Salts in Organic Synthesis: an overview and their diversified use Dirgha Raj Joshi1* and Nisha Adhikari2 1. College of Pharmacy, Yonsei University International Campus, Incheon, Republic of Korea 2. College of Pharmacy, Gachon University Medical Campus, Incheon, Republic of Korea *Correspondence: Dirgha Raj Joshi Email:
[email protected],
[email protected] ORCID ID: 0000-0002-0303-5677 Abstract The chemistry of salt is of great importance due to its immense potential from the daily life use to the synthetic chemistry like as workup material, as reagents, as phase transfer catalyst, as acid, as base, as catalyst, as agents for asymmetric synthesis, for some specific reaction transformation, to increase yield, decrease reaction time, ecofriendly synthesis, handling easiness and many more. This review summarizes the overall basic background of salts like how it is formed, nature of salt, generalized application of salts in daily life to synthetic chemistry, its application on other diverse fields, and list of individual categories of major commercially available salts with some structure. Besides having a lot of information on the internet about salts, this review tries to focus on a generalized overview that could be helpful for all to understand salt chemistry. Keywords: Organic synthesis, green chemistry, salts, salt chemistry, catalyst, reagent, asymmetric synthesis, acid, base Introduction In chemistry, the salt is usually a solid chemical compound having related numbers of positively charged ions called cation and negatively charged ions called anions which are assembled to form a solid mass, so the whole mass is electrically neutral 2- (no net charge). These ions particle can be either organic (acetate- CH3CO , 2- - - - carbonate- CO 3 etc.) or inorganic (chloride- Cl , fluoride- F , bromide- Br , iodide- I-, nitrite- NO₂- etc.) and can be as a monoatomic (F-, Cl-, Br-, I- etc.) or polyatomic 2- 2- - - (sulfate- SO 4, carbonate- CO3 , nitrite- NO₂ , nitrate- NO3 etc.)[1].