Applications of Genomics to Slow the Spread of Multidrug‐Resistant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Q Fever in Small Ruminants and Its Public Health Importance
Journal of Dairy & Veterinary Sciences ISSN: 2573-2196 Review Article Dairy and Vet Sci J Volume 9 Issue 1 - January 2019 Copyright © All rights are reserved by Tolera Tagesu Tucho DOI: 10.19080/JDVS.2019.09.555752 Q Fever in Small Ruminants and its Public Health Importance Tolera Tagesu* School of Veterinary Medicine, Jimma University, Ethiopia Submission: December 01, 2018; Published: January 11, 2019 *Corresponding author: Tolera Tagesu Tucho, School of Veterinary Medicine, Jimma University, Jimma Oromia, Ethiopia Abstract Query fever is caused by Coxiella burnetii, it’s a worldwide zoonotic infectious disease where domestic small ruminants are the main reservoirs for human infections. Coxiella burnetii, is a Gram-negative obligate intracellular bacterium, adapted to thrive within the phagolysosome of the phagocyte. Humans become infected primarily by inhaling aerosols that are contaminated with C. burnetii. Ingestion (particularly drinking raw milk) and person-to-person transmission are minor routes. Animals shed the bacterium in urine and feces, and in very high concentrations in birth by-products. The bacterium persists in the environment in a resistant spore-like form which may become airborne and transported long distances by the wind. It is considered primarily as occupational disease of workers in close contact with farm animals or processing their be commenced immediately whenever Q fever is suspected. To prevent both the introduction and spread of Q fever infection, preventive measures shouldproducts, be however,implemented it may including occur also immunization in persons without with currently direct contact. available Doxycycline vaccines drugof domestic is the first small line ruminant of treatment animals for Q and fever. -
Coxiella Burnetii
SENTINEL LEVEL CLINICAL LABORATORY GUIDELINES FOR SUSPECTED AGENTS OF BIOTERRORISM AND EMERGING INFECTIOUS DISEASES Coxiella burnetii American Society for Microbiology (ASM) Revised March 2016 For latest revision, see web site below: https://www.asm.org/Articles/Policy/Laboratory-Response-Network-LRN-Sentinel-Level-C ASM Subject Matter Expert: David Welch, Ph.D. Medical Microbiology Consulting Dallas, TX [email protected] ASM Sentinel Laboratory Protocol Working Group APHL Advisory Committee Vickie Baselski, Ph.D. Barbara Robinson-Dunn, Ph.D. Patricia Blevins, MPH University of Tennessee at Department of Clinical San Antonio Metro Health Memphis Pathology District Laboratory Memphis, TN Beaumont Health System [email protected] [email protected] Royal Oak, MI BRobinson- Erin Bowles David Craft, Ph.D. [email protected] Wisconsin State Laboratory of Penn State Milton S. Hershey Hygiene Medical Center Michael A. Saubolle, Ph.D. [email protected] Hershey, PA Banner Health System [email protected] Phoenix, AZ Christopher Chadwick, MS [email protected] Association of Public Health Peter H. Gilligan, Ph.D. m Laboratories University of North Carolina [email protected] Hospitals/ Susan L. Shiflett Clinical Microbiology and Michigan Department of Mary DeMartino, BS, Immunology Labs Community Health MT(ASCP)SM Chapel Hill, NC Lansing, MI State Hygienic Laboratory at the [email protected] [email protected] University of Iowa [email protected] Larry Gray, Ph.D. Alice Weissfeld, Ph.D. TriHealth Laboratories and Microbiology Specialists Inc. Harvey Holmes, PhD University of Cincinnati College Houston, TX Centers for Disease Control and of Medicine [email protected] Prevention Cincinnati, OH om [email protected] [email protected] David Welch, Ph.D. -
Ehrlichiosis and Anaplasmosis Are Tick-Borne Diseases Caused by Obligate Anaplasmosis: Intracellular Bacteria in the Genera Ehrlichia and Anaplasma
Ehrlichiosis and Importance Ehrlichiosis and anaplasmosis are tick-borne diseases caused by obligate Anaplasmosis: intracellular bacteria in the genera Ehrlichia and Anaplasma. These organisms are widespread in nature; the reservoir hosts include numerous wild animals, as well as Zoonotic Species some domesticated species. For many years, Ehrlichia and Anaplasma species have been known to cause illness in pets and livestock. The consequences of exposure vary Canine Monocytic Ehrlichiosis, from asymptomatic infections to severe, potentially fatal illness. Some organisms Canine Hemorrhagic Fever, have also been recognized as human pathogens since the 1980s and 1990s. Tropical Canine Pancytopenia, Etiology Tracker Dog Disease, Ehrlichiosis and anaplasmosis are caused by members of the genera Ehrlichia Canine Tick Typhus, and Anaplasma, respectively. Both genera contain small, pleomorphic, Gram negative, Nairobi Bleeding Disorder, obligate intracellular organisms, and belong to the family Anaplasmataceae, order Canine Granulocytic Ehrlichiosis, Rickettsiales. They are classified as α-proteobacteria. A number of Ehrlichia and Canine Granulocytic Anaplasmosis, Anaplasma species affect animals. A limited number of these organisms have also Equine Granulocytic Ehrlichiosis, been identified in people. Equine Granulocytic Anaplasmosis, Recent changes in taxonomy can make the nomenclature of the Anaplasmataceae Tick-borne Fever, and their diseases somewhat confusing. At one time, ehrlichiosis was a group of Pasture Fever, diseases caused by organisms that mostly replicated in membrane-bound cytoplasmic Human Monocytic Ehrlichiosis, vacuoles of leukocytes, and belonged to the genus Ehrlichia, tribe Ehrlichieae and Human Granulocytic Anaplasmosis, family Rickettsiaceae. The names of the diseases were often based on the host Human Granulocytic Ehrlichiosis, species, together with type of leukocyte most often infected. -
Proctitis Associated with Neisseria Cinerea Misidentified As Neisseria Gonorrhoeae in a Child JOHN H
JOURNAL OF CLINICAL MICROBIOLOGY, Apr. 1985, p. 575-577 Vol. 21, No. 4 0095-1137/85/040575-03$02.00/0 Copyright C 1985, American Society for Microbiology Proctitis Associated with Neisseria cinerea Misidentified as Neisseria gonorrhoeae in a Child JOHN H. DOSSETT,' PETER C. APPELBAUM,2* JOAN S. KNAPP,3 AND PATRICIA A. TOTTEN3 Departments ofPediatrics (Infectious Diseases)' and Pathology (Clinical Microbiology),2 Hershey Medical Center, Hershey, Pennsylvania 17033, and Neisseria Reference Laboratory and Department of Medicine, University of Washington, Seattle, Washington 981953 Received 21 September 1984/Accepted 13 December 1984 An 8-year-old boy developed proctitis. Rectal swabs yielded a Neisseria sp. that was repeatedly identified by API (Analytab Products, Plainview, N.Y.), Minitek (BBL Microbiology Systems, Cockeysville, Md.), and Bactec (Johnston Laboratories, Towson, Md.) methods as Neisseria gonorrhoeae. Subsequent testing in a reference laboratory yielded an identification of Neisseria cinerea. It is suggested that identification of a Neisseria sp. isolated from genital or rectal sites in a child be confirmed by additional serological, growth, and antibiotic susceptibility tests and, if necessary, by a reference laboratory. The implications of such misidenti- fications are discussed. Gonococcal proctitis in children is usually considered to rectal scrubs. The child and his parents underwent extensive be sexually transmitted, just as it is in adults. Moreover, questioning in an effort to identify a source of infection. No gonorrhea in young boys is generally the result of homosex- clues were found. Both parents had negative examinations ual contact with an adult male. We herein report the case of and negative cultures. The patient's condition gradually a child with prolonged proctitis and perianal inflammation improved, and by 20 July his rectum and perirectum ap- from whom Neisseria sp. -
Neisseria Infection of Rhesus Macaques As a Model to Study Colonization, Transmission, Persistence, and Horizontal Gene Transfer
Neisseria infection of rhesus macaques as a model to study colonization, transmission, persistence, and horizontal gene transfer Nathan J. Weyanda,b,1, Anne M. Wertheimerc,d,e, Theodore R. Hobbsf,g, Jennifer L. Siskoa,b, Nyiawung A. Takua,b, Lindsay D. Gregstona,b, Susan Claryh, Dustin L. Higashia,b, Nicolas Biaisi,2, Lewis M. Browni,j, Shannon L. Planerg,k, Alfred W. Legasseg,k, Michael K. Axthelmg,k,l, Scott W. Wongg,h,l, and Magdalene Soa,b aBIO5 Institute and bDepartment of Immunobiology, University of Arizona, Tucson, AZ 85721; cArizona Center on Aging, dDepartment of Medicine and eDivision of Geriatrics General Internal and Palliative Medicine, University of Arizona, Tucson, AZ, 85719; fDivision of Animal Resources, kDivision of Pathobiology and Immunology, gOregon National Primate Research Center, and lVaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006; hDepartment of Molecular Microbiology and Immunology, L220, Oregon Health and Science University, Portland, OR 97239; and iDepartment of Biological Sciences and jQuantitative Proteomics Center, Columbia University, New York, NY 10027 Edited by Rino Rappuoli, Novartis Vaccines and Diagnostics, Siena, Italy, and approved January 10, 2013 (received for review October 9, 2012) The strict tropism of many pathogens for man hampers the de- may be possible to develop a model for studying Neisseria–host velopment of animal models that recapitulate important microbe– interactions in which there are no host-restriction barriers to host interactions. We developed a rhesus macaque model for study- overcome. ing Neisseria–host interactions using Neisseria species indigenous to The rhesus macaque (RM) has ∼93% DNA sequence identity the animal. -
Purple Bacteria and Their Relatives”
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1988, p. 321-325 Vol. 38, No. 3 0020-7713/88/03032 1-05$02.OOtO Copyright 0 1988, International Union of Microbiological Societies Proteobacteria classis nov. a Name for the Phylogenetic Taxon That Includes the “Purple Bacteria and Their Relatives” E. STACKEBRANDT,l R. G. E. MURRAY,2* AND H. G. TRUPER3 Lehrstuhl fur Allgemeine Mikrobiologie, Biologiezentrum, Christian-Albrechts Universitat, 2300 Kid, Federal Republic of Germany’; Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C12; and Institut fur Mikrobiulogie, Universitat Bonn, 5300 Bonn I, Federal Republic of Germany3 Proteobacteria classis nov. is suggested as the name for a new higher taxon to circumscribe the a, p, y, and 6 groups that are included among the phylogenetic relatives of the purple photosynthetic bacteria and as a suitable collective name for reference to that group. The group names (alpha, etc.) remain as vernacular terms at the level of subclass pending further studies and nomenclatural proposals. Phylogenetic interpretations derived from the study of the interim while the phylogenetic data are being integrated ribosomal ribonucleic acid (rRNA) sequences and oligonu- into formal bacterial taxonomy. It does not appear to be cleotide catalogs provide an important factual base for inappropriate or confusing to use the protean prefix because arrangements of higher taxa of bacteria (25, 26). A recent of the genus Proteus among the Proteobacteria; the reasons workshop organized by the International Committee on for use are clear enough. Systematic Bacteriology recognized that a particularly di- This new class is so far only definable in phylogenetic verse but related group of gram-negative bacteria, including terms. -
Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes Ricinus Ticks in Pomerania (Poland)
pathogens Article Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes ricinus Ticks in Pomerania (Poland) Lucyna Kirczuk 1 , Mariusz Piotrowski 2 and Anna Rymaszewska 2,* 1 Department of Hydrobiology, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] 2 Department of Genetics and Genomics, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] * Correspondence: [email protected] Abstract: Tick-borne pathogens are an important medical and veterinary issue worldwide. Environ- mental monitoring in relation to not only climate change but also globalization is currently essential. The present study aimed to detect tick-borne pathogens of the genera Anaplasma, Rickettsia and Francisella in Ixodes ricinus ticks collected from the natural environment, i.e., recreational areas and pastures used for livestock grazing. A total of 1619 specimens of I. ricinus were collected, including ticks of all life stages (adults, nymphs and larvae). The study was performed using the PCR technique. Diagnostic gene fragments msp2 for Anaplasma, gltA for Rickettsia and tul4 for Francisella were ampli- fied. No Francisella spp. DNA was detected in I. ricinus. DNA of A. phagocytophilum was detected in 0.54% of ticks and Rickettsia spp. in 3.69%. Nucleotide sequence analysis revealed that only one species of Rickettsia, R. helvetica, was present in the studied tick population. The present results are a Citation: Kirczuk, L.; Piotrowski, M.; part of a large-scale analysis aimed at monitoring the level of tick infestation in Northwest Poland. -
A New Symbiotic Lineage Related to Neisseria and Snodgrassella Arises from the Dynamic and Diverse Microbiomes in Sucking Lice
bioRxiv preprint doi: https://doi.org/10.1101/867275; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice Jana Říhová1, Giampiero Batani1, Sonia M. Rodríguez-Ruano1, Jana Martinů1,2, Eva Nováková1,2 and Václav Hypša1,2 1 Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic 2 Institute of Parasitology, Biology Centre, ASCR, v.v.i., České Budějovice, Czech Republic Author for correspondence: Václav Hypša, Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic, +42 387 776 276, [email protected] Abstract Phylogenetic diversity of symbiotic bacteria in sucking lice suggests that lice have experienced a complex history of symbiont acquisition, loss, and replacement during their evolution. By combining metagenomics and amplicon screening across several populations of two louse genera (Polyplax and Hoplopleura) we describe a novel louse symbiont lineage related to Neisseria and Snodgrassella, and show its' independent origin within dynamic lice microbiomes. While the genomes of these symbionts are highly similar in both lice genera, their respective distributions and status within lice microbiomes indicate that they have different functions and history. In Hoplopleura acanthopus, the Neisseria-related bacterium is a dominant obligate symbiont universally present across several host’s populations, and seems to be replacing a presumably older and more degenerated obligate symbiont. -
Chapter 20 the Proteobacteria
Fig. 20.21 Chapter 20 purple photosynthetic sulfur bacteria The Proteobacteria may have arose from a single photosynthetic ancestor 16S rRNA shows five distinct lineages 12-27-2011 12-28-2011 Class α-proteobacteria Most are oligotrophic (growing at low nutrient level) Fig. 20.11 Genus Rhizobium motile rods often contain poly-β- hydroxybutyrate (PHB) granules become pleomorphic under adverse conditions grow symbiotically as nitrogen- fixing bacteroids (Æ ammonium) within root nodule cells of legumes Genus Agrobacterium Figure 20.12 transform infected plant cells (crown, roots, and stems) into autonomously proliferating tumors Agrobacterium tumefaciens causes crown gall disease by means of tumor-inducing (Ti) plasmid Crown gall (冠癭) of a tomato plant Agrobacterium Ti (tumor inducing) plamid Transfer the T-DNA to plant and lower fungi Can also mobilize other plasmid with to plant cells A vector used for transgenic plant Fig. 29.13 Genus Brucella important human and animal pathogen (zoonosis) Brucellosis- undulant fever 波型熱 A select agent as biocrime ingestion of contaminated food (milk products); inhalation, via skin wound, rare person-to-person Acute form: flu-like symptom; undulant form: undulant fever, arthritis, and testicular inflammation, neurologic symptom may occur; chronic form: chronic fatigue, depression, and arthritis Class β-proteobacteria Nitrogen metabolism Nitrifying bacteria- Nitrification oxidation of ammonium to nitrite, nitrite further oxidized to nitrate Nitrobacter (α-proteobacteria) Nitrosomonas (β-proteobacteria) Nitrosococcus (γ-proteobacteria) Nitrogen Fixation Burkholderia and Ralstonia (β-proteobacteria) both form symbiotic associations with legumes both have nodulation genes (nod) a common genetic origin with rhizobia (α-proteobacteria) obtained through lateral gene transfer Order Burkholderiales Burkholderia cepacia degrades > 100 organic molecules very active in recycling organic material plant and human pathogen (nosocomial pathogen) a particular problem for cystic fibrosis patients B. -
Non-Coding Rnas of the Q Fever Agent, Coxiella Burnetii
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2015 Non-coding RNAs of the Q fever agent, Coxiella burnetii Indu Ramesh Warrier The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Warrier, Indu Ramesh, "Non-coding RNAs of the Q fever agent, Coxiella burnetii" (2015). Graduate Student Theses, Dissertations, & Professional Papers. 4620. https://scholarworks.umt.edu/etd/4620 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. NON-CODING RNAS OF THE Q FEVER AGENT, COXIELLA BURNETII By INDU RAMESH WARRIER M.Sc (Med), Kasturba Medical College, Manipal, India, 2010 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy Cellular, Molecular and Microbial Biology The University of Montana Missoula, MT August, 2015 Approved by: Sandy Ross, Dean of The Graduate School Graduate School Michael F. Minnick, Chair Division of Biological Sciences Stephen J. Lodmell Division of Biological Sciences Scott D. Samuels Division of Biological Sciences Scott Miller Division of Biological Sciences Keith Parker Department of Biomedical and Pharmaceutical Sciences Warrier, Indu, PhD, Summer 2015 Cellular, Molecular and Microbial Biology Non-coding RNAs of the Q fever agent, Coxiella burnetii Chairperson: Michael F. Minnick Coxiella burnetii is an obligate intracellular bacterial pathogen that undergoes a biphasic developmental cycle, alternating between a small cell variant (SCV) and a large cell variant (LCV). -
Isolation of Francisella Tularensis from Skin Ulcer After a Tick Bite, Austria, 2020
microorganisms Case Report Isolation of Francisella tularensis from Skin Ulcer after a Tick Bite, Austria, 2020 Mateusz Markowicz 1,*, Anna-Margarita Schötta 1 , Freya Penatzer 2, Christoph Matscheko 2, Gerold Stanek 1, Hannes Stockinger 1 and Josef Riedler 2 1 Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria; [email protected] (A.-M.S.); [email protected] (G.S.); [email protected] (H.S.) 2 Kardinal Schwarzenberg Klinikum, Kardinal Schwarzenbergplatz 1, A-5620 Schwarzach, Austria; [email protected] (F.P.); [email protected] (C.M.); [email protected] (J.R.) * Correspondence: [email protected]; Tel.: +43-1-40160-33023 Abstract: Ulceroglandular tularemia is caused by the transmission of Francisella tularensis by arthro- pods to a human host. We report a case of tick-borne tularemia in Austria which was followed by an abscess formation in a lymph node, making drainage necessary. F. tularensis subsp. holarctica was identified by PCR and multilocus sequence typing. Keywords: tularemia; Francisella tularensis; tick; multi locus sequence typing Depending on the transmission route of Francisella tularensis, tularemia can present Citation: Markowicz, M.; Schötta, as a local infection or a systemic disease [1]. Transmission of the pathogen takes place A.-M.; Penatzer, F.; Matscheko, C.; by contact with infected animals, by bites of arthropods or through contaminated water Stanek, G.; Stockinger, H.; Riedler, J. and soil. Hares and wild rabbits are the main reservoirs of the pathogen in Austria [2]. -
Proteomics-Driven Antigen Discovery for Development of Vaccines Against Gonorrhea*□S
crossmark Research © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea*□S Ryszard A. Zielke‡, Igor H. Wierzbicki‡, Benjamin I. Baarda‡, Philip R. Gafken§, Olusegun O. Soge¶, King K. Holmes¶ʈ, Ann E. Jerse**, Magnus Unemo‡‡, and Aleksandra E. Sikora‡§§ Expanding efforts to develop preventive gonorrhea vac- exposed, secreted via naturally released membrane ves- cines is critical because of the dire possibility of untreat- icles, and elicited bactericidal antibodies that cross-re- able gonococcal infections. Reverse vaccinology, which acted with a panel of temporally and geographically di- includes genome and proteome mining, has proven very verse isolates. In addition, analysis of polymorphisms at successful in the discovery of vaccine candidates against the nucleotide and amino acid levels showed that these many pathogenic bacteria. However, progress with this vaccine candidates are highly conserved among N. gon- approach for a gonorrhea vaccine remains in its infancy. orrhoeae strains. Finally, depletion of BamA caused a loss Accordingly, we applied a comprehensive proteomic plat- of N. gonorrhoeae viability, suggesting it may be an es- form—isobaric tagging for absolute quantification cou- sential target. Together, our data strongly support the use pled with two-dimensional liquid chromatography and of proteomics-driven discovery of potential vaccine tar- mass spectrometry—to identify potential gonococcal gets as a sound approach for identifying promising gono- vaccine antigens. Our previous analyses focused on cell coccal antigens. Molecular & Cellular Proteomics 15: envelopes and naturally released membrane vesicles de- 10.1074/mcp.M116.058800, 2338–2355, 2016.