Mouse Vendor-Dependent Variation in Gut Microbiota Determines Susceptibility to Salmonella Infection Eric M

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Vendor-Dependent Variation in Gut Microbiota Determines Susceptibility to Salmonella Infection Eric M Mouse vendor-dependent variation in gut microbiota determines susceptibility to Salmonella infection Eric M. Velazquez and Andreas J. Bäumler Medical Microbiology and Immunology, University of California, Davis, CA Abstract ResultsResults The gut microbiota contributes to intestinal health and can protect its host against Figure 1 Figure 3 diarrheal infections. However, specific members of the microbial community that confer protective benefits are not fully described. We hypothesized that specific 11 10 A. PC2 B. 100 microbiota differences between healthy individuals can be associated with more Verrucomicrobia 9 90 resistance to enteric pathogens. We first tested if genetically similar strains of mice 8 Proteobacteria Salmonella % 80 obtained from different commercial vendors exhibit different responses during (log CFU 7 Abundance Taconic 70 Tenericutes per gram 6 of fecal Salmonella infection. C57BL/6 mice from Harlan and Jackson were orally challenged C. River feces) 5 community 60 Firmicutes with increasing doses of Salmonella. At each given dose, pathogen loads were 4 analyzed by 50 Deferribacteres 3 16S rRNA consistently higher in Jackson mice compared to Harlan mice. Next, we directly Harlan 40 2 sequencing Cyanobacteria tested if the difference in Salmonella colonization was microbiota-dependent. 1 Jackson 30 Bacteroidetes Colonizing germ-free mice with fecal transplants recapitulated the infective dose 0 20 % mice infected: 0 0 100 0 75 100 0 100 100 100 100 100 10 Actinobacteria response associated with each donor. Microbiome sequence analysis identified PC1 0 Proteobacteria in donor and recipient animals from Harlan, but not Jackson. We 5 7 9 5 7 9 5 7 9 5 7 9 Challenge dose: 10 10 10 10 10 10 10 10 10 10 10 10 Har CR Tac Jax investigated the causal role of these commensal bacteria by transferring them into PC3 Mouse vendors: Harlan C. River Taconic Jackson Jackson mice. After being colonized with Enterobacteriaceae isolates, Jackson mice Phylum-level Differences Correlate with Host Susceptibility showed improved intestinal resistance against Salmonella. Importantly, these Specific Pathogen-Free C57BL/6 Mice Obtained from Different Vendors 16S rRNA sequencing of feces from uninfected mice reveals that relatively resistant findings suggest that the natural levels of Enterobacteriaceae among healthy groups cluster away from the more susceptible ones (3A: Unweighted PCA plot). Intestinal Salmonella Colonization Varies by Mouse Supplier individuals may determine susceptibility during a foodborne outbreak. Jackson mice in particular lack detectable Proteobacteria. (3B: Abundance columns Animals were allowed to acclimate in our vivarium for at least one month before any of all mice from each given vendor were averaged). Data were analyzed in QIIME. Background experiments were started. Infections were performed by oral gavage with increasing doses of Salmonella. Fecal pellets were collected at 4 days post-infection and Figure 4 • During a foodborne outbreak, people Cases per million pathogen loads were enumerated by plating. Mice from Jackson have the lowest population can exhibit a range of illness, from implantation dose needed to become infected. They also have greater burdens of Commensal Enterobacteriaceae Salmonella spp. 0.1 – 1.9 self-limiting gastroenteritis to death. Salmonella at each given inoculum. Genetic or microbial differences between 2 – 4.9 7 7 5 – 9.9 mouse substrains could be contributing to the variable susceptibility observed. 6 6 • Attack rates may be variable due to 10 – 19.9 5 5 specific host, pathogen, and >20 Bacteria 4 4 (CDC, 2008 Outbreak) Figure 2 (log CFU environmental interactions. 3 3 per gram Pathogen virulence 2 2 • We hypothesize that natural 11 feces) Dose ingested 10 1 1 n.d. n.d. n.d. n.d. variation in the gut microbiota 9 0 0 Host genetics between healthy individuals Salmonella 8 CR Har Tac Jax CR Har Tac Jax may underlie differences in Immune system (log CFU 7 Jackson mice given MacConkey isolates from: susceptibility during intestinal Diet and stress per gram 6 feces) 5 Gut microbiota Salmonellosis Salmonella infection. 4 Indigenous Proteobacteria Exclude Salmonella Implantation 3 Fecal transplants of uninfected mice from different vendors were grown aerobically Methods 2 on MacConkey agar and colonies with unique morphologies were isolated. Mice 1 0 from Jackson that were colonization with these cultured strains and subsequently Experimental Model % mice infected: 0 33 100 33 25 100 0 100 100 75 100 100 challenged with a 105 inoculum of Salmonella were protected. (n.d., not detectable) Donors with Most resistant Challenge dose: 105 107 109 105 107 109 105 107 109 105 107 109 different microbiota to infection Summary Mouse vendors: Harlan C. River Taconic Jackson Infect Figure 1 Figure 3 S R R • Mice from different vendors have varying • The intestinal niche for Germ-Free Swiss Webster Mice Given Feces from Different Vendors degrees of colonization resistance and this Enterobacteriaceae is occupied Plate Sequence property is transmissible via the microbiota. on a first come, first served basis. Infectious Dose Response is Determined by Gut Microbes Feces from mice used in Figure 1 (before infection) were given to inbred germ-free Fecal transfer Isolate bacteria mice. These recipients animals were maintained under sterile conditions for the Acknowledgements entire experiment. After allowing 5 days for the fecal transplant to establish, Keaton Heasley (CSU Northridge) for data analysis and graphics. Infect Figure 2 Infect Figure 4 recipient mice were challenged with increasing doses of Salmonella. The percent of Christopher Lopez and Franziska Faber for animal husbandry. S R S animals infected and the colonization levels of Salmonella at each tested inoculum Veterinary Scientist Training Program for DVM support. Plate Plate were consistent between the donors in Figure 1 and the respective recipients. Integrative Pathobiology Graduate Group for PhD support. These findings support the idea that differences in the baseline level of colonization Germ-free recipients Most susceptible Animal Models of Infectious Diseases Training Program for funding. with same genetics to infection resistance between mice from various breeders is microbiota-dependent. Students Training in Advanced Research (STAR) Summer Program for funding. .
Recommended publications
  • Q Fever in Small Ruminants and Its Public Health Importance
    Journal of Dairy & Veterinary Sciences ISSN: 2573-2196 Review Article Dairy and Vet Sci J Volume 9 Issue 1 - January 2019 Copyright © All rights are reserved by Tolera Tagesu Tucho DOI: 10.19080/JDVS.2019.09.555752 Q Fever in Small Ruminants and its Public Health Importance Tolera Tagesu* School of Veterinary Medicine, Jimma University, Ethiopia Submission: December 01, 2018; Published: January 11, 2019 *Corresponding author: Tolera Tagesu Tucho, School of Veterinary Medicine, Jimma University, Jimma Oromia, Ethiopia Abstract Query fever is caused by Coxiella burnetii, it’s a worldwide zoonotic infectious disease where domestic small ruminants are the main reservoirs for human infections. Coxiella burnetii, is a Gram-negative obligate intracellular bacterium, adapted to thrive within the phagolysosome of the phagocyte. Humans become infected primarily by inhaling aerosols that are contaminated with C. burnetii. Ingestion (particularly drinking raw milk) and person-to-person transmission are minor routes. Animals shed the bacterium in urine and feces, and in very high concentrations in birth by-products. The bacterium persists in the environment in a resistant spore-like form which may become airborne and transported long distances by the wind. It is considered primarily as occupational disease of workers in close contact with farm animals or processing their be commenced immediately whenever Q fever is suspected. To prevent both the introduction and spread of Q fever infection, preventive measures shouldproducts, be however,implemented it may including occur also immunization in persons without with currently direct contact. available Doxycycline vaccines drugof domestic is the first small line ruminant of treatment animals for Q and fever.
    [Show full text]
  • Coxiella Burnetii
    SENTINEL LEVEL CLINICAL LABORATORY GUIDELINES FOR SUSPECTED AGENTS OF BIOTERRORISM AND EMERGING INFECTIOUS DISEASES Coxiella burnetii American Society for Microbiology (ASM) Revised March 2016 For latest revision, see web site below: https://www.asm.org/Articles/Policy/Laboratory-Response-Network-LRN-Sentinel-Level-C ASM Subject Matter Expert: David Welch, Ph.D. Medical Microbiology Consulting Dallas, TX [email protected] ASM Sentinel Laboratory Protocol Working Group APHL Advisory Committee Vickie Baselski, Ph.D. Barbara Robinson-Dunn, Ph.D. Patricia Blevins, MPH University of Tennessee at Department of Clinical San Antonio Metro Health Memphis Pathology District Laboratory Memphis, TN Beaumont Health System [email protected] [email protected] Royal Oak, MI BRobinson- Erin Bowles David Craft, Ph.D. [email protected] Wisconsin State Laboratory of Penn State Milton S. Hershey Hygiene Medical Center Michael A. Saubolle, Ph.D. [email protected] Hershey, PA Banner Health System [email protected] Phoenix, AZ Christopher Chadwick, MS [email protected] Association of Public Health Peter H. Gilligan, Ph.D. m Laboratories University of North Carolina [email protected] Hospitals/ Susan L. Shiflett Clinical Microbiology and Michigan Department of Mary DeMartino, BS, Immunology Labs Community Health MT(ASCP)SM Chapel Hill, NC Lansing, MI State Hygienic Laboratory at the [email protected] [email protected] University of Iowa [email protected] Larry Gray, Ph.D. Alice Weissfeld, Ph.D. TriHealth Laboratories and Microbiology Specialists Inc. Harvey Holmes, PhD University of Cincinnati College Houston, TX Centers for Disease Control and of Medicine [email protected] Prevention Cincinnati, OH om [email protected] [email protected] David Welch, Ph.D.
    [Show full text]
  • Ehrlichiosis and Anaplasmosis Are Tick-Borne Diseases Caused by Obligate Anaplasmosis: Intracellular Bacteria in the Genera Ehrlichia and Anaplasma
    Ehrlichiosis and Importance Ehrlichiosis and anaplasmosis are tick-borne diseases caused by obligate Anaplasmosis: intracellular bacteria in the genera Ehrlichia and Anaplasma. These organisms are widespread in nature; the reservoir hosts include numerous wild animals, as well as Zoonotic Species some domesticated species. For many years, Ehrlichia and Anaplasma species have been known to cause illness in pets and livestock. The consequences of exposure vary Canine Monocytic Ehrlichiosis, from asymptomatic infections to severe, potentially fatal illness. Some organisms Canine Hemorrhagic Fever, have also been recognized as human pathogens since the 1980s and 1990s. Tropical Canine Pancytopenia, Etiology Tracker Dog Disease, Ehrlichiosis and anaplasmosis are caused by members of the genera Ehrlichia Canine Tick Typhus, and Anaplasma, respectively. Both genera contain small, pleomorphic, Gram negative, Nairobi Bleeding Disorder, obligate intracellular organisms, and belong to the family Anaplasmataceae, order Canine Granulocytic Ehrlichiosis, Rickettsiales. They are classified as α-proteobacteria. A number of Ehrlichia and Canine Granulocytic Anaplasmosis, Anaplasma species affect animals. A limited number of these organisms have also Equine Granulocytic Ehrlichiosis, been identified in people. Equine Granulocytic Anaplasmosis, Recent changes in taxonomy can make the nomenclature of the Anaplasmataceae Tick-borne Fever, and their diseases somewhat confusing. At one time, ehrlichiosis was a group of Pasture Fever, diseases caused by organisms that mostly replicated in membrane-bound cytoplasmic Human Monocytic Ehrlichiosis, vacuoles of leukocytes, and belonged to the genus Ehrlichia, tribe Ehrlichieae and Human Granulocytic Anaplasmosis, family Rickettsiaceae. The names of the diseases were often based on the host Human Granulocytic Ehrlichiosis, species, together with type of leukocyte most often infected.
    [Show full text]
  • Purple Bacteria and Their Relatives”
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1988, p. 321-325 Vol. 38, No. 3 0020-7713/88/03032 1-05$02.OOtO Copyright 0 1988, International Union of Microbiological Societies Proteobacteria classis nov. a Name for the Phylogenetic Taxon That Includes the “Purple Bacteria and Their Relatives” E. STACKEBRANDT,l R. G. E. MURRAY,2* AND H. G. TRUPER3 Lehrstuhl fur Allgemeine Mikrobiologie, Biologiezentrum, Christian-Albrechts Universitat, 2300 Kid, Federal Republic of Germany’; Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C12; and Institut fur Mikrobiulogie, Universitat Bonn, 5300 Bonn I, Federal Republic of Germany3 Proteobacteria classis nov. is suggested as the name for a new higher taxon to circumscribe the a, p, y, and 6 groups that are included among the phylogenetic relatives of the purple photosynthetic bacteria and as a suitable collective name for reference to that group. The group names (alpha, etc.) remain as vernacular terms at the level of subclass pending further studies and nomenclatural proposals. Phylogenetic interpretations derived from the study of the interim while the phylogenetic data are being integrated ribosomal ribonucleic acid (rRNA) sequences and oligonu- into formal bacterial taxonomy. It does not appear to be cleotide catalogs provide an important factual base for inappropriate or confusing to use the protean prefix because arrangements of higher taxa of bacteria (25, 26). A recent of the genus Proteus among the Proteobacteria; the reasons workshop organized by the International Committee on for use are clear enough. Systematic Bacteriology recognized that a particularly di- This new class is so far only definable in phylogenetic verse but related group of gram-negative bacteria, including terms.
    [Show full text]
  • Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes Ricinus Ticks in Pomerania (Poland)
    pathogens Article Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes ricinus Ticks in Pomerania (Poland) Lucyna Kirczuk 1 , Mariusz Piotrowski 2 and Anna Rymaszewska 2,* 1 Department of Hydrobiology, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] 2 Department of Genetics and Genomics, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] * Correspondence: [email protected] Abstract: Tick-borne pathogens are an important medical and veterinary issue worldwide. Environ- mental monitoring in relation to not only climate change but also globalization is currently essential. The present study aimed to detect tick-borne pathogens of the genera Anaplasma, Rickettsia and Francisella in Ixodes ricinus ticks collected from the natural environment, i.e., recreational areas and pastures used for livestock grazing. A total of 1619 specimens of I. ricinus were collected, including ticks of all life stages (adults, nymphs and larvae). The study was performed using the PCR technique. Diagnostic gene fragments msp2 for Anaplasma, gltA for Rickettsia and tul4 for Francisella were ampli- fied. No Francisella spp. DNA was detected in I. ricinus. DNA of A. phagocytophilum was detected in 0.54% of ticks and Rickettsia spp. in 3.69%. Nucleotide sequence analysis revealed that only one species of Rickettsia, R. helvetica, was present in the studied tick population. The present results are a Citation: Kirczuk, L.; Piotrowski, M.; part of a large-scale analysis aimed at monitoring the level of tick infestation in Northwest Poland.
    [Show full text]
  • Chapter 20 the Proteobacteria
    Fig. 20.21 Chapter 20 purple photosynthetic sulfur bacteria The Proteobacteria may have arose from a single photosynthetic ancestor 16S rRNA shows five distinct lineages 12-27-2011 12-28-2011 Class α-proteobacteria Most are oligotrophic (growing at low nutrient level) Fig. 20.11 Genus Rhizobium motile rods often contain poly-β- hydroxybutyrate (PHB) granules become pleomorphic under adverse conditions grow symbiotically as nitrogen- fixing bacteroids (Æ ammonium) within root nodule cells of legumes Genus Agrobacterium Figure 20.12 transform infected plant cells (crown, roots, and stems) into autonomously proliferating tumors Agrobacterium tumefaciens causes crown gall disease by means of tumor-inducing (Ti) plasmid Crown gall (冠癭) of a tomato plant Agrobacterium Ti (tumor inducing) plamid Transfer the T-DNA to plant and lower fungi Can also mobilize other plasmid with to plant cells A vector used for transgenic plant Fig. 29.13 Genus Brucella important human and animal pathogen (zoonosis) Brucellosis- undulant fever 波型熱 A select agent as biocrime ingestion of contaminated food (milk products); inhalation, via skin wound, rare person-to-person Acute form: flu-like symptom; undulant form: undulant fever, arthritis, and testicular inflammation, neurologic symptom may occur; chronic form: chronic fatigue, depression, and arthritis Class β-proteobacteria Nitrogen metabolism Nitrifying bacteria- Nitrification oxidation of ammonium to nitrite, nitrite further oxidized to nitrate Nitrobacter (α-proteobacteria) Nitrosomonas (β-proteobacteria) Nitrosococcus (γ-proteobacteria) Nitrogen Fixation Burkholderia and Ralstonia (β-proteobacteria) both form symbiotic associations with legumes both have nodulation genes (nod) a common genetic origin with rhizobia (α-proteobacteria) obtained through lateral gene transfer Order Burkholderiales Burkholderia cepacia degrades > 100 organic molecules very active in recycling organic material plant and human pathogen (nosocomial pathogen) a particular problem for cystic fibrosis patients B.
    [Show full text]
  • Non-Coding Rnas of the Q Fever Agent, Coxiella Burnetii
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2015 Non-coding RNAs of the Q fever agent, Coxiella burnetii Indu Ramesh Warrier The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Warrier, Indu Ramesh, "Non-coding RNAs of the Q fever agent, Coxiella burnetii" (2015). Graduate Student Theses, Dissertations, & Professional Papers. 4620. https://scholarworks.umt.edu/etd/4620 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. NON-CODING RNAS OF THE Q FEVER AGENT, COXIELLA BURNETII By INDU RAMESH WARRIER M.Sc (Med), Kasturba Medical College, Manipal, India, 2010 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy Cellular, Molecular and Microbial Biology The University of Montana Missoula, MT August, 2015 Approved by: Sandy Ross, Dean of The Graduate School Graduate School Michael F. Minnick, Chair Division of Biological Sciences Stephen J. Lodmell Division of Biological Sciences Scott D. Samuels Division of Biological Sciences Scott Miller Division of Biological Sciences Keith Parker Department of Biomedical and Pharmaceutical Sciences Warrier, Indu, PhD, Summer 2015 Cellular, Molecular and Microbial Biology Non-coding RNAs of the Q fever agent, Coxiella burnetii Chairperson: Michael F. Minnick Coxiella burnetii is an obligate intracellular bacterial pathogen that undergoes a biphasic developmental cycle, alternating between a small cell variant (SCV) and a large cell variant (LCV).
    [Show full text]
  • Isolation of Francisella Tularensis from Skin Ulcer After a Tick Bite, Austria, 2020
    microorganisms Case Report Isolation of Francisella tularensis from Skin Ulcer after a Tick Bite, Austria, 2020 Mateusz Markowicz 1,*, Anna-Margarita Schötta 1 , Freya Penatzer 2, Christoph Matscheko 2, Gerold Stanek 1, Hannes Stockinger 1 and Josef Riedler 2 1 Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria; [email protected] (A.-M.S.); [email protected] (G.S.); [email protected] (H.S.) 2 Kardinal Schwarzenberg Klinikum, Kardinal Schwarzenbergplatz 1, A-5620 Schwarzach, Austria; [email protected] (F.P.); [email protected] (C.M.); [email protected] (J.R.) * Correspondence: [email protected]; Tel.: +43-1-40160-33023 Abstract: Ulceroglandular tularemia is caused by the transmission of Francisella tularensis by arthro- pods to a human host. We report a case of tick-borne tularemia in Austria which was followed by an abscess formation in a lymph node, making drainage necessary. F. tularensis subsp. holarctica was identified by PCR and multilocus sequence typing. Keywords: tularemia; Francisella tularensis; tick; multi locus sequence typing Depending on the transmission route of Francisella tularensis, tularemia can present Citation: Markowicz, M.; Schötta, as a local infection or a systemic disease [1]. Transmission of the pathogen takes place A.-M.; Penatzer, F.; Matscheko, C.; by contact with infected animals, by bites of arthropods or through contaminated water Stanek, G.; Stockinger, H.; Riedler, J. and soil. Hares and wild rabbits are the main reservoirs of the pathogen in Austria [2].
    [Show full text]
  • Proteomics-Driven Antigen Discovery for Development of Vaccines Against Gonorrhea*□S
    crossmark Research © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea*□S Ryszard A. Zielke‡, Igor H. Wierzbicki‡, Benjamin I. Baarda‡, Philip R. Gafken§, Olusegun O. Soge¶, King K. Holmes¶ʈ, Ann E. Jerse**, Magnus Unemo‡‡, and Aleksandra E. Sikora‡§§ Expanding efforts to develop preventive gonorrhea vac- exposed, secreted via naturally released membrane ves- cines is critical because of the dire possibility of untreat- icles, and elicited bactericidal antibodies that cross-re- able gonococcal infections. Reverse vaccinology, which acted with a panel of temporally and geographically di- includes genome and proteome mining, has proven very verse isolates. In addition, analysis of polymorphisms at successful in the discovery of vaccine candidates against the nucleotide and amino acid levels showed that these many pathogenic bacteria. However, progress with this vaccine candidates are highly conserved among N. gon- approach for a gonorrhea vaccine remains in its infancy. orrhoeae strains. Finally, depletion of BamA caused a loss Accordingly, we applied a comprehensive proteomic plat- of N. gonorrhoeae viability, suggesting it may be an es- form—isobaric tagging for absolute quantification cou- sential target. Together, our data strongly support the use pled with two-dimensional liquid chromatography and of proteomics-driven discovery of potential vaccine tar- mass spectrometry—to identify potential gonococcal gets as a sound approach for identifying promising gono- vaccine antigens. Our previous analyses focused on cell coccal antigens. Molecular & Cellular Proteomics 15: envelopes and naturally released membrane vesicles de- 10.1074/mcp.M116.058800, 2338–2355, 2016.
    [Show full text]
  • Ehrlichia, and Anaplasma Species in Australian Human-Biting Ticks
    RESEARCH ARTICLE Bacterial Profiling Reveals Novel “Ca. Neoehrlichia”, Ehrlichia, and Anaplasma Species in Australian Human-Biting Ticks Alexander W. Gofton1*, Stephen Doggett2, Andrew Ratchford3, Charlotte L. Oskam1, Andrea Paparini1, Una Ryan1, Peter Irwin1* 1 Vector and Water-borne Pathogen Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia, 2 Department of Medical Entomology, Pathology West and Institute for Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia, 3 Emergency Department, Mona Vale Hospital, New South Wales, Australia * [email protected] (AWG); [email protected] (PI) Abstract OPEN ACCESS In Australia, a conclusive aetiology of Lyme disease-like illness in human patients remains Citation: Gofton AW, Doggett S, Ratchford A, Oskam elusive, despite growing numbers of people presenting with symptoms attributed to tick CL, Paparini A, Ryan U, et al. (2015) Bacterial bites. In the present study, we surveyed the microbial communities harboured by human-bit- Profiling Reveals Novel “Ca. Neoehrlichia”, Ehrlichia, ing ticks from across Australia to identify bacteria that may contribute to this syndrome. and Anaplasma Species in Australian Human-Biting Ticks. PLoS ONE 10(12): e0145449. doi:10.1371/ Universal PCR primers were used to amplify the V1-2 hyper-variable region of bacterial journal.pone.0145449 16S rRNA genes in DNA samples from individual Ixodes holocyclus (n = 279), Amblyomma Editor: Bradley S. Schneider, Metabiota, UNITED triguttatum (n = 167), Haemaphysalis bancrofti (n = 7), and H. longicornis (n = 7) ticks. STATES The 16S amplicons were sequenced on the Illumina MiSeq platform and analysed in Received: October 12, 2015 USEARCH, QIIME, and BLAST to assign genus and species-level taxonomies.
    [Show full text]
  • Applications of Genomics to Slow the Spread of Multidrug‐Resistant
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Special Issue: Antimicrobial Therapeutics Reviews REVIEW Applications of genomics to slow the spread of multidrug-resistant Neisseria gonorrhoeae Tatum D. Mortimer 1 and Yonatan H. Grad 1,2 1Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts. 2Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts Address for correspondence: Yonatan H. Grad, Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 665 Huntington Ave., Building 1, Room 715, Boston, MA 02115. [email protected] Infections with Neisseria gonorrhoeae, a sexually transmitted pathogen that causes urethritis, cervicitis, and more severe complications, are increasing. Gonorrhea is typically treated with antibiotics; however, N. gonorrhoeae has rapidly acquired resistance to many antibiotic classes, and lineages with reduced susceptibility to the currently recommended therapies are emerging worldwide. In this review, we discuss the contributions of whole genome sequencing (WGS) to our understanding of resistant N. gonorrhoeae. Genomics has illuminated the evolutionary origins and population structure of N. gonorrhoeae and the magnitude of horizontal gene transfer within and between Neisseria species. WGS can be used to predict the susceptibility of N. gonorrhoeae based on known resistance determinants, track the spread of these determinants throughout the N. gonorrhoeae population, and identify novel loci contributing to resistance. WGS has also allowed more detailed epidemiological analysis of transmission of N. gonorrhoeae between individuals and populations than previously used typing methods. Ongoing N.
    [Show full text]
  • Tularemia (CFSPH)
    Tularemia Importance Tularemia is a zoonotic bacterial disease with a wide host range. Infections are most prevalent among wild mammals and marsupials, with periodic epizootics in Rabbit Fever, lagomorphs and rodents, but clinical cases also occur in sheep, cats and other Deerfly Fever, domesticated species. A variety of syndromes can be seen, but fatal septicemia is Meat-Cutter’s Disease common in some species. In humans, tularemia varies from a localized infection to Ohara Disease, fulminant, life-threatening pneumonia or septicemia. Francis Disease Tularemia is mainly seen in the Northern Hemisphere, where it has recently emerged or re-emerged in some areas, including parts of Europe and the Middle East. A few endemic clinical cases have also been recognized in regions where this disease Last Updated: June 2017 was not thought to exist, such as Australia, South Korea and southern Sudan. In some cases, emergence may be due to increased awareness, surveillance and/or reporting requirements; in others, it has been associated with population explosions of animal reservoir hosts, or with social upheavals such as wars, where sanitation is difficult and infected rodents may contaminate food and water supplies. Occasionally, this disease may even be imported into a country in animals. In 2002, tularemia entered the Czech Republic in a shipment of sick pet prairie dogs from the U.S. Etiology Tularemia is caused by Francisella tularensis (formerly known as Pasteurella tularensis), a Gram negative coccobacillus in the family Francisellaceae and class γ- Proteobacteria. Depending on the author, either three or four subspecies are currently recognized. F. tularensis subsp. tularensis (also known as type A) and F.
    [Show full text]