Cl ) or polyatomic (sulfate- SO 4)[1]. For organic synthesis, the considerations about various factors play a crucial role. With this respect, the organic and inorganic salts always remain core corner in the reagents category.
    [Show full text]
  • Acroseal Product Brochure
    chemicals AcroSeal Packaging Your solution for air and moisture sensitive reagents AcroSeal Packaging When using air- and moisture-sensitive solvents and reagents, it is essential that these products are not only as dry as possible when you first use them, but they should remain dry in storage as well. Through the innovative quadrant-style screw cap and specially designed septum, AcroSeal™ packaging ensures that you have access to high-quality and low-moisture products every use, guaranteeing improved yield and consistency of your research experiments while reducing chemical waste. Below is the complete list of products that are available in the industry leading AcroSeal packaging solution. Deuterated Solvents Product Description CAS Number Brand Code 21737 Acetone-d6, for NMR, 99.8 atom % D 666-52-4 Acros Organics 21742 Acetonitrile-d3, for NMR, 99.8 atom% D 2206-26-0 Acros Organics 42677 Chloroform-d, for NMR, 99.8 atom % D 865-49-6 Acros Organics 42696 Chloroform-d, for NMR, contains 0.03 v/v% TMS, 99.8+ atom % D 865-49-6 Acros Organics 21060 Deuterium chloride, for NMR, 1M solution in D2O, 99.8 atom% D 7698-05-7 Acros Organics 18476 Deuterium oxide, for NMR, 100 atom % D 7789-20-0 Acros Organics 42693 Deuterium oxide, for NMR, 99.8 atom % D 7789-20-0 Acros Organics 43399 Dichloromethane-d2, for NMR, 99.5 atom % D 1665-00-5 Acros Organics 32535 Methanol-d4, for NMR, contains 0.03 v/v% TMS, 99.8% atom% D 811-98-3 Acros Organics 42695 Methanol-d4, for NMR, 99.8 atom% D 811-98-3 Acros Organics 42694 Methyl sulfoxide-d6, for NMR, 99.9 atom%
    [Show full text]
  • Acroseal Packaging Your Solution for Air- and Moisture- Sensitive Reagents
    AcroSeal Packaging Your solution for air- and moisture- sensitive reagents Extra dry solvents Deuterated solvents Organometallic compounds Reagents in solution Organics Introduction Since the launch of AcroSealTM packaging we have introduced a new septum, which helps preserve product quality for longer. In addition, our AcroSeal portfolio has been expanded to include a broad range of solvents, organometallics, reagents in solution and organic compounds. In this brochure we have categorized our products under chemical families to make it easier to locate the product you need. Introduction Page no. AcroSeal packaging highlights 3 AcroSeal packaging performance 4 New 25mL AcroSeal packaging 4 Solvents Extra dry solvents 5-7 Solvents for biochemistry 7 Deuterated solvents 7 Organometallics Grignard reagents 8-10 Organoaluminiums 11 Organolithiums 11 Organosodiums 12 Organotins 12 Organozincs 12 Reagents in solution Amines 13 Boranes 13 Halides 14-15 Hydrides 15 Oxides 16 Silanes 16 Other reagents in solution 17 Organics Aldehydes 18 Amines 18 Epoxides 18 Halides 19 Phosphines 19 Silanes 19 Other organics 20 How to use AcroSeal packaging 21 Alphabetical index 22-23 2 Introduction AcroSeal packaging: drier reagents for longer When using air- and moisture-sensitive solvents and reagents, it is essential that these products are not only as dry as possible when you first use them, but they should remain dry in storage as well. Through the innovative quadrant-style screw cap and specially designed septum, AcroSeal packaging ensures that you have access to high-quality and low-moisture products every use, guaranteeing improved yield and consistency of your research experiments while reducing chemical waste. AcroSeal packaging highlights New septum developed from a polymeric elastomer with an inert fluoropolymer-coated surface, preserves product quality for longer with better re-seal around needle punctures.
    [Show full text]
  • Activation Cross Sections of Proton Induced Nuclear Reactions on Palladium up to 80 Mev
    Activation cross sections of proton induced nuclear reactions on palladium up to 80 MeV F. Tark´ anyi´ a, F. Ditroi´ a,∗, S. Takacs´ a, J. Csikaia, A. Hermanneb, S. Uddind, M. Babad aInstitute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary bCyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium cInstitute of Physics and Power Engineering (IPPE), Obninsk, Russia dCyclotron Radioisotope Center (CYRIC), Tohoku University, Sendai, Japan Abstract Activation cross sections of proton induced nuclear reactions on palladium were measured up to 80 MeV by using the stacked foil irradiation technique and gamma ray spectrometry. The beam intensity, the incident energy and the energy degradation were controlled by a method based on flux constancy via normalization to the excitation functions of monitor reactions measured in parallel. Excitation functions for direct and cumulative cross-sections were measured for the production of 104m;104g;105g;106m;110mAg, 100;101Pd, 99m;99g;100;101m;101g;102m;102g;105Rh and 103;97Ru radioisotopes. The cross section data were compared with the theoretical predictions of TENDL-2014 and -2015 libraries. For practical applications thick target yields were derived from the measured excitation functions. Application in the field of medical radionuclide production is shortly discussed. Keywords: proton irradiation, palladium target, stacked foil technique, cross sections, production yields 1. Introduction Hu et al., 1998; Johnson et al., 1979; Kormali et al., 1976; Zarubin and Sergeev, 1989). Our results obtained Excitation functions of proton induced nuclear re- in that period for some medically relevant radionuclides actions on palladium are important in many applica- were published during 2004-2007.
    [Show full text]
  • RUTHENIUM Element Symbol: Ru Atomic Number: 44
    RUTHENIUM Element Symbol: Ru Atomic Number: 44 An initiative of IYC 2011 brought to you by the RACI NICKI BURNS www.raci.org.au RUTHENIUM Element symbol: Ru Atomic number: 44 The element ruthenium is named after Ruthenia. This word is a Latin rendering of the historical territory of Rus, which today is formed with parts of Belarus, Ukraine, western Russia,northeastern Slovakia and eastern Poland. Ruthenium was discovered in 1844 by Karl Karlovitch Klaus, then an unknown professor at the University of Kazan. Klaus could be considered the creator of the chemistry of the platinum metals because of his extensive investigation of rhodium, iridium, osmium, and to a lesser extent, palladium and platinum. Ruthenium is the 74th most abundant metal on Earth and is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Roughly 12 tonnes of ruthenium is mined each year. Ruthenium is also a fission product of235 Uranium, however the extraction from used nuclear fuel is complicated, expensive and also results in radioactive isotopes of ruthenium. Ruthenium has several applications. An alloy containing small amounts of ruthenium with gold increases the stability of gold in jewellery. It is also used in some advanced high-temperature single-crystal superalloys with applications including the turbine blades in jet engines. The “RU” nib in the famous Parker 51 fountain pen was a 14K gold nib tipped with 96.2% ruthenium and 3.8% iridium. 106Ruthenium, a β-decaying isotope, is used in radiotherapy of eye tumours, mainly malignant melanomas of the uvea.
    [Show full text]
  • The Preparation and Characterization of Some Alkanethiolatoosmium Compounds Harold Harris Schobert Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1970 The preparation and characterization of some alkanethiolatoosmium compounds Harold Harris Schobert Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Schobert, Harold Harris, "The preparation and characterization of some alkanethiolatoosmium compounds " (1970). Retrospective Theses and Dissertations. 4357. https://lib.dr.iastate.edu/rtd/4357 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 71-14,258 SCHOBERT, Harold Harris, 1943- THE PREPARATION AND CHARACTERIZATION OF SOME ALKANETHIOLATOOSMIUM COMPOUNDS. Iowa State University, Ph.D., 1970 Chemistry, inorganic University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEH MICROFILMED EXACTLY AS RECEIVED THE PREPARATION AND CHARACTERIZATION OF SOME ALKANETHIOLATOOSMIUM COMPOUNDS by Harold Harris Schobert A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Inorganic Chemistry Approved: Signature was redacted for privacy. Signature was redacted for
    [Show full text]
  • H2TPP Organocatalysis in Mild and Highly Regioselective Ring Opening of Epoxides to Halo Alcohols by Means of Halogen Elements
    Molecules 2012, 17, 5508-5519; doi:10.3390/molecules17055508 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article H2TPP Organocatalysis in Mild and Highly Regioselective Ring Opening of Epoxides to Halo Alcohols by Means of Halogen Elements Parviz Torabi 1,*, Javad Azizian 2 and Shahab Zomorodbakhsh 1 1 Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr 63519, Iran 2 Department of Chemistry, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran 11365, Iran * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +98-652-232-7070; Fax: +98-652-233-8586. Received: 10 January 2012; in revised form: 6 April 2012 / Accepted: 12 April 2012 / Published: 9 May 2012 Abstract: We found that elemental iodine and bromine are converted to trihalide nucleophiles (triiodine and tribromide anion, respectively) in the presence of catalytic amounts of meso-tetraphenylporphyrins (H2TPP). Therefore a highly regioselective method for the synthesis of -haloalcohols through direct ring opening of epoxides with elemental iodine and bromine in the presence of H2TPPs as new catalysts is described. At room temperature a series of epoxide derivatives were converted into the corresponding halohydrins resulting from an attack of trihalide species anion atoms at the less substituted carbon atom. This method occurs under neutral and mild conditions with high yields in various aprotic solvents, even when sensitive functional groups are present. Keywords: oxirane; ring opening; nucleophilic addition; elemental halogen; meso-tetraarylporphyrine; halohydrine 1. Introduction Oxiranes are among the most versatile intermediates in organic synthesis, as they can be easily prepared from a variety of other functional groups [1] and due to their ring strain and high reactivity, their reactions with various nucleophiles lead to highly regio and stereoselective ring opened products [2–4].
    [Show full text]
  • INGESTION PATHWAY the Emergency Planning Zone (EPZ) for the Ingestion Pathway Extends to a Radius of 50 Miles Through 360 Degrees from a Nuclear Power Plant
    WV REP Plan Issue 9, Revision 0 (11-Jan.-19) Annex 15a. – Accident Assessment (Post-Plume Phase) INGESTION PATHWAY The Emergency Planning Zone (EPZ) for the ingestion pathway extends to a radius of 50 miles through 360 degrees from a nuclear power plant. Major potential pathways for ingestion include fresh fluid milk and other food commodities (especially those consumed fresh, such as leafy vegetables and fruit), and public water supply systems using surface water. This section summarizes the protective action guidance and appropriate protective actions for each major ingestion pathway. Criteria are established for initiation of ingestion protective actions. Dose commitment resulting from the ingestion pathway is separate and distinct from doses received in other incident phases. MILK AND FOOD MILK AND FOOD PROTECTIVE ACTION GUIDES (PAGs) The PAGs used for milk and food were developed by HHS/FDA, and published as Accidental Radioactive Contamination of Human Food and Animal Feeds: Recommendations for State and Local Agencies by FDA on August 13, 1998 (FDA 1998). These values are intended to include both the milk and food components of the diet and represent the dose commitment from ingestion over the entire episode. Calculation of projected dose commitment from the ingestion pathway is described in Attachment 1, “Ingestion Pathway Dose Projections Procedure”. FDA guidance is described below. Ingestion Protective Action Guides (PAGs) A Protective Action Guide (PAG) is the committed effective dose equivalent (CEDE) or committed dose equivalent (CDE) to an individual tissue or organ that warrants protective action following a release of radionuclides. Annex 15a – Accident Assessment (Post-Plume Phase) 15a-1 WV REP Plan Issue 9, Revision 0 (11-Jan-19) The Ingestion Pathway PAGs are: 0.5 rem (5 mSv) committed effective dose equivalent (CEDE), -or- 5.0 rem (50 mSv) committed dose equivalent (CDE) to an individual tissue or organ, whichever is most limiting.
    [Show full text]
  • Prospects for Baryon Instability Search with Long-Lived Isotopes
    Submitted to the Proceedings of International Workshop on Future Prospects of Baryon Instability Search in p-decay and n -» n oscillation experiments, Oak Ridge, TN, March 28-30,1996 PROSPECTS FOR BARYON INSTABILITY SEARCH WITH LONG-LIVED ISOTOPES Yu. Efremenkoab, W. Buggb, H. Cohnb, Yu. Kamyshkov*11, G. Parker4, F. Plasila * Oak Ridge National Laboratory, Oak Ridge, TN 37831 b University of Tennessee, Knoxville, TN 37996 h-f -£j ABSTRACT BEC 1 $ In this paper we consider the possibility of observation of baryon instability r \ o -v> • processes occurring inside nuclei by searching for the remnants of such processes that *-' Ox"§- .J could have been accumulated in nature as rare long-lived isotopes. As an example, we discuss here the possible detection of traces of 97Tc, 98Tc, and "Tc in deep-mined non- radioactive tin ores. Introduction The possible experimental observation of baryon instability remains among the most fundamental problems of modern physics [1]. The observed "baryon asymmetry" of the Universe [2] and some Unification Theories including Supersymmetric Models [3,4,5] require either nucleon-decay (with baryon number change by AB=1) or neutron- antineutron transitions (with baryon number change by AB=2) with rates stretching the limits of present experimental capabilities. Future prospects for proton decay and neutron- antineutron transition searches by traditional detection techniques have been reviewed in a number of contributions to this Workshop [1,6,7,8,9]. These techniques are based, in general, on the direct detection in real time of the final products of baryon transformation leading to the disappearance of one or two nucleons inside the nuclei corresponding to A B=l and AB=2, respectively.
    [Show full text]
  • The Fukushima Daiichi Accident Technical Volume 4
    The Fukushima Daiichi Accident Fukushima The The Fukushima Daiichi Accident Technical Volume 4/5 Technical Volume 4/5 Radiological Consequences Radiological Consequences Radiological PO Box 100, Vienna International Centre 1400 Vienna, Austria Printed in Austria ISBN 978–92–0–107015–9 (set) 1 THE FUKUSHIMA DAIICHI ACCIDENT TECHNICAL VOLUME 4 RADIOLOGICAL CONSEQUENCES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GERMANY OMAN ALBANIA GHANA PAKISTAN ALGERIA GREECE PALAU ANGOLA GUATEMALA PANAMA ARGENTINA GUYANA PAPUA NEW GUINEA ARMENIA HAITI PARAGUAY AUSTRALIA HOLY SEE PERU AUSTRIA HONDURAS PHILIPPINES AZERBAIJAN HUNGARY POLAND BAHAMAS ICELAND PORTUGAL BAHRAIN INDIA QATAR BANGLADESH INDONESIA REPUBLIC OF MOLDOVA BELARUS IRAN, ISLAMIC REPUBLIC OF ROMANIA BELGIUM IRAQ RUSSIAN FEDERATION BELIZE IRELAND RWANDA BENIN ISRAEL SAN MARINO BOLIVIA, PLURINATIONAL ITALY SAUDI ARABIA STATE OF JAMAICA SENEGAL BOSNIA AND HERZEGOVINA JAPAN SERBIA BOTSWANA JORDAN SEYCHELLES BRAZIL KAZAKHSTAN SIERRA LEONE BRUNEI DARUSSALAM KENYA SINGAPORE BULGARIA KOREA, REPUBLIC OF SLOVAKIA BURKINA FASO KUWAIT SLOVENIA BURUNDI KYRGYZSTAN SOUTH AFRICA CAMBODIA LAO PEOPLE’S DEMOCRATIC SPAIN CAMEROON REPUBLIC SRI LANKA CANADA LATVIA SUDAN CENTRAL AFRICAN LEBANON SWAZILAND REPUBLIC LESOTHO SWEDEN CHAD LIBERIA SWITZERLAND CHILE LIBYA SYRIAN ARAB REPUBLIC CHINA LIECHTENSTEIN TAJIKISTAN COLOMBIA LITHUANIA CONGO LUXEMBOURG THAILAND COSTA RICA MADAGASCAR THE FORMER YUGOSLAV CÔTE D’IVOIRE MALAWI REPUBLIC OF MACEDONIA CROATIA MALAYSIA TOGO
    [Show full text]