<<

Appendix A Threshold Data

The following table is a collection of sensory threshold data, O for olfactory and T for , for a variety of relevant compounds, measured in a variety of solvents— water, beer, wine, and spirits. The data comes from literature over the past 50 years, from a number of different researchers using different methods of analysis. Some papers distinguish a recognition threshold from a detection threshold: those are indicated by rO and dO, respectively. For taste, which is generally broken down into sweetness, sourness, saltiness, bitterness, and umaminess, the appropriate taste characteristic is indicated when known. It is tempting to think that the olfactory threshold is determined strictly by the concentration of a chemical in the air being inhaled. If this is the case, then the identity of the solvent is relevant only in so far as it determines a relation between the concentration in solution and the concentration in air. We can test this hypothesis for some materials as follows. If species i were in vapor-liquid equilibrium, then (subject to approximations)

γ P ∗ y = x i i i i P (A.1) where γi is activity coefficient in the liquid (a strong function of the liquid ∗ composition, and a weaker function of temperature), Pi is the vapor pressure of pure i (a function of temperature only), and P is the experimental pressure (assumed constant). To estimate γi we can make reference to the partition coefficients of Ikari and Kubo [377], which permit the calculation

yi = Ki(x)xi,

© Springer Nature Switzerland AG 2019 421 G. H. Miller, Whisky Science, https://doi.org/10.1007/978-3-030-13732-8 422 A Threshold Data where the temperature is determined by water- equilibrium and the ethanol mole fraction x (no subscript). If the temperature dependence of (A.1) lies entirely ∗ with Pi , then

∗ Pi (T ) yi = Ki(x) ∗ xi, Pi (Teq(x)) where the ratio of vapor pressures corrects the partition coefficient for the effect of temperature. We explore this hypothesis for isoamyl (Fig. A.1) using a vapor pressure function tabulated by Yaws [912]. In this plot, where each point comes from a different literature source, often using different methods, the raw threshold data shows significant variability. There is, however, an apparent positive correlation: the threshold level generally increases with increasing ethanol mole fraction. The ∗ threshold data, multiplied by Ki and the Pi ratio, is also plotted. If the hypothesis were correct, and the approximations all valid, these corrected points would have constant amplitude. The diamond symbols in Fig. A.1 are approximately constant

literature threshold calculated headspace proof 0 40 80 60000 9000

8000 50000 7000

40000 6000

5000 30000 4000

20000 3000 headspace concentration olfactory threshold [ppb] 2000 10000 1000

0 0 00.05 0.10.15 0.2 x

Fig. A.1 Olfactory threshold data for in a variety of solutions, and calculated proxy for headspace concentration A Threshold Data 423

(i.e., show less variability than the raw square symbols do), especially if the data at x = 0.04 were considered an outlier. Thus, this plot lends some qualitative support to the hypothesis that the solvent only acts to regulate headspace concentration. However, a quantitative evaluation of the hypothesis is not possible given the paucity and variability of the data (Table A.1). 424 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 198 198 528 198 528 528 528 528 198 131 528 198 528 723 198 723 723 528 528 723 722 321 207 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ [ Water 34% Spirit 9.4% (w/w) Spirit 10% (w/w) Ethanol 34% Spirit White wine at 10% 34% Spirit Water 34% Spirit Beer Beer Water Water Beer Beer Beer Beer Water Water In Beer Water Beer Beer O O O O O O O O dO T T dO dO T T T T rO rO By T rO T T 000 000 500 100 550 000 590 000 000 000 000 000 000 000 000 000 000 000 000 000 , , , , , , , , , , , , , , , , , 4300 2300 >5000 75 40 75 16 306 450 200 990 800 500 000 000 000 600 500 >10 , , , , , , >720 1 2 1 4 14 10 Threshold [ppb] Ethanol-like Alcohol, strong Malty, solvent-like Alcohol Malty Alcohol Alcohol, solvent Ethanol-like Descriptor Alcohol Alcohol Malty, solvent-like Alcohol Rubber, sweetish, warming, diacetyl Malty Alcohol A compilation of aroma threshold data Compound Ethanol 1-Propanol 2-Propanol 1- 2-Methylpropan-1-ol (aka isobutyl alcohol) 2-Butanol 2-Methylpropan-2-ol (aka tert-butyl alcohol) Butane-2,3-diol Table A.1 A Threshold Data 425 ] ] ] ] ] 681 681 681 681 658 ] ] ] ] ] ] ] , ] ] ] ] ] ] ] ] , , , ] ] , ] (continued) 321 198 528 198 528 528 131 680 528 198 790 723 723 528 528 198 680 680 680 207 722 656 131 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Water Water 9.4% (w/w) Spirit 10% Ethanol 34% Spirit Whitewineat10% 10% (w/w) Ethanol 34% Spirit Water 12% Ethanol Dry Riesling Ugni Blanc 40% Ethanol Water Water Beer Beer Beer Beer Water Water Beer Beer O T O O O O dO T T T O O O O dO T T T rO T rO T T 250 220 430 000 000 400 100 350 000 000 000 000 980 000 000 000 000 , , , , , , , , , , , , 4000 7000 7000 6500 1200 3700 64 30 32 56 80 70 65 45 50 310 330 300 Malty Alcohol, banana, sweetish, aromatic Malty Malty, solvent-like Alcohol, banana, medicinal, solvent Pungent, alcoholic, solvent Alcohol, medicinal Alcohol, fruity, raspberry, nutty, ether Alcohol, medicinal, ether, nutty, fruity Malty, solvent-like Malty 1-Pentanol 3-Methylbutanol (aka isoamyl alcohol) 2-Methyl-1-butanol 2-Pentanol 3-Pentanol 1-Penten-3-ol 426 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 528 528 528 198 528 528 528 131 723 723 528 790 528 528 528 131 722 321 207 207 198 321 207 207 528 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ [ [ 9.4% (w/w) Spirit 10% Ethanol 10% (w/w) Ethanol 34% Spirit White wine at 10% White wine at 10% Water 10% (w/w) Ethanol White wine at 10% White wine at 10% 34% Spirit Water Water Beer Beer Beer Beer Water Beer In Beer Beer Beer Beer Beer Beer O O O O O O O O O O O O dO T T T rO T By T T T T T T T 9 . 3 70 13 40 400 820 400 250 000 150 000 900 200 000 000 000 , , , , , 5200 5200 8000 5200 5280 1080 2450 1100 1000 13 15 400 400 900 Threshold [ppb] Coconut, green leaves, unpleasant Lettuce-like Green leaves, banana, sweetish Coconut, walnut, oily Descriptor Coconut Coconut Coconut Green leaves, perfumed, sweetish Bitter, green leaves Lettuce-like Green leaves Coconut, walnut, oily Almonds, bitter (continued) )-2- + Compound 1-Hexanol 2-Hexanol (E)-2-Hexen-1-ol (Z)-3-Hexen-1-ol 1-Heptanol 2-Heptanol 1-Hepten-3-ol Phenylmethanol (aka ) 1-Octanol (S)-( 1-Octen-3-ol Table A.1 A Threshold Data 427 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 321 447 658 528 528 528 198 207 528 528 447 528 528 198 131 528 723 198 790 723 198 528 722 207 321 131 (continued) [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 9.4% (w/w) Spirit 10% Ethanol 34% Spirit Deflavored white wine at 10% White wine at 10% 34% Spirit 10% (w/w) Ethanol Water 10% (w/w) Ethanol 23% (v/v) Grain whisky 23% (v/v) Grain whisky 40% Ethanol Beer Beer Water Beer Beer Beer Beer Beer Water Water Beer Water Beer Water O O O dO O O O O O O rO O T T dO T T T dO T T rO T O T rO 087 17 . . 0 6 0 15 75 80 15 80 310 360 210 350 000 000 000 140 000 500 390 180 000 , , , , , 7500 7500 2000 7500 2600 10 80 414 125 200 Flowery, honey-like Roses, sweetish, perfumed Floral Flowery Lime, flowery (hyacinth, rose) Aniseed, terpenoid Citrus-like, bergamot-like Almonds, solvent Coconut, walnut, oily Coconut Coconut, walnut, oily, rancid Coconut, aniseed Flowery, honey-like Citrus-like, bergamot-like Bitter, chemical -) α 2-Phenylethanol 4-(2-Hydroxyethyl) (aka tyrosol) 1-Nonanol 2-Nonanol 1-Decanol 2-Decanol (Z)-3,7-Dimethyl-2,6-octadien-1-ol (aka nerol) 2,7-Dimethylocta-1,6-dien-3-ol (aka ) (R)-2,7-Dimethylocta-1,6-dien-3-ol 2-(4-Methyl-1-cyclohex-3-enyl)propan-2-ol (aka 428 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 321 654 723 723 447 777 447 654 777 198 447 528 447 528 723 583 723 528 207 198 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ Beer White wine at 10% 34% Spirit 23% (v/v) Grain whisky 34% Spirit Water 10% (w/w) Ethanol 23% (v/v) Grain whisky 23% (v/v) Grain whisky 23% (v/v) Grain whisky Water 34% Spirit 34% Spirit White wine White wine Water Water In Beer Beer Water T O O dO O O dO O rO rO dO O O O O rO T By T T O 70 300 000 000 000 000 000 400 000 500 000 400 000 000 , , , , , , , , , , 1001 1000 8000 5000 1100 3100 24 26 36 99 11 13 35 200 233 180 Threshold [ppb] Fruity, cotton candy, sour Caramel, fragrant Sweet Maple Caramel, maple Vinegar Sour Descriptor Fatty acids, coconut Perfumed, sweetish, coconut, varnish, musty Fatty acids, coconut, banana Vinegar Sweet, cotton candy, burnt sugar (continued) Compound 1- 2-Undecanol 1- 1-Tetradecanol 1-Hexadecanol Maltol (aka 3-hydroxy-2-methylpyran-4-one) Cyclotene (aka 2-hydroxy-3-methyl-2- cyclopentenone) Acids Table A.1 A Threshold Data 429 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 722 447 321 198 528 321 528 528 447 528 198 528 723 198 198 790 790 723 790 723 723 198 790 198 722 722 722 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 9.4% (w/w) Spirit 10% Ethanol 34% Spirit 9.4% (w/w) Spirit 10% Ethanol 34% Spirit 9.4% (w/w) Spirit 10% Ethanol 34% Spirit 23% (v/v) Grain whisky 10% (w/w) Ethanol 9.4% (w/w) Spirit 10% Ethanol 34% Spirit 10% (w/w) Ethanol Water 23% (v/v) Grain whisky Water Water Beer Beer Beer Water Beer Water Beer Water O O dO O O O O O O O O O O O O dO rO dO dO T T T rO rO T T rO 000 000 000 000 700 700 100 750 000 490 300 000 000 000 000 000 , , , , , , , , , , 4000 4000 3400 8000 8100 8200 2400 1500 2200 7700 1200 10 20 20 20 16 30 29 200 400 150 Sweaty Cheese, old hops, sweaty Sweaty Sweaty Buttery, cheesy, sweaty Sweaty, cheesy Sweaty, bitter, sour Sweaty Vinegar, milky Sweaty Acid Sweaty, cheesy 3-Methylbutanoic acid (aka isovaleric acid) Butanoic acid (aka ) (E)-But-2-enedioic acid (aka fumaric acid) 2-Methylpropanoic acid (aka isobutyric acid) Propanoic acid (aka ) 430 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 198 198 723 723 790 723 723 790 723 723 528 722 790 722 528 528 321 722 528 723 528 321 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ [ [ [ 34% Spirit 9.4% (w/w) Spirit 10% Ethanol 10% (w/w) Ethanol 34% Spirit 9.4% (w/w) Spirit 10% Ethanol 34% Spirit 9.4% (w/w) Spirit 10% Ethanol 10% (w/w) Ethanol 34% Spirit 34% Spirit Water Beer In 34% Spirit 34% Spirit Water Beer Beer Beer Beer O O O O O O O O O O O O dO T O By O O rO T T T T 000 000 000 000 000 000 000 000 , , , , , , , , 8800 8300 3000 8600 8200 8200 9400 8000 1300 8000 >500 >500 >500 >1100 15 15 15 15 11 17 10 13 Threshold [ppb] Sweaty, fruity Sweaty, body odor Descriptor Dry leaves, goaty, fatty acids Sweaty, fruity Waxy, tallowy, caprylic, rancid, soapy Goaty, , vegetable oil, sweaty Goaty, fatty acid, vegetable oil, Wet dog (continued) Compound Pentanoic acid (aka ) Hexanoic acid (aka ) Hex-3-enoic acid Heptanoic acid (aka ) Octanoic acid (aka ) Nonanoic acid (aka ) Decanoic acid (aka ) Undecanoic acid Table A.1 A Threshold Data 431 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 723 723 528 198 528 723 723 528 198 528 723 723 528 723 723 528 528 723 528 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 34% Spirit 34% Spirit 34% Spirit Beer Beer Beer 34% Spirit 34% Spirit Beer Water 34% Spirit 34% Spirit 34% Spirit 34% Spirit Beer Beer Water Beer Beer O O O T T O T O T dO O O O O T rO T T T 000 000 000 000 000 000 000 000 000 000 , , , , , , , , , , 7200 2500 6100 6100 >500 >500 >1200 >1600 >2200 12 17 400 175 000 300 >11 >12 >10 , >200 2 Phenolic, sour, grainy Honey-like, beeswax-like Honey, sweet Astringent Acid Honey-like, beeswax-like Harsh, astringent, papery Soapy, waxy Acid Acid, salty, forage Dodecanoic acid (aka ) Tridecanoic acid Tetradecanoic acid (aka ) Pentadecanoic acid Hexadecanoic acid (aka ) (9Z)-Hexadec-9-enoic acid (aka ) Octadecanoic acid (aka ) (9Z)-Octadec-9-enoic acid (aka ) (9Z,12Z)-9,12-Octadecadienoic acid (aka ) 2-Oxopropanoic acid (aka pyruvic acid) Oxaldehydic acid (aka glyoxylic acid) 2-Oxo-3-phenylpropanoic acid (aka phenylpyruvic acid) 2-Phenylacetic acid 2-Hydroxy-2-phenylacetic acid (aka mandelic acid) (E)-Non-2-enoic acid DL-2-Hydroxypropanoic acid (aka DL-lactic acid) 432 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 207 528 131 528 723 528 528 723 198 723 723 528 321 658 790 198 528 658 722 370 [ [ [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ [ [ Water 10% (w/w) Ethanol 34% Spirit 34% Spirit 9.4% (w/w) Spirit 10% Ethanol 34% Spirit 34% Spirit 40% Ethanol Water 40% Ethanol Beer Beer Beer In Whitewineat10% Water Beer Water Beer Beer O O O O O O O O O O dO T T T By T T O rO T T 76 5 4 . . . 0 9 2 40 20 150 000 000 000 000 000 000 400 100 000 , , , , , , , 3452 1840 2500 >4000 >5700 14 14 14 370 500 600 250 Threshold [ppb] Acid, salty Acid Acid Fruity Fruity Papaya, butter, sweetish, apple, perfumed Fruity Descriptor Puckering astringency Fruity Fatty acids Artificial strawberry, raspberry, perfumed (continued) Compound 2,3-Dihydroxybutanedioic acid (aka DL-tartaric acid) (2S,3S)-2,3-Dihydroxybutanedioic acid (aka D-tartaric acid) (2R,3R)-2,3-Dihydroxybutanedioic acid (aka L-tartaric acid) (Z)/(E)-Aconitic acid Methyl 2-hydroxybenzoate (aka ) Ethyl propionate (aka ethyl propanoate) Ethyl butanoate (aka ethyl butyrate) Ethyl 2-hydroxypropanoate (aka ethyl lactate) Ethyl tetradecanoate (aka ethyl myristate) Table A.1 A Threshold Data 433 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 528 528 528 723 723 723 723 723 723 723 723 723 723 723 528 528 528 723 528 528 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 34% Spirit 34% Spirit 34% Spirit 34% Spirit 34% Spirit 34% Spirit 34% Spirit 34% Spirit 34% Spirit 34% Spirit 34% Spirit 34% Spirit Beer Beer Beer Beer Beer Beer Beer Beer T O O O O O O O O O O O T T T T T T T T 000 500 870 450 250 600 000 900 , , 3400 1400 4000 2000 2000 1600 3000 5000 3500 >100 >1000 >5000 10 >14 Fatty acids, vegetable oil, rancid Fatty acids, fruity, solvent, perfumed Fruity, hot (spicy), orange, pear, melon Fatty acids, fruity, sweetish, rancid Fatty acids Fatty acids, vegetable oil, rancid Banana, sweet, fruity Fatty acids, tropical fruits Ethyl hexadecanoate (ethyl palmitate) Ethyl (E)-hexadec-9-enoate (aka ethyl palmitoleate) Ethyl octadecanoate (aka ethyl stearate) Ethyl (E)-octadec-9-enoate (aka ethyl oleate) Ethyl (9Z,12Z)-octadeca-9,12-dienoate (aka ethyl linoleate) 2-Methylpropyl acetate (aka isobutyl acetate) 3-Methylbutyl 2-methylpropanoate (aka isoamyl isobutyrate) 3-Methylbutyl 3-methylbutanoate (aka isoamyl isovalerate) Pentyl 3-methylbutanoate (aka isoamyl n-valerate) 3-Methylbutyl hexanoate (aka isoamyl caproate) 3-Methylbutyl octanoate (aka isoamyl capyrlate) 3-Methylbutyl decanoate (aka isoamyl caprate) 434 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 723 528 528 447 790 723 723 528 528 722 790 636 207 321 658 207 321 207 722 745 321 658 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ 10% (w/w) Ethanol 9.4% (w/w) Spirit 10% Ethanol 10% (w/w) Ethanol 34% Spirit White wine at 10% 34% Spirit Whitewineat10% Whitewineat10% 9.4% (w/w) Spirit 10% Ethanol Model wine at 10% 10% (w/w) Ethanol 20% Ethanol 34% Spirit 40% Ethanol 40% Ethanol 23% (v/v) Grain whisky Beer Mexican beer In Beer US beer O O O O O O O O O O O O O O O O O rO T By T T T 5 80 76 30 270 000 000 000 000 000 650 650 250 700 108 400 230 000 210 , , , , , , , 1510 7500 3800 12 17 17 18 74 17 30 Threshold [ppb] Roses, honey, apple, sweetish Flowery Apple, fruity, sweetish, aniseed Fruity-appley Fruity Descriptor Solvent, fruity, sweetish Apple, estery, aniseed -phenylethyl β (continued) Compound 2-Phenylethyl acetate (aka Ethyl acetate Ethyl hexanoate (aka ethyl caproate) acetate) Table A.1 A Threshold Data 435 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 447 447 528 447 528 447 528 723 723 723 790 723 790 636 528 207 722 321 658 207 722 321 658 528 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 10% (w/w) Ethanol White wine at 10% 9.4% (w/w) Spirit 10% Ethanol 34% Spirit White wine at 10% 34% Spirit 23% (v/v) Grain whisky 34% Spirit 9.4% (w/w) Spirit 10% Ethanol 10% (w/w) Ethanol 20% Ethanol 23% (v/v) Grain whisky 34% Spirit 40% Ethanol 40% Ethanol 23% (v/v) Grain whisky 23% (v/v) Grain whisky US beer Mexican beer Beer Beer Beer O O O O O O O O dO O O O O dO O O O rO rO T T T T T 2 30 580 250 250 240 510 800 640 200 200 300 230 147 245 900 1100 1000 1000 3000 1200 1600 3500 1500 Fruity Soapy Banana, estery Banana, apple, solvent Fruity Fruity Fatty acids, fruity, apple, solvent Apple, sweetish, fruity Soapy, estery Ethyl octanoate (aka ethyl caprylate) Ethyl decanoate (aka ethyl caprate) Ethyl dodecanoate (aka ethyl laurate) 3-Methylbut-1-yl-ethanoate (aka , 3-methylbutyl acetate) 436 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 207 528 207 528 528 528 207 528 528 207 207 207 207 207 207 207 528 528 528 528 528 528 528 207 528 [ [ [ [ [ [ [ [ [ [ References [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Whitewineat10% Deflavored white wine at 10% Whitewineat10% Whitewineat10% Whitewineat10% Whitewineat10% Whitewineat10% Whitewineat10% Deflavored white wine at 10% Whitewineat10% Beer White wine at 10% In Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer O O O O O O O O O O T O By T T T T T T T T T T T T T 10 220 850 670 830 800 200 000 000 180 400 000 500 900 000 000 000 000 , , , , , , , , 4740 1830 3500 1400 1200 7500 5000 30 30 85 155 470 150 550 000 , 5 Threshold [ppb] Fruity, solvent Descriptor Light estery, fruity, solvent Light solvent, fruity, pleasant Coconut, vegetable, oil, aromatic Fruity, perfumed, fatty Fruity, fatty acids, perfumed, sweetish Solvent, sweetish, perfumed Solvent, banana, , sweetish Sweetish, aromatic, perfumed Pear, fruity, aromatic, sweetish Papaya, fruity, apple, sweetish Ethereal, light, flowery, pleasant Grassy, oil paint, forage Plum, solvent, unpleasant (continued) Compound Ethyl formate Ethyl pentanoate (aka ethyl valerate) Ethyl nonanoate Methyl acetate n-Propyl acetate n-Butyl acetate Pentyl acetate (aka amyl acetate) n-Hexyl acetate n-Heptyl acetate n-Octyl acetate Methyl methanoate (aka methyl formate) 2-Methylpropyl formate (aka isobutyl formate) Ethyl 2-oxopropanoate (aka ethyl pyruvate) 3-Methylbutyl formate (aka isoamyl formate) Table A.1 A Threshold Data 437 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 528 528 528 198 198 528 528 528 528 198 198 528 528 528 528 528 528 528 321 658 658 528 (continued) [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 10% (w/w) Ethanol 40% Ethanol 40% Ethanol Water Water Beer Beer Beer Beer Water Water Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer O O O rO dO T T T T rO dO T T T T T T T T T T T 22 089 5 6 110 023 ...... 0 0 4 1 0 0 15 700 000 000 000 600 000 , , , , 5000 6000 1300 1000 2000 1000 1200 1200 5000 24 12 200 300 , 1 Fruity Fruity Sweetish, apple Fruity Sour, bitter, fruity Fruity, blueberry-like Fruity, blueberry-like Fruit, apple, sweetish, valeric Fruity Pineapple, aniseed Medicinal, tincture Fruity (peach), coconut, sweet, fatty acids Paint thinner, medicinal, Fatty acids, pear, grassy Cider, apple, sweets, papaya, fatty acids Coconut, fatty acids, fruity Fatty acids, coconut, tropical fruits Orange peel, fruity, coconut, fatty acids Paint thinner, glue Estery, burnt, unpleasant, sweetish Fruity, papaya, red currant Butan-2-yl acetate (aka sec-butyl acetate) tert-Butyl acetate Ethyl 2-methylpropanoate (aka ethyl isobutyrate) 4-Ethoxy-4-oxobutanoic acid (aka ethyl hydrogen succinate) Ethyl-3-methylbutanoate (aka ethyl isovalerate) Ethyl 4-oxopentanoate (aka ethyl levulinate) 3-Methylbutyl propanoate (aka isoamyl propionate) Ethyl pyridine-3-carboxylate (aka ethyl nicotinate) Pentyl butanoate (aka n-amyl butyrate) Heptyl butanoate (aka sec-heptyl butyrate) Methyl decanoate (aka methyl caprate) Octyl butanoate (aka n-octyl butyrate) Ethyl undecanoate Octyl hexanoate (aka octyl caproate) 3-Methylbutyl nonanoate (aka isoamyl nonanoate) 438 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 370 528 656 656 528 198 370 370 370 370 370 321 198 370 658 658 370 370 370 370 370 370 370 [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ [ [ [ [ [ [ [ [ 10% (w/w) Ethanol 40% Ethanol 40% Ethanol Water Water Water Water Water Water Water Water In Beer Water Water Water Water Water Water 40% Ethanol Water 40% Ethanol Water Beer O O O dO T T T T T T T By T T rO T T T T O O T T T 7 013 2 063 0 5 ...... 1 9 0 0 0 8 30 000 000 000 000 000 000 000 000 000 000 000 000 000 000 , , , , , , , , , , , , , , 5000 3000 4 9 37 58 25 15 27 229 438 137 294 158 182 130 Threshold [ppb] Fruity Fruity Fruity Bitterness Astringency Bitterness Bitterness Bitterness Bitterness Bitterness Descriptor Fatty acids, soapy, hot (spicy) Astringency Fatty acids Astringency Astringency Astringency Astringency Astringency Fruity Astringency (continued) Compound Ethyl tridecanoate Ethyl pentadecanoate Ethyl 3-phenylprop-2-enoate (aka trans ethyl cinnamate) (S)-Ethyl-2-methylbutanoate (2S,3S)-Ethyl-hydroxy-3-methylpentanoate (S)-Ethyl-2-hydroxy-3-methylbutanoate Caffeic acid ethyl ethyl ester p-Coumaric acid ethyl ester Vanillic acid ethyl ester ethyl ester Protocatechuic acid ethyl ester Syringic acid ethyl ester Table A.1 A Threshold Data 439 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 528 447 528 528 528 198 528 656 447 528 198 723 131 528 528 723 314 723 723 528 198 321 198 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 34% Spirit 10% (w/w) Ethanol Water 23% (v/v) Grain whisky 34% Spirit 34% Spirit 34% Spirit Water 23% (v/v) Grain whisky Water Water 40% Ethanol Beer Mexican beer Water Beer Water US beer Beer Beer Beer Beer Beer O O O O O dO O O rO dO dO O T T rO T rO T T T T T T 5 4 . . 4 2 28 12 25 10 63 500 100 110 700 350 000 000 000 500 000 , , , , 1200 2000 2000 6000 1000 8000 , 25 30 10 19 400 Fresh, green Green leaves, fruity, sharp Green leaves, fruity Solvent-like Green grass, fruity Green, grassy Bitter, vinous, Grassy Green, grassy Fresh, green Astringent, fruity, later burning Fruity, varnish, bitter, aldehyde Melon, green leaves, varnish Grass, banana, aldehyde Apple, green leaves, almond Acetaldehyde Propanal Butanal (aka butyraldehyde) 2-Ethylbutanal (E)-But-2-enal (aka crotonaldehyde) Pentanal (aka valeraldehyde) Hexanal 440 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 198 528 198 528 198 131 131 657 314 528 528 198 198 131 198 198 528 131 314 314 528 198 657 198 198 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ [ [ [ Water Water Water Water Water Water Water Water Water Beer Water Beer Beer Water Water Beer In Beer Water Water Beer Water Water Water O O O O O O O dO dO dO dO O T rO rO T T T O By dO T T rO rO rO 7 , 25 12 008 4 2 8 9 0 4 21 025 ...... 0 0 0 3 0 2 6 8 3 0 0 0 17 13 98 16 20 18 20 40 600 110 190 Threshold [ppb] Green, grassy Green leaves, freshly cut grass Green apple-like, bitter almond-like Bitter, astringent, green leaves Fishy, fish oil-like Aldehyde, bitter, papery, vinous, unpleasant Citrus-like, green Orange peel, bitter, aldehyde, vinous Bitter, aldehyde, stale Citrus-like, soapy Soapy Astringent, bitter, aldehyde Citrus-like, green Citrus-like, soapy Descriptor Fatty, green Green, grassy Fishy, fish oil-like Green apple-like, bitter almond-like (continued) Compound (Z)-Hex-3-enal (aka cis-3-hexenal) (E)-Hex-2-enal (aka trans-2-hexenal) 1- 2-Heptanal (Z)-Hept-4-enal (aka cis-4-heptenal) (E)-2-Heptenal (E)-2-Octenal (aka trans-2-octenal) Nonanal Table A.1 A Threshold Data 441 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 198 198 528 314 131 131 131 528 636 658 198 198 723 314 658 528 658 198 528 198 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Water Water 20% Ethanol 40% Ethanol Water Water 34% Spirit 40% Ethanol Water Water 40% Ethanol Water Water Beer Water Beer Beer Water Beer Water O O O O O O O O rO dO O dO O T dO T T rO T rO 08 6 6 07 1 9 49 9 19 5 027 3 11 077 69 ...... 0 0 0 0 5 1 1 0 5 0 0 0 0 0 0 32 12 150 1300 1000 Fatty, green Papery (cardboard), oxidized, stale Fatty, deep-fried Oily, aldehyde, deep-fried Fatty Lemon, bitter Malty Malty Banana, melon, vanish, green leaves, bitter Malty Fatty, deep-fried Fatty, green (E)-2-Nonenal (aka trans-2-nonenal) Undecanal (E,E)-2,4-Decadienal (E)-3,7-Dimethylocta-2,6-dienal (aka geranial, citral) 2-Methylpropanal (aka isobutanal, isobutyraldehyde) 442 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 198 528 528 131 528 198 528 528 314 636 723 198 198 528 528 528 528 528 658 131 528 [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ [ [ [ [ [ Water 20% Ethanol 34% Spirit Water 40% Ethanol Water Water Beer Water Water Beer Beer In Beer Beer Beer Beer Beer Water Beer Beer Beer O O O dO O dO O rO T O T T By T t T T T rO T T T 5 8 5 4 2 . . . . . 0 2 1 4 4 1 12 50 120 350 600 300 800 000 200 000 , , 2000 1600 1250 8000 1000 15 125 Threshold [ppb] Malty Unripe banana, apple, cherry, cheese Malty Malty Green grass, fruity, sour/medicinal Walnut, sherry, fruity Cinnamon, sweetish, green leaves, bitter Almond, cherry stone Fruity, aromatic, sweetish, astringent Hyacinth, lilac, aldehyde Descriptor Orange, grass, aldehyde, astringent Malty Sweet honey, sherry Varnish, banana Aldehyde, bitter, rancid, fruity, flowery Malty (continued) Compound 3-Methylbutanal (aka isovaleraldehyde) 2-Methylbutanal Prop-2-enal (aka ) 2,3-Dihydroxypropanal (aka D- glyceraldehyde) 3-Hydroxybutanal (aka aldol) (2E,4Z)-Hexa-2,4-dienal (aka trans-2-cis- 4-hexadienal) Cyclohex-3-ene-1-carbaldehyde (aka 1,2,3,6-tetrahydrobenzaldehyde) 2-Ethylhexanal 2-Ethylhex-2-enal (trans+cis) 2-Phenylacetaldehyde Table A.1 A Threshold Data 443 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 658 528 528 528 198 198 528 528 528 528 528 528 528 528 198 658 198 658 528 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Beer 40% Ethanol 40% Ethanol Water Beer Beer Water Water Beer Beer Water Beer 40% Ethanol Beer Beer Beer Beer Beer Beer T O O dO T T rO dO T T T rO O T T T T T T 1 5 , , 6 3 062 009 004 5 05 19 2 ...... 2 0 0 0 0 1 0 0 0 6 5 350 300 400 6000 1000 4000 5000 1000 Fatty, green Oily, rancid, aldehyde Fatty Cucumber-like Cucumber-like Cucumber, green leaves Green Bitter, rancid, stale unpleasant Bitter, aldehyde, orange peel Hyacinth, shoewax Fatty, green Aldehyde, bitter, astringent, orange, Mint, bitter, aldehyde Cinnamon, sweet, cider Fatty Orange peel, bitter, burning Cinnamon Sweetish, flowery, astringent Cinnamon, sweetish, aldehyde (2E,4E)-Nona-2,4-dienal (2E,6Z)-Nona-2,6-dienal (aka violet leaf aldehyde) (E)-2,2-Dimethylhept-4-enal Cyclooctanecarbox-aldehyde 3,4-Dimethyl-1,3-cyclohexane-carboxaldehyde (E)-3-Phenylprop-2-enal (aka ) 2-Phenylprop-2-enal (aka 2-phenylacrolein) (Z)-3-Hydroxy-2-phenylprop-2-enal 2-Phenylpropanal Decanal (E)-2-Decenal (aka trans-2-decenal) 3,7-Dimethyloct-6-enal (aka citronellal) 444 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 528 528 447 528 723 528 528 528 198 658 528 528 528 528 198 722 745 321 790 447 [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ [ [ [ [ [ 9.4% (w/w) Grain spirit 9.4% (w/w) Spirit Model wine at 10% 10% (w/w) Ethanol 23% (v/v) Grain whisky 34% Spirit 40% Ethanol 23% (v/v) Grain whisky Water Beer Beer In Beer Beer Beer Beer Water Beer Beer Beer Beer O dO O O O O O rO dO T T By T T rO T T T T T T 5 5 8 0 5 5 9 5 ...... 2 2 2 2 1 6 4 3 1 2 3 50 20 100 150 400 000 000 000 , , , 1500 000 500 000 , , 2 7 Threshold [ppb] Cumin seed, almond, cinnamon, varnish Buttery Diacetyl, butterscotch Buttery Descriptor Bitter, orange, aldehyde, vinous Fatty acids, aldehyde Aldehyde, orange peel, bitter Aldehyde, bitter, orange peel Burning, astringent, dishcloth Astringent, flowery, aldehyde Buttery Acid Acid, salty, oxidized (continued) Compound 7-Hydroxy-3,7-dimethyloctanal 4-Propan-2-ylbenzaldehyde (aka cuminaldehyde) Undecanal Undec-9-enal Undec-10-enal Dodecanal Oxaldehyde (aka glyoxal) 2-Oxobutanedioic acid (aka oxalacetic acid) Oxaldehydic acid (aka glyoxylic acid) Ketones Butane-2,3-dione (aka diacetyl) Table A.1 A Threshold Data 445 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 528 528 528 528 131 131 528 528 528 528 528 528 528 528 528 528 528 723 528 528 528 528 528 528 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 34% Spirit Water Water Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer Beer O O O T T T T T T T T T T T T T T T T T T T T T 25 9 . . 1 0 30 700 000 000 000 000 000 000 000 000 900 000 000 000 000 , , , , , , , , , , , , 4000 4000 3000 7000 2000 8000 4000 5 80 40 30 60 15 30 50 25 200 200 400 Acetone, varnish Jasmine, geranium, ketone, varnish Ethyl ether, ketone, sweetish Almond, sweetish, ethyl ether Ketone, Roquefort cheese Almond, ketone, bitter Varnish, ketone, walnut, hops Ketone, varnish, sweetish Ketone, varnish, mint Strawberry, diacetyl, pleasant Ketone, sweetish, mint Varnish, ketone, melon, apricot Ketone, sweetish Acetone, fruity Ethyl ether, varnish, sweetish Sweetish, ketone, bitter, caramel, unpleasant Fruity, moldy, woody Trainy butter (fishy, metallic, oily) Diacetyl, fruity Varnish, ethyl ether, ketone, sweetish Sweet, peach, strawberry, varnish 1-Penten-3-one (E)-Non-2-en-4-one Propan-2-one (aka acetone) Butan-2-one 3-Hydroxybutan-2-one (aka acetoin) Pentan-2-one Pentan-3-one 3-Methylbutan-2-one 1-Penten-3-one (aka ethyl vinyl ketone) Cyclopentanone Pentane-2,3-dione (aka acetylpropionyl) 3-Hydroxy-3-methylbutan-2-one Hexan-2-one 4-Methylpentan-2-one 3,3-Dimethylbutan-2-one (aka pinacolone) 4-Methyl-3-penten-2-one (aka mesityl oxide) Cyclohexanone Hexane-2,3-dione Heptan-2-one Heptan-3-one Heptan-4-one 5-Methylhexan-2-one 2,4-Dimethylpentan-3-one 446 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 528 198 131 528 528 528 528 528 528 131 528 528 528 198 528 528 528 131 528 528 528 528 [ [ [ [ [ [ [ References [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Beer Water Water Beer Water Beer Beer In Beer Water Beer Beer Beer Water Beer Beer Beer Beer Beer Beer Beer Beer Beer O T dO T O T T rO T By T T T O T T T T T T T T T 016 025 036 . . . 0 0 0 5 60 50 400 400 200 100 500 375 250 300 250 000 250 , 1200 8000 3000 2500 1000 25 Threshold [ppb] Mushroom-like Mushroom, metallic, bitter Caraway seed, mint Descriptor Varnish,ketone, walnut, octyl alcohol Ketone, varnish, spicy Ketone, varnish Ketone, flowery, sweetish Ketone, sweetish, varnish Mushroom-like Ketone, varnish, bitter, green plants, geranium Ketone, varnish, green plants, geranium Ketone, varnish Ketone, varnish Ketone, banana Mint, coconut Grape seeds, sweet, astringent Almond, marzipan, earthy Banana, mango, sweetish Ketone, cake topping aerosol, varnish (continued) Compound 4-Methylcyclohexan-1-one Octan-2-one Octan-3-one 6-Methylheptan-3-one 1-Octen-3-one 1-Phenylethanone (aka acetophenone) 1-(2-Aminophenyl)ethanone 2-Nonanone 2,6-Dimethylheptan-4-one Decan-2-one Decan-3-one (5S)-2-Methyl-5-prop-1-en-2-ylcyclohex-2-en- 1-one (aka D-carvone) 4-Phenylbutan-2-one (aka benzylacetone) (E)-4-Phenylbut-3-en-2-one (aka benzalacetone) Undecan-2-one Dodecan-2-one Tridecan-2-one 2-Methylhept-2-en-6-one 2-Methylhepta-2-trans-4-dien-6-one (5E)-6,10-Dimethylundeca-5,9-dien-2-one (aka geranylacetone) Table A.1 A Threshold Data 447 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 198 198 658 152 198 528 528 528 198 131 133 131 152 152 198 303 321 198 321 511 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Beer White wine Red wine 10% (w/w) Ethanol Water Water 10% (w/w) Ethanol Water 40% Ethanol 40% Ethanol Model wine Water Water Water White wine 12.5% Beer Beer Water Water Water O O T O O O O O O O O rO dO dO O T T dO rO rO 007 002 05 33 1 4 5 84 6 3 013 1 056 ...... 0 0 0 0 0 8 3 5 0 2 1 0 1 0 50 10 10 25 160 100 S 2 Artificial raspberry, cedarwood Flowery, violet-like Flowery, violet-like Artificial raspberry, strawberry Baked apple-like, grape juice-like Flowery Cooked apple Asparagus-like, putrid Cooked vegetable (corn, onion), garlic, H Quince, asparagine Asparagus, corn, molasses Asparagus-like, putrid Baked apple-like, grape juice-like -ionone) α -ionone) β -Damascenone β (E)-4-(2,6,6-Trimethylcyclohex-2-en-1-yl)but- 3-en-2-one (aka (E)-4-(2,6,6-Trimethylcyclohexen-1-yl)but-3- en-2-one (aka (E)- Sulfides and related compounds Dimethyl sulfide 448 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 447 198 447 152 528 152 528 152 152 147 152 636 455 152 152 147 198 303 321 152 152 303 455 455 303 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ Light blended whisky Heavy blended whisky Malt whisky White wine White wine 12.5% Red wine 10% (w/w) Ethanol 20% Ethanol 34% (v/v) Grain whisky White wine Red wine Beer White wine White wine 12.5% Red wine Beer Model wine White wine 12.5% Grain spirit 23% (v/v) Grain whisky Model wine Water Model wine In Water Rectified spirit O O O O O dO O O O O O O O O T O T O O O rO dO O By rO O 9 , 2 1 93 3 10 2 4 009 5 016 005 ...... 0 0 4 3 5 6 0 4 0 1 0 6 0 2 0 0 45 29 30 15 18 40 25 20 20 Threshold [ppb] S 2 S 2 Cabbage-like Surfury Garlic Onion Descriptor Cooked vegetable (onion, garlic), H Garlic, burnt rubber, H Cabbage Cabbage-like Burnt, meaty (continued) Compound Dimethyl disulfide Dimethyl trisulfide Diethyl sulfide Diethyl disulfide Methyl-(2-methyl-3-furyl) disulfide Table A.1 A Threshold Data 449 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 528 528 131 528 303 528 528 528 131 528 528 528 528 528 528 131 528 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Beer Beer Beer Beer White wine 12.5% Water Water Beer Beer Beer Beer Water Beer Beer Beer Beer Beer T T T T O O O T T T T O T T T T T 07 , 6 000 1 5 08 2 20 7 7 002 15 ...... 2 0 0 1 2 0 0 0 1 0 0 0 20 16 120 250 000 , 23 S 2 Mashed potato, warm, soup-like Onion, rubber Putrefaction (of onion, garlic, egg) Putrefaction (of onion, garlic, egg) Putrefaction (of onion, garlic, egg) Putrefaction (of fruit (guava, peach),sunstruck, fish), Cat urine Cooked vegetable (garlic, onion, leek), ethereal, H estery egg) Sulfury, grainy, carbon disulfide Putrefaction (of leek, onion, garlic, egg) Putrefaction (of egg, cabbage), drains, Putrefaction (of onion, garlic, egg) Putrefaction (of onion, garlic, cheese, fish, Putrefaction (of onion, garlic, egg) Rubber, rotten onion, sulfury 3-Methylsulfanylpropanal (aka methional) 2-Methylthio acetaldehyde 2-Methylthio ethanol Methanethiol (aka methyl mercaptan) Ethanethiol (aka ethyl mercaptan) Propane-1- (aka n-propyl mercaptan) Butane-1-thiol (aka n-butyl mercaptan) Butane-2-thiol (aka sec-butyl mercaptan) 1,3-Thiazole 2-Methylpropane-1-thiol (aka isobutyl mercaptan) 2-Methylpropane-2-thiol (aka tert-butyl mercaptan) 3-Methyl-1-butanethiol (aka isoamyl mercaptan) 2-Methylbutane-2-thiol (aka tert-amyl mercaptan) 2-Propan-2-ylsulfanylpropane (aka di-isopropyl sulfide) 1-Butylsulfanylbutane (aka di-n-butyl sulfide) 450 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 152 152 152 152 131 152 152 152 152 152 152 152 152 152 152 152 151 152 [ [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ [ White wine Red wine White wine Red wine White wine Red wine White wine Red wine Water Model wine White wine Red wine Model wine Model wine Model wine In Model wine, whitewine, red wine Model wine Model wine O O O O O O O O O O O O O O O By O O O 5 . 3 50 50 100 115 350 200 440 300 1500 1000 Nil Nil Nil Nil Threshold [ppb] Nil Nil Metallic, sulfury Mushroom, alliaceous Descriptor Rubber Alliaceous, muddy Odorless Chive (continued) Compound Ethyl 2-amino-4-(methylsulfanyl) butanoate (aka ethyl methionate) 3-Methylmethylsulfanylmethylpropyl acetate (aka methionyl acetate) 1,3-Benzothiazole 2-Methylthiophene-3-ol (cis) 2-Methylthiophene-3-ol (trans) 4-Methylthiobutan-2-ol 2-(2-Methylpropyl)-1,3-thiazole (aka 2-isobutylthiazole) Table A.1 A Threshold Data 451 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 198 201 201 447 131 150 818 150 150 401 636 201 150 122 201 321 201 198 447 658 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ (continued) 100 g/L sucrose + Water Model wine White wine Red wine 10% Spirit 10% (w/w) Ethanol 20% Ethanol 23% (v/v) Grain whisky White wine Red wine Water 23% (v/v) Grain whisky 40% Ethanol Water Water 10% Ethanol 12% (v/v) Ethanol 10% Ethanol Water Water O O O O O O O dO O O O rO O O O O dO O O rO 0033 0033 0001 5 2 84 0008 6 ...... 0 0 3 3 0 5 9 0 0 1 20 95 75 10 60 30 700 0.000,066, 0.000,165 0.000,990, 0.001,18 0.000,792, 0.001,98 Cat urine Box tree, broom Smoky, sweet Smoke Smoky Phenolic Smoky, sweet 4-Mercapto-4-methyl-2-pentanoneone (aka cat urine ketone) Phenolics 2-Methoxyphenol (aka guaiacol) 452 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 198 149 198 656 658 151 198 198 150 150 150 150 150 150 149 151 401 150 150 528 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ Model wine White wine Red wine Model wine White wine Red wine Model wine Water Model wine 10% Spirit Water Water Beer 40% Ethanol Water 40% Ethanol Water Water In Water Water O O O O O O O O O O O O O T O dO rO dO By rO O 6.9 30 65 65 47 70 150 47 25 47 33 25 10 231 130 Threshold [ppb] 4.4 30 21 16 25 Vanilla-like, clove-like, smoky Vanilla-like, clove-like, smoky Burned, hearth Smoky, phenolic Smoky, gammon-like Spicy, smoke Phenolic, sweet Phenolic, clove-like Descriptor Smoky, gammon-like Woody, spicy, smoky, phenolic (continued) Compound 2-Methoxy-4-methylphenol (aka 4- methylguaiacol, p-methoxyguaiacol, creosol) 4-Ethyl-2-methoxy-phenol 4-Ethyl-2-methoxyphenol (aka 4-ethylguaiacol) Table A.1 A Threshold Data 453 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 198 447 198 447 131 150 150 150 150 150 150 401 791 150 321 321 150 528 198 198 658 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Water 10% (w/w) Ethanol Model wine White wine Red wine 10% (w/w) Ethanol Model wine White wine Red wine 10% Spirit 20% Spirit 23% (v/v) Grain whisky Water 23% (v/v) Grain whisky 40% Ethanol Beer Water Water Water Water Water O O O O O O O O O dO O O O rO dO O rO O T dO rO 0.71 7.1 2.5 5 50 5.1 40 15 11 32 19 130 440 380 200 6 100 500 2000 7 300 Clove-like, smoky Clove-like, smoky Carnation pepper Phenolic, bitter Spicy Clove-like Clove Clove-like Clove-like 4-Ethenyl-2-methoxyphenol (aka 4-vinylguaiacol) 4-Allyl-2-methoxyphenol (aka ) 454 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 198 198 198 401 150 150 401 791 150 401 401 150 150 150 791 150 656 150 150 656 150 150 150 198 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ 10% Spirit Model wine White wine Red wine 10% Spirit 20% Spirit 40% Ethanol Model wine White wine Red wine 10% Spirit 10% Spirit Model wine White wine Red wine 20% Spirit 40% Ethanol Water Water Water Water In Water Water Water O O O O O O O O O O O O O O O O O dO O dO By O rO rO 5 9 . . 3 60 31 90 68 10 28 15 85 45 31 10 000 000 000 000 120 800 300 200 380 180 , , , , 7100 5500 15 35 25 40 Threshold [ppb] Smoky, phenolic Pharmaceutical Fecal, horse stable-like Ink Descriptor Bitumen Fecal, horse stable-like Smoky, phenolic (continued) Compound Phenol 2-Methylphenol (aka o-) 3-Methylphenol (aka m-cresol) 4-Methylphenol (aka p-cresol) Table A.1 A Threshold Data 455 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 149 528 151 150 150 401 791 150 150 150 149 150 150 150 150 150 198 150 656 150 198 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Water Model wine Model wine 10% Spirit 20% Spirit Model wine White wine White wine Red wine Red wine Model wine White wine Red wine Water 40% Ethanol Water Water Water Beer Water Water O O O O O O O O O O O O O dO O O O O T rO O 13 85 21 140 230 440 140 600 180 770 173 130 130 300 400 1100 1200 1500 1700 1500 2000 Phenolic Stable, horse Phenolic, animal Phenolic, astringent Phenolic Datura, gouache Phenolic Smoke 4-Ethylphenol (aka p-ethylphenol) 4-Ethenylphenol (aka 4-vinylphenol, p-vinylphenol) 1,3-Dimethoxy-2-hydroxybenzene (aka syringol) 456 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 150 370 488 488 150 150 150 150 150 150 150 488 488 488 488 150 150 150 150 150 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ References 10% Ethanol 40% Ethanol Water 10% Ethanol 40% Ethanol Model wine White wine Red wine Model wine White wine Red wine Model wine White wine Red wine Water Water Water Water Water Water In O O O O O O O O O O O O O O O O O O O T By 000 000 000 000 000 000 000 000 000 000 000 000 , , , , , , , , , , , , 3000 9000 2500 8500 8000 1300 1200 3000 15 10 30 15 15 12 15 25 25 52 210 >50 Threshold [ppb] Puckering astringency Spicy, smoke Woody, vanilla Vanilla Descriptor (continued) Compound 4-Hydroxy-3,5-dimethoxybenzoic acid (aka syringic acid) 4-Hydroxy-3,5-dimethoxybenzaldehyde (aka syringaldehyde) 4-Allyl-2,6-dimethoxyphenol (aka 4- allylsyringol) 1-(4-Hydroxy-3-methoxyphenyl)ethanone (aka acetovanillone) Ethyl 4-hydroxy-3-methoxybenzoate (aka ethyl vanillate) Table A.1 A Threshold Data 457 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 198 447 658 198 370 488 447 150 150 488 150 488 488 636 150 321 488 488 656 528 528 656 (continued) [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Water Model wine White wine Red wine 10% Ethanol 10% (w/w) Ethanol 40% Ethanol 20% Ethanol 23% (v/v) Grain whisky Water 10% Ethanol 40% Ethanol Model wine 23% (v/v) Grain whisky 40% Ethanol 40% Ethanol 40% Ethanol Beer Beer Water Water Water O O O O O O O O dO O O O O rO O O O T T rO dO T 32 89 . . 0 1 65 22 53 000 000 000 400 320 500 200 100 100 600 105 000 000 210 000 , , , , , , 2000 3000 85 45 30 13 690 660 Vanilla-like, sweet Vanilla-like, sweet Vanilla Vanilla Vanilla-like Smoky Phenolic Astringent Puckering astringency Astringent 4-Hydroxy-3-methoxybenzaldehyde (aka ) 5-Methyl-2-methoxyphenol (aka 6-methoxy-m-cresol) 4-Propyl-2-methoxyphenol (aka 4-propylguaiacol) (E)-3-(3,4-Dihydroxyphenyl)prop-2-enoic acid (aka caffeic acid) (E)-3-(4-Hydroxy-3-methoxyphenyl)prop-2- enoic acid (aka ferulic acid) 458 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 370 370 528 370 528 370 885 885 885 885 297 488 885 488 488 488 488 488 488 528 791 370 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ [ [ [ Water 10% Ethanol 40% Ethanol 10% Ethanol 40% Ethanol 10% Ethanol 40% Ethanol Beer Beer Water Water Beer Water Water Water Water In Water Water 20% Spirit Water Water Water O O O O O O O T T T T T T T T By T T O T T T T 5 , 000 003 6 . . . 4 0 0 0 23 000 000 000 000 000 000 000 000 000 000 000 500 000 000 000 970 , , , , , , , , , , , , , , , 5000 25 25 25 80 50 23 50 80 32 44 140 100 360 520 533 Threshold [ppb] Puckering astringency Vanilla, sweet, astringent Puckering astringency Astringent, phenolic Puckering astringency Astringent Descriptor Puckering astringency Phenolic/iodine Phenolic Puckering astringency Phenolic Iodoform Iodoform Astringency (continued) Compound 4-Hydroxy-3-methoxybenzoic acid (aka vanillic acid) (E)-3-(4-Hydroxy-3,5-dimethoxyphenyl)prop- 2-enoic acid (aka sinapic acid) 3-(4-Hydroxy-3,5-dimethoxyphenol)prop-2- enal (aka sinapaldehyde) (E)-3-(4-Hydroxyphenyl)prop-2-enoic acid (aka para-coumaric acid) 3,4,5-Trihydroxybenzoic acid (aka gallic acid) 2,3-Dimethylphenol (aka 2,3-xylenol) Protocatechuic acid (E)-Caftaric acid 2-Bromophenol 4-Bromophenol 2,4-Dibromophenol 2,6-Dibromophenol 2,4,6-Tribromophenol Table A.1 A Threshold Data 459 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 317 658 198 198 198 198 247 247 131 247 247 198 131 247 198 198 198 528 658 317 317 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Water Water Water Water Water Not specified 40% Ethanol Not specified Water Water Water 40% Ethanol Beer Not specified Water Water Water Water Water Water Water O O O O O O dO O dO O O O dO T dO O O rO rO rO rO 5 7 5 1 6 . . . . . 7 7 6 9 1 1 7 1 2 11 21 21 24 27 400 200 400 400 420 1600 1600 Coconut-like Fruity, strawberry Fruity, coconut Coconut-like Coconut-like Coconut-like Peach-like, coconut-like Apricot, peach Peach-like Fruity, peach Coconut-like Coconut-like Coconut-like Peach-like, coconut-like -heptalactone) -nonalactone) -decalactone) -octalactone) -hexalactone) γ γ γ -octalactone) γ γ δ -octalactone) -decalactone) -octalactone) γ γ γ Lactones 5-Ethyloxolan-2-one (aka 5-Propyloxolan-2-one (aka 5-Butyloxolan-2-one (aka (5R)-5-Butyloxolan-2-one (aka (R)- (5S)-5-Butyloxolan-2-one (aka (S)- 6-Propyloxan-2-one (aka 5-Pentyloxolan-2-one (aka 5-Hexyloxolan-2-one (aka (5R)-5-Hexyloxolan-2-one (aka (R)- 460 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 317 447 198 247 2 320 198 149 447 320 247 149 723 150 150 150 118 118 610 641 198 198 528 150 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ Water Water Model wine 34% Spirit Model wine 9% White wine White wine 14.5% Red wine Red wine 30% Ethanol Gas 23% (v/v) Grain whisky Not specified 23% (v/v) Grain whisky Water Water Model wine Beer 10 ppm Sucrose 10% Ethanol Water In Water Water O O O O O O O O O O dO O dO O dO dO O T T O O By O rO rO 43 6 0 . . . 7 1 0 5 2 15 51 25 24 92 57 74 31 28 20 51 100 300 790 400 7000 Threshold [ppb] Fruity, peach Coconut-like Peach, apricot, dull Peach-like Coconut, woody, polish, resin Coconut Light coconut, musty, hay Spicy, coconut-like Coconut, oak Descriptor Sweet woody Coconut-like Peach-like -dodecalactone) -decalactone) γ δ -octalactone γ -Methyl- -octalactone, whisky lactone) β (continued) γ -decalactone) γ -methyl- Compound (5S)-5-Hexyloxolan-2-one (aka (S)- 6-Pentyloxan-2-one (aka 5-Octyloxolan-2-one (aka 5-Butyl-4-methyloxolan-2-one (aka β (4S,5S) cis- (cis/trans mixture) Table A.1 A Threshold Data 461 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 150 320 320 320 2 150 150 150 118 610 118 118 641 320 118 118 320 118 320 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Model wine 9% White wine White wine 14.5% Red wine Red wine 30% Ethanol Gas 9% White wine 14.5% Red wine 9% White wine 14.5% Red wine 10% Ethanol Model wine 10 ppm Sucrose 10 ppm Sucrose 10% Ethanol 10 ppm Sucrose 10% Ethanol O O O O O O O O O T O O O T O O T O O 67 20 64 110 172 460 380 320 132 175 305 285 Spicy, celery, slight coconut, green walnut Coconut-like, sweet, creamy, fatty Coconut, oak Sweet, woody, coconut Creamy, coconut Coconut, celery Spicy Coconut -octalactone -octalactone (not γ γ -octalactone (not γ -Methyl- -Methyl- β β -Methyl- β naturally occurring) (4S,5R) trans- (4R,5R) cis- (4R,5S) trans- naturally occurring) 462 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 660 660 660 660 247 660 507 198 198 785 660 247 321 513 424 [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ White wine Wine 10% (w/w) Ethanol Water Water 12% Ethanol 12% Ethanol 12% Ethanol Water Water Water 12% Alcohol solution Water In White wine White wine O O O O O O O O rO dO O O O By O O 001 8 1 49 5 . . . . . 8 5 0 2 0 1 0 2 5 15 89 150 121 2000 Threshold [ppb] 1–50 Seasoning-like, spicy Seasoning-like, spicy Bouillon-seasoning, walnut Caramel Sugar-like, caramel-like Curry, walnut Walnut, rancid Curry, walnut Descriptor (continued) Compound 3-Hydroxy-4,5-dimethylfuran-2(5H)-one (aka sotolon) (R)-3-Hydroxy-4,5-dimethylfuran-2(5H)-one (S)-3-Hydroxy-4,5-dimethylfuran-2(5H)-one 6-[(Z)-Pent-2-enyl]oxan-2-one (aka (Z)-dec-7-en-5-olide, jasmine lactone) 6-Pentylpyran-2-one Table A.1 A Threshold Data 463 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 150 447 528 150 447 528 723 131 528 528 150 150 150 150 150 150 150 150 150 150 528 131 (continued) [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 34% Spirit Model wine White wine Red wine Model wine White wine Red wine Model wine White wine Red wine 23% (v/v) Grain whisky Water Water 23% (v/v) Grain whisky Beer Water Beer Beer Water Beer Water Beer O O O O dO O O O O O O O rO O T O T O T T O T 6 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 , , , , , , , , , , , , , , , , 5800 8000 6000 3000 1000 15 65 20 39 16 52 45 15 35 45 20 80 000 210 150 000 , , 1 >3 Almond Paper, husk Grainy Grilled almonds Almonds, burnt/phenolic, pyrazole Sugar cane, woody Aldehyde, stale, vegetable oil Hay, verbena Almonds, rubber, burnt/phenolic, pyrazole Furans Furan-2-carbaldehyde (aka furfural) 5-Methylfuran-2-carbaldehyde (aka 5-methylfurfural) 2-Furanmethanol (aka ) 2-Pentylfuran 5-(Hydroxymethyl)furan-2-carbaldehyde (aka 5-(hydroxymethyl)furfural) 1-(Furan-2-yl)ethanone (aka 2-acetylfuran) 464 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 528 131 370 370 370 528 216 370 370 370 370 528 370 636 216 321 658 370 370 [ [ [ [ [ [ [ [ [ [ References [ [ [ [ [ [ [ [ [ Water 10% (w/w) Ethanol 20% Ethanol Water 40% Ethanol Beer Water Water Water Beer Water In Water Beer Water Water Water Water Water Water O O O T T O T T T T By T T T T T T T T T 10 50 10 100 719 000 000 000 000 000 000 200 100 , , , , , , , 1000 8900 1000 1700 1100 2100 46 10 270 290 250 119 270 Threshold [ppb] Vanilla, cinnamon, bitter, perfume Astringent, bitter Fruity Musty Bitterness Bitterness Descriptor Astringency Astringency Velvety astringency Velvety astringency Velvety astringency Velvety astringency Velvety astringency Velvety astringency -L-rhamnoside α -L-rhamnoside α -D-glucopyranoside β -D-glucopyranoside -D-glucuropyranoside -D-galactopyranoside β β β (continued) )-Epicatechin )-Catechin − + Compound (E)-3-(Furan-2-yl)prop-2-enal (aka furylacrolein) Terpenes 1-Methyl-4-(1-methylethenyl)-cyclohexene (aka ) Glycosides Quercitrin Ethers 1,1-Diethoxyethane (aka acetal, acetaldehyde diethyl acetal) 1,2,4-Trichloro-3-methoxybenzene (aka 2,3,6-trichloroanisole) Flavonols Quercetin-3-O- Quercetin-3-O- Dihydrokaempferol-3-O- Dihydroquercetin-3-O- Isorhamnetin-3-O- Syringetin-3-O- ( ( Table A.1 A Threshold Data 465 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] (continued) 297 297 297 297 297 297 297 297 297 297 297 297 297 297 297 297 297 370 216 297 297 297 370 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water T T T T T T T T T T T T T T T T T T T T T T T 600 100 100 000 100 210 210 090 490 500 500 100 700 500 500 000 , , , , , , , , , , , , , , 5370 5550 1030 1030 1990 2500 1690 14 12 12 655 460 437 231 535 159 199 372 578 578 139 , , , , , , 1 1 1 1 1 1 Bitterness Bitterness Bitterness Bitterness Bitterness Bitterness Bitterness Bitterness Bitterness Bitterness Astringency Astringency Astringency Astringency Astringency Astringency Astringency Astringency Astringency Astringency Astringency Astringency -d-glucose β Tannins, Ellagitannins Grandinin 33-Deoxy-33-carboxyvescalagin 1,2,3,4,6-Pentagalloyl- Ellagic acid Roburin A Roburin B Roburin C Roburin D Roburin E Vescalagin Castalagin Procyanidin B1 466 A Threshold Data ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 140 370 426 192 426 316 316 370 370 370 216 316 19 140 370 370 370 140 140 140 [ [ [ [ [ [ [ [ [ [ [ [ References [ [ [ [ [ [ [ [ Water Water Water Water Water Water Water Water White wine Water Water Water Water Water Water In Water Water Water Water Water O O T O O T T T T T O O By T T T O O O O O 950 300 000 000 000 000 460 000 000 400 000 400 000 000 000 000 , , , , , , , , , , , , 2500 1800 9000 1000 17 60 22 35 280 289 347 110 116 260 500 100 Threshold [ppb] Bitterness Bitterness Bitterness Puckering astringency Descriptor Strong sweet, slightly ammonical Astringency Astringency Astringency Bitter Chocolate character Pungent, chocolate Pungent, chocolate Pungent, chocolate (continued) 5kDa) > )-Lyoniresinol + Compound Procyanidin B2 Procyanidin B3 Procyanidin C1 Polymeric tannin fraction ( Lignans ( N-cyclic Pyridine Pyrazine 2-Methylpyrazine 2,3-Dimethylpyrazine 2,5-Dimethylpyrazine 2,3,4-Trimethylpyrazine 2,3,5-Trimethylpyrazine 2,3,5,6-Tetramethylpyrazine Table A.1 A Threshold Data 467 ] ] ] ] ] ] ] ] 426 921 172 140 316 132 316 444 [ [ [ [ [ [ [ [ Water Water Water 20% Ethanol Water Water Water Water O O T O T O O O 1 067 . . 0 0 40 10 000 120 , 6000 22 2.4–3.8 Popcorn, cooked oatmeal, cooked rice, sweet Popcorn, cereal Iodine Copper Strong galbanum note 2-Ethylpyrazine 2-Ethyl-3-methylpyrazine 2-Isopropyl-3-methoxypyrazine 1-(3,4-Dihydro-2H-pyrrol-5-yl)ethan-1- one,(aka 2-acetyl-1-pyrroline) Miscellaneous Iodine Copper II References

1. Aasen AJ, Kimland B, Almqvist S-O, Enzell CR (1972) New tobacco constituents—the structures of five isomeric megastigmatrienones. Acta Chem Scand 26:2573–2576 2. Abbott N, Puech J-L, Bayonove C, Baumes R (1995) Determination of the aroma threshold of the cis and trans racemic forms of β-methyl-γ -octalactone by gas chromatography-sniffing analysis. Am J Enol Vitic 46:292–294 3. Acree TE, Barnard J, Cunningham DG (1984) A procedure for the sensory analysis of gas chomatographic effluents. Chem 14:273–286 4. Adam T, Duthie E, Feldmann J (2002) Investigations into the use of copper and other metals as indicators for the authenticity of Scotch whiskies. J Inst Brew 108:459–464 5. Adams A, De Kimpe N (2006) Chemistry of 2-acetyl-1-pyrroline, 6-acetyl-1,2,3,4- tetrahydropyridine, 2-acetyl-2-thiazoline, and 5-acetyl-2,3-dihydro-4H-thiazine: extraordi- nary Maillard flavor compounds. Chem Rev 106:2299–2319 6. Adams AB (1910) The of whiskey. J Ind Eng Chem 2:34–43 7. Adinoff B, Bone GHA, Linnoila M (1988) Acute ethanol poisoning and the ethanol withdrawal syndrome. Med Toxicol Adverse Drug Exp 3:172–196 8. Adrian ED (1950) Sensory discrimination. Br Med Bull 6:330–333 9. Ahmad I, Singh J (1990) Surface-active properties of sulfonated isoricinoleic acid. J Am Oil Chem Soc 67:205–208 10. Ahmed M, Dickinson E (1990) Effect of ethanol content on foaming of alcoholic beverages. Food Hydrocoll 4:77–82 11. Akahoshi R, Ohkuma H (1984) NMR spectra of hydroxyl protons in aged spirits. Studies on aged spirits and their physiochemical characteristics. Part I. J Agric Chem Soc Jpn 58:357– 365 12. Akahoshi R, Ohkuma H (1985) Partial pressure and concentration of ethanol in vapor phase. Studies on aged spirits and their physiochemical characteristics. Part III. J Agric Chem Soc Jpn 59:135–141 13. Akahoshi R, Ohkuma H (1985) Thermal properties of ethanol aqueous solutions and aged spirits at low temperature. Studies on aged spirits and their physiochemical characteristics. Part II. J Agric Chem Soc Jpn 59:1–9 14. Alcarde AR, de Souza LM, Bortoletto AM (2012) Ethyl carbamate kinetics in double distillation of surgar cane spirit. J Inst Brew 118:27–31 15. Alcarde AR, de Souza LM, Bortoletto AM (2012) Ethyl carbamate kinetics in double distillation of surgar cane spirit. Part 2: influence of type of pot still. J Inst Brew 118:352–355 16. Allen AH (1891) The chemistry of whisky and allied products. J Soc Chem Ind 10:305–314 17. Allen AH (1897) The chemistry of whisky. J Fed Inst Brew 3:24–48

© Springer Nature Switzerland AG 2019 469 G. H. Miller, Whisky Science, https://doi.org/10.1007/978-3-030-13732-8 470 References

18. Allen AH, Chattaway W (1887) On the examination of spirituous liquids for secondary constituents. Analyst 12:112–117 19. Amoore JE, Hautala E (1983) Odor as an aid to chemical safety: odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. J Appl Toxicol 3:272–290 20. Anderson RJ, Clapperton JF, Crabb D, Hudson JR (1975) Dimethyl sulfide as a feature of lager flavour. J Inst Brew 81:208–213 21. Andrewartha KA, Phillips DR, Stone BA (1979) Solution properties of wheat-flour arabi- noxylans and enzymatically modified arabinoxylans. Carbohydr Res 77:191–204 22. Andrews J, Gilliland RB (1952) Super-attenuation of beer: a study of three organisms capable of causing abnormal attenuations. J Inst Brew 58:189–196 23. Anness BJ (1980) The reduction of dimethyl sulphoxide to dimethyl sulfide during fermenta- tion. J Inst Brew 86:134–137 24. Anness BJ (1984) of barley, malt and adjuncts. J Inst Brew 90:315–318 25. Anness BJ, Bamforth CW, Wainwright T (1979) The measurement of dimethyl sulphoxide in barley and malt and its reduction to dimethyl sulphide by yeast. J Inst Brew 85:346–349 26. Anon (1644) The schedule. Leonard Lichfield, Oxford 27. Anon (1755) Serious reflections on the manifold dangers attending the use of copper vessels and other utensils of copper and brass, in the preparations of all such solids and liquids as are designed for food to human bodies: in a letter to a friend. M. Cooper, London 28. Anon (1813) Home influence. Weekly Regist 3(21):328–329 29. Anon (1844) The metropolis. Economist 1(47):1017 30. Anon (1870) Distillation of Kentucky whiskey. Intern Revenue Record 11:117 31. Anon (1875) Studies and sketches by Sir Edwin Landseer, R.A. Art J NS 1:65–68 32. Anon (1901) Injurious constituents in potable spirits. Nature 563(1638):491–492 33. Anon (1901) Topics of the times. New York Times, p 8 34. Anon (1904) Deaths. Allen. Pharm J 73(3431):132–133 35. Anon (1907) Dr. Wiley and fusel oil. Am Food J 2(11):16–17 36. Anon (1909) The case of Dr. Wiley. Am Food J 4(2):16–18 37. Anon (1909) The royal commission on whisky and other potable spirits. Brit Med J 2(2537):399–404 38. Anon (1911) Washington letter. Packages, p 23–24 39. Anon (1912) The toxic factor in tobacco. Lancet 180(4643):547–548 40. Anon (1934) Monthly review. The Scottish section. J Inst Brew 40:30–31 41. Anon (1942) Bourbon barrels. Wooden Barrel 10(12):12 42. Anon (1951) Guilty in whisky deaths. New York Times 43. Aoshima H, Tsunoue H, Koda H, Kiso Y (2004) Aging of whiskey increases 1,1-diphenyl-2- picrylhydrazyl radical scavenging activity. J Agric Food Chem 52:5240–5244 44. Aresta M, Boscolo M, Franco DW (2001) Copper (II) catalysis in cyanide conversion into ethyl carbamate in spirits and relevant reactions. J Agric Food Chem 49:2819–2824 45. Arrhenius S (1889) IV. Electrolytic dissociation versus hydration. Philos Mag 28(170):30–38 46. Arrhenius S (1907) Theories of chemistry. Longmans, Green, and Co., New York 47. Ashworth WJ (2001) Between the trader and the public: British alcohol standards and the proof of good governance. Technol. Cult. 42:27–50 48. Ashworth WJ (2003) Customs and excise: trade, production, and consumption in England, 1640–1845. Oxford University Press, New York 49. Atkins & Co (1803) An essay on the relation between the specific gravities and the strengths and values of spirituous liquors. Knight & Compton, London 50. Avis DE (1962) Barreling proof of whiskey. Commissioner of the Internal Revenue Alcohol and Tobacco Tax Division, Industry Circular 62–16, April 27 References 471

51. Aya I, Nariai H, Kobayashi M (1980) Pressure and fluid oscillations in vent system due to steam condensation (I). Experimental results and anlysis model for chugging. J Nucl Sci Technol 17:499–515 52. Aya I, Kobayashi M, Nariai H (1983) Pressure and fluid oscillations in vent system due to steam condensation (II). High-frequency component of pressure oscillations in vent tubes under chugging and condensation oscillation. J Nucl Sci Technol 20:213–227 53. Aylott RI, Cochrane GC, Leonard MJ, MacDonald LS, MacKenzie WM, McNeish AS, Walker DA (1990) Ethyl carbamate formation in grain based spirits Part I: post-distillation ethyl carbamate formation in maturing grain whisky. J Inst Brew 96:213–221 54. Aylward F, Coleman G, Haisman DR (1967) Catty odours in food: the reaction between mesityl oxide and compounds in foodstuffs. Chem Ind 37:1563–1564 55. Äyräpää T (1971) Biosynthetic formation of higher alcohols by yeast. Dependence on the nitrogenous nutrient level of the medium. J Inst Brew 77:266–276 56. Badings HT (1970) Cold-storage defects in butter and their relation to the autoxidation of unsaturated fatty acids. Neth Milk Dairy J 24:149–256 57. Baker RH, Barkenbus C (1937) Whisky verdigris analysis. Ind Eng Chem 29:755–757 58. Baldwin S, Andreasen AA (1974) Congener development in bourbon whisky matured at various proofs for 12 years. J Assoc Off Anal Chem 57:940–950 59. Baldwin S, Black RA, Andreasen AA, Adams SL (1967) Aromatic congener formation in maturation of alcoholic distillates. J Agric Food Chem 15:381–385 60. Ballard J (1812) Gauging unmasked. Edward & Savage, Cork 61. Bamber D (1975) Area above ordinal dominance graph and area below receiver operating characteristic graph. J Math Psychol 12:387–415 62. Bamforth CW, Lentini A (2009) The flavor instability of beer. In: Bamforth CW (ed) Beer: a quality perspective, Elsevier, Amsterdam 63. Bamforth CW, Roza JR, Kanauchi M (2009) Storage of malt, thiol oxidase, and brewhouse performance. J Am Soc Brew Chem 67:89–94 64. Barnard A (2008) The whisky distilleries of the United Kingdom. Birlinn, Edinburgh (Reprints of articles from Harper’s Weekly gazette, 1887) 65. Barrera-García VD, Gougeon RD, Karbowiak T, Voilley A, Chassagne D (2008) Role of macromolecules on selective sorption of phenolic compounds by Wood. J Agric Food Chem 56:8498–8506 66. Barrera-García VD, Chassagne D, Paulin C, Raya J, Hirschinger J, Voilley A, Bellat J-P, Gougeon RD (2011) Interaction mechanisms between guaiacols and lignin: the conjugated double bond makes the difference. Langmuir 27:1038–1043 67. Bashforth F, Adams JC (1883) An attempt to test the theories of capillary action. The University Press, Cambridge 68. Bateman J (1852) The excise officer’s manual, 2nd edn. William Maxwell, London 69. Bathgate GN (2003) History of the development of whiskey distillation. In: Russell I (ed) Whisky: technology, production and marketing, Academic Press, New York, p 1–26 70. Bathgate GN (2016) A review of malting and malt processing for whisky distillation. J Inst Brew 122:197–211 71. Bathgate GN, Taylor AG (1977) The qualitative and quantitative measurement of peat smoke on distiller’s malt. J Inst Brew 83:163–168 72. Battaglia R, Conacher HBS, Page BD (1990) Ethyl carbamate (urethane) in alcoholic beverages and : a review. Food Addit Contam 7:477–496 73. Baxter ED (1981) Hordein in barley and malt—a review. J Inst Brew 87:173–176 74. Beck H, Glienke N, Möhlmann C (1997) Combustion and explosion characteristics of dusts. Tech. Rep. 13/97, Berufsgenossenschaftliches Institut für Arbeitssicherheit—BIA 75. Beilby J (1694) Several useful and necessary tables. L. Meredith, London 76. Belitz H-D, Grosch W (1999) Food chemistry. Springer, New York 77. Bemelmans JMH (1979) Review of isolation and concentration techniques. In: Land DG, Nursten HE (eds) Progress in flavour research, Applied Science, Essex, p 79–98 472 References

78. Bendig P, Lehnert K, Vetter W (2014) Quantification of bromophenols in Islay whiskies. J Agric Food Chem 62:2767–2771 79. Bennett IN Jr, Cary FH, Mitchell GL Jr, Cooper MN (1953) Acute methyl alcohol poisoning: a review based on experiences in an outbreak of 323 cases. Medicine 32:431–463 80. Bensaude-Vincent B (2000) The chemist’s balance for fluids: hydrometers and their multiple identities, 1770–1810. In: Holmes FL, Levere TH (eds) Instruments and experimentation in the history of chemistry. MIT Press, Cambridge 81. Benson GC, D’Arcy PJ, Kiyohara O (1980) Thermodynamics of aqueous mixtures of nonelectrolytes II. Isobaric heat capacities of water—n-alcohol mixtures at 25 ◦C. J Sol Chem 9:931–938 82. Berry DR (1984) The physiology and microbiology of Scotch whisky production. In: Bushell ME (ed) Progress in industrial microbiology, vol 19. Elsevier, Oxford, p 199–243 83. Berry DR, Watson DC (1987) Production of organoleptic compounds. In: Berry DR, Russell I, Stewart GG (eds) Yeast biotechnology. Allen & Unwin, London, p 345–368 84. Bettin H, Spieweck F (1990) A revised formula for the calculation of alcoholometric tables. PTB-Mitteilungen 100:457–460 85. Bibb GM (1845) A report of chemical analyses of sugars, molasses, &c., and of researches on hydrometers, made under the superintendence of Professor A. D. Bache by Professor R. S. McCulloh. Public Documents of the Second Session of the Twenty-Eighth Congress, vol. 6, No. 50 86. Biliaderis CG, Maurice TJ, Vose JR (1980) Starch gelatinization phenomena studied by differential calorimetry. J Food Sci 45:1669–1674 87. Black RA, Andreasen AA (1974) Gas-liquid chromatographic determination of monosaccha- rides and in aged distilled spirits. J Assoc Off Anal Chem 57:111–117 88. Blagden C (1790) Report on the best method of proportioning the excise upon spirituous liquors. Philos Trans R Soc Lond 80:321–345 89. Blagden C, Gilpin G (1792) Supplementary report on the best method of proportioning the excise upon spirituous liquors. Philos Trans R Soc Lond 82:425–455 90. Blakeslee AF, Fox AL (1932) Our different taste worlds: P. T. C. as a demonstration of genetic differences in taste. J Hered 23:97–107 91. Bloem A, Lonvaud-Funel A, de Revel G (2008) of glycosidically bound flavor compounds from oak wood by Oenococcus oeni. Food Microbiol 25:99–104 92. Boece H (1821) The history and chronicles of Scotland. Reprinted for W. C. Tait, Edinburgh (trans: Bellenden J in 1541. Boece’s original Latin manuscript was first published in 1526, Paris) 93. Bond H (1634) A new booke of gauging. I. Dawson, London 94. Boothroyd EL, Linforth RST, Cook DJ (2012) Effects of ethanol and long-chain ethyl ester concentrations on volatile partitioning in a whisky model system. J Agric Food Chem 60:9959–9966 95. Boruff CS, Rittschof LA (1959) Effects of barreling proof on the aging of American whiskeys. Agric Food Chem 7:630–633 96. Boucherie A (1819) The art of making whiskey. Worsley & Smith, Lexington 97. Boure JA, Bergles AE, Tong LS (1973) Review of two-phase flow instability. Nucl Eng Des 25:165–192 98. Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, Li C, Herschbach C, Rennenberg H, Pimenta MJ, Shen T-L, Gage DA, Hanson AD (1999) S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11:1485–1497 99. Bourne DT, Wheeler RE (1982) Laboratory prediction of brewhouse extract and performance. J Inst Brew 88:324–328 100. Bowen NL (1941) Certain singular points on crystallization curves of solid solutions. Proc Natl Acad Sci 27:301–309 101. Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York References 473

102. Boyle JA, Djordjevic J, Olsson MJ, Lundström JN, Jones-Gotman M (2009) The human brain distinguishes between single odorants and binary mixtures. Cereb Cortex 19:66–71 103. Boyle P (1808) The publican and spirit dealers’ daily companion, or plain and interesting advise to wine vault and public house keepers, 6th edn. P. Boyle, London 104. Boyle R (1675) A new essay-instrument invented and described by the Honourable Robert Boyle, together with the uses thereof. Philos Trans 10:329–348 105. Boyne JA, Williamson AG (1967) Enthalpies of mixing of ethanol and water at 5 ◦C. J Chem Eng Data 12:318 106. Brandam C, Meyer XM, Proth J, Strehaiano P, Pingaud H (2003) An original kinetic model for the enzymatic hydrolysis of starch during mashing. Biochem Engr J 13:43–52 107. Braus H, Eck JW, Mueller WM, Miller FD (1957) Isolation and identification of a sterol glucoside from whiskey. J Agric Food Chem 5:458–459 108. Bravo A, Herrera JC, Scherer E, Ju-Nam Y, Rübsam H, Madrid J, Zufall C, Rangel-Aldao R (2008) Formation of α-dicarbonyl compounds in beer during storage of pilsner. J Agric Food Chem 56:4134–4144 109. Briggs H (1624) Arithmetica logarithmica. Gulielmus Iones, London 110. Briggs DE (1998) Malts and malting. Blackie Academic & Professional, New York 111. Briggs DE, McGuinness G (1992) Microbes on barley grains. J Inst Brew 98:249–255 112. Bringhurst TA, Brosnan J (2014) Scotch whisky: raw material selection and processing. In: Russell I, Stewart G (eds) Whisky technology, production and marketing, 2nd edn. Academic Press, New York, p 49–122 113. Brockmann MC (1950) Relationship between acids, esters, and solids during the aging of whisky. J Assoc Off Agric Chem 33:127–129 114. Brooks MR, Crowl DA (2007) Flammability envelopes for methanol, ethanol, acetonitrile and toluene. J Loss Prev Process Ind 20:144–150 115. Brown HT (1910) On the specific heat of malt, and the calculation of the “initial heat” of the mash. J Inst Brew 16:112–129 116. Brown HT, Morris GH (1899) The relation of the “initial heat” of the mash to the “striking heat”. J Inst Brew 5:338–354 117. Brown J (1974) Recognition assessed by rating and ranking. Br J Psychol 65:13–22 118. Brown RC, Sefton MA, Taylor DK, Elsey GM (2006) An odour detection threshold determination of all four possible stereoisomers of oak lactone in a white and a red wine. Aust J Grape Wine Res 12:115–118 119. Brunton SL, Tunnicliffe FW (1900) Concerning certain apparently injurious constituents of potable spirits. Lancet 156(4032):1643–1644 120. Brunton SL, Tunnicliffe FW (1902) Concerning injurious constituents in whisky and their relation to flavour. Lancet 159(4110):1591–1594 121. Buckee GK, Malcolm PT, Peppard TL (1982) Evolution of volatile compounds during wort- boiling. J Inst Brew 88:175–181 122. Buettner A, Schieberle P (2001) Evaluation of key aroma compounds in hand-squeezed grape- fruit juice (Citrus paradisi Macfayden) by quantitation and flavor reconstitution experiments. J Agric Food Chem 49:1358–1363 123. Bureau of Internal Revenue (1912) Bulletin relative to production of distilled spirits. Treasury Department document no. 2645. Government Printing Office, Washington, DC 124. Bureau of Internal Revenue, Department of the Treasury (1950) Title 26—Internal revenue. Part 186—gauging manual. Fed Regist 15(144):4787–4790 125. Burgé G, Saulou-Bérion C, Moussa M, Pollet B, Flourat A, Allais F, Athès V, Spinnler HE (2015) Diversity of Lactobacillus reuteri strains in converting glycerol into 3- hydroxypropionic acid. Appl Biochem Biotechnol 177:923–939 126. Burns R (1870) The poetical works of Robert Burns, vol 3. Frederick Warne & Company, London 127. Burros BC, Young LA, Carroad PA (1987) Kinetics of corn meal gelatinization at high temperature and low moisture content. J Food Sci 52:1372–1376 128. Busch J (1987) Second time around: a look at bottle reuse. Hist Archaeol 21:67–80 474 References

129. Butkov E (1968) Mathematical physics. Addison-Wesley, Reading 130. Butler JAV (1937) The energy and entropy of hydration of organic compounds. Trans Faraday Soc 33:229–236 131. Buttery RG, Seifert RM, Guadagni DG, Ling LC (1971) Characterization of additional volatile components of tomato. J Agric Food Chem 19:524–529 132. Buttery RG, Ling LC, Juliano BO, Turnbaugh JG (1983) Cooked rice aroma and 2-acetyl-1- pyrroline. J Agric Food Chem 31:823–826 133. Buttery RG, Teranishi R, Ling LC (1988) Identification of damascenone in tomato volatiles. Chem Ind, p 238 134. Buttery RG, Stern DJ, Ling LC (1994) Studies on flavor volatiles of some sweet corn products. J Agric Food Chem 42:791–795 135. Byrn ML (1871) The complete practical distiller, 8th edn. Henry Carey Baird, Philadelphia 136. Cabrera E, Pineda JC, Duiran de Bazua C, Segurajauregui JS, Vernon EJ (1984) Kinetics of water diffusion and starch gelatinization during corn nixtamalization. In: McKenna BM (ed) Engineering and food, vol 1. Elsevier, New York 137. Cachat E, Priest FG (2005) Lactobacillus suntoryeus sp. nov., isolated from malt whisky distilleries. Int J Syst Evol Microbiol 55:31–34 138. Cadahía E, Fernández de Simón B, Jalocha J (2003) Volatile compounds in Spanish, French, and American oak after natural seasoning and toasting. J Agric Food Chem 51:5923– 5932 139. Cain WS (1977) Differential sensitivity for smell: “noise” at the nose. Science 195:796–798 140. Calabretta PJ (1978) Synthesis of some substituted pyrazines and their olfactive properties. Perfumer Flavorist 3(3):33–36, 40–42 141. Callen HB (1985) Thermodynamics and an introduction to thermostatistics, 2nd edn. Wiley, New York 142. Câmara JS, Alves MA, Marques JC (2006) Changes in volatile composition of Madeira wines during their oxidative ageing. Anal Chim Acta 563:188–197 143. Campion E (1633) A historie of Ireland written in the yeare 1571. Society of Stationers, Dublin 144. Capote T (1980) Music for chameleons. Random House, New York 145. Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166 146. Carson G (1963) The social history of bourbon. Dodd, Mead & Company, New York 147. Carter-Tijmstra JE (1990) Whisky flavour analysis. In: Campbell I (ed) Proceedings of the third aviemore conference on malting, brewing and distilling. Institute of Brewing, London, p 468–471 148. Chatonnet P, Dubourdieu D (1998) Identification of substances responsible for the ‘sawdust’ aroma in oak wood. J Sci Food Agric 76:179–188 149. Chatonnet P, Boidron JN, Pons M (1990) Élevage des vins rouges en fûts de chêne: évolution de certains composés volatils et de leur impact arômatique. Sci Ailements 10:565–587 150. Chatonnet P, Dubourdieu D, Boidron JN (1992) Incidence des conditions de fermentation et d’élevage des vins blancs secs en barriques sur leur composition en substances cédées par le boit de chêne. Sci Ailements 12:665–685 151. Chatonnet P, Dubourdieu D, Boidron J-N, Pons M (1992) The origin of ethylphenols in wines. J Sci Food Agric 60:165–178 152. Chatonnet P, Lavigne V, Boidron JN, Dubourdieu D, Pons M (1992) Identification et dosage de sulfures volatils lourds dans les vins par charomatographie enphase gazeuse et phototmétrie de flamme. Sci Ailements 12:513–532 153. Chen C-L (1970) Constituents of Quercus alba. Phytochemistry 9:1149 154. Chen EC-H (1978) The relative contribution of Ehrlich and biosynthetic pathways to the formation of fusel alcohols. J Am Soc Brew Chem 36:39–43 155. Chevance F, Guyot-Declerck C, Dupont J, Collin S (2002) Investigation of the β- damascenone level in fresh and aged commercial beers. J Agric Food Chem 50:3818–3821 156. Chin H-W, Lindsay RC (1994) Ascorbate and transition-metal mediation of methanethiol oxidation to dimethyl disulfide and dimethyl trisulfide. Food Chem 49:387–392 References 475

157. Chodzinska´ A, Zdziennicka A, Janczuk´ B (2012) Volumetric and surface properties of short chain alcohols in aqueous solution-air systems at 293 K. J Solution Chem 41:2226–2245 158. Church RA (1980) The dynamics of Victorian business. Allen & Unwin, Boston 159. Clare P, Clare M (2012) The life and times of Alfred Henry Allen, Sheffield’s first Public Analyst. J Assoc Publ Analysts 40:39–59 160. Clark S (1761) The British gauger. J. Scott, London 161. Clarke S (1991) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61:355–386 162. Clarke TN, Morrison-Low AD, Simpson ADC (1989) Brass & Glass. Scientific instrument making workshops in Scotland. National Museums of Scotland, Edinburgh 163. Clifton G (1995) Directory of British scientific instrument makers 1550–1851. Zwemmer, London 164. Clutton DW, Simpson AC (1992) The shelf life of spirits. In: Cantagrel R (ed) Élaboration et connaissance des spiritueux: recherche de al qualité, tradition et innovation, Lavoisier-Tec & Doc., p 548–555 165. Coccia A, Indovina PL, Podo F, Viti V (1975) PMR studies on the structures of water-ethyl alcohol mixtures. Chem Phys 7:30–40 166. Coggeshall H (1690) The art of practical measuring easily perform’d. Thomas Bennet, London 167. Coghe S, Martens E, D’Hollander H, Dirinck PJ, Delvaux FR (2004) Sensory and instrumen- tal flavour analysis of wort brewed with dark specialty malts. J Inst Brew 110:94–103 168. Comité International des Poids et Mesures (1969) The international practical temperature scale of 1968. Metrologia 5(2):35–44 169. Committee on Ways and Means (1911) Loss of distilled spirits deposited in internal revenue warehouses. In: House reports, sixty-first congress, third session, vol 2. Government Printing Office, Washington 170. Conner J, Paterson A, Piggott J (1989) The distribution of lignin breakdown products through new and used cask staves. In: Piggott JR, Paterson A (eds) Distilled beverage flavour. Ellis Horwood, Chichester, p 177–184 171. Conner J, Reid K, Richardson G (2001) SPME analysis of flavor components in the headspace of Scotch whiskey and their subsequent correlation with sensory perception. In: Leland JV, Schieberle P, Buettner A, Acree TE (eds) Gas chromatography-olfactometry, American Chemical Society, Washington, DC, p 113–122 172. Conner J, Jack F, Walker D (2010) 2-Acetyl-1-pyrroline, a contributor to cereal and feinty aromas in Scotch whisky. In: Walker GM, Hughes PS (eds) Distilled spirits. New horizons: energy, environment and enlightenment. Proceedings of the worldwide distilled spirits conference. Nottingham University Press, Nottingham, p 263–268 173. Conner JM, Paterson A, Piggott JR (1992) Analysis of lignin from oak casks used for the maturation of Scotch whisky. J Sci Food Agric 60:349–353 174. Conner JM, Paterson A, Piggott JR (1994) Agglomeration of ethyl esters in model spirit solutions and malt whiskies. J Sci Food Agric 66:45–53 175. Conner JM, Paterson A, Piggott JR (1994) Interactions between ethyl esters and aroma compounds in model spirit solutions. J Agric Food Chem 42:2231–2234 176. Conner JM, Birkmyre L, Paterson A, Piggott JR (1998) Headspace concentrations of ethyl esters at different alcoholic strengths. J Sci Food Agric 77:121–126 177. Conner JM, Paterson A, Birkmyre L, Piggott JR (1999) Role of organic acids in maturation of distilled spirits in oak casks. J Inst Brew 105:287–291 178. Conner JM, Paterson A, Piggott JR (1999) Release of distillate flavour compounds in Scotch malt whisky. J Sci Food Agric 79:1015–1020 179. Cook R (1990) The formation of ethyl carbamate in Scotch whisky. In: Campbell I (ed) Proceedings of the third aviemore conference on malting, brewing and distilling. Institute of Brewing, London, p 237–243 180. Cook R, McCaig N, McMillan JMB, Lumsden WB (1990) Ethyl carbamate formation in grain-based spirits Part III. The primary source. J Inst Brew 96:233–244 476 References

181. Cooper MN, Mitchell GL Jr, Bennett IL Jr, Cary FH (1952) Methyl alcohol poisoning: an account of the 1951 Atlanta epidemic. J Med Assoc Georgia 41:48–51 182. Coppin CA, High J (1999) The politics of purity. University of Michigan Press, Ann Arbor 183. Cordier B (1987) Fabrication des barriques. In: Guimberteau G (ed) Les bois et la qualité des vins et des eaux-de-vie. Connaissance de la vigne et du vin, Talence 184. Coronado CJR, Carvalho JA Jr, Andrade JC, Mendiburu AZ, Cortez EV, Carvalho PS, Gonçalves B, Quintero JC, Gutiérrez Velásquez EI, Silva MH, Santos JC, Nascimento MAR (2014) Flammability limits of hydrated and anhydrous ethanol at reduced pressures in aeronautical applications. J Hazard Mater 280:174–184 185. Corre DL, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11:1139–1153 186. Corwin T (1851) A report of the computation of tables, to be used with the hydrometer recently adopted for use in the United States custom-houses, made under the superintendence of Professor A. D. Bache, by Professor R. S. McCulloh. Executive documents of the second session of the thirty-first congress, vol 3, No 28 187. Costigan MJ, Hodges LJ, Marsh KN, Stokes RH, Tuxford CW (1980) The isothermal displacement calorimeter: design modifications for measuring exothermic enthalpies of mixing. Aust J Chem 33:2103–2119 188. Court of Session (1901) Proceedings in prosecution at the insistance of the Lord Advocate against Robert Paterson Pattison and Walter Gilchrist Gray Pattison before the Lord Justice- General. Neill, Edinburgh 189. Courtin CM, Broekaert WF, Swennen K, Aerts G, Van Craeyveld V, Delcour JA (2009) Occurrence of arabinoxylo-oligosaccharides and arabinogalactan peptides in beer. J Am Soc Brew Chem 67:112–147 190. Coyne FE (1940) The Development of the Cooperage Industry in the United States. 1620– 1940. Lumber Buyers Publishing Company, Chicago 191. Crampton CA, Tolman LM (1908) A study of the changes taking place in whiskey stored in wood. J Amer Chem Soc 30:98–136 192. Cretin BN, Dubourdieu D, Marchal A (2016) Development of a quantitation method to assay both lyoniresinol enantiomers in wines, spirits, and oak wood by liquid chromatography–high resolution mass spectrometry. Anal Bioanal Chem 408:3789–3799 193. Crisinel A-S, Spence C (2010) As bitter as a trombone: synesthetic correspondences in nonsynesthetes between /flavors and musical notes. Atten Percept Psychophys 72:1994– 2002 194. Crisinel A-S, Cosser S, King S, Jones R, Petrie J, Spence C (2012) A bittersweet symphony: systematically modulating the taste of food by changing the sonic properties of the soundtrack playing in the background. Food Qual Prefer 24:201–204 195. Crouch H (1728) A complete view of the British customs. Part the second. J. Osborn and T. Longman, London 196. Crowgey HG (2008) Kentucky bourbon. University Press of Kentucky, Lexington 197. Crumpton W (1766) A plain and comprehensive treatise of decimals and mensuration. Z. Stuart, London 198. Czerny M, Christlbauer M, Christlbauer M, Fischer A, Granvogl M, Hammer M, Hartl C, Hernandez NM, Schieberle P (2008) Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur Food Res Technol 228:265–273 199. Dabney JE (1974) Mountain spirits. Scribner, New York 200. Darcy H (1856) Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris 201. Darriet P, Tominga T, Lavigne V, Dubourdieu D (1995) Identification of a powerful aromatic component of Vitis vinifera L. var. Sauvignon wines: 4-mercapto-4-methylpentan-2-one. Flavour Fragr J 10:385–392 202. Dary M (1678) The complete gauger. Robert Horne and Nathanael Ponder, London 203. Davidson JA (1981) Foam stability as an historic measure of the alcohol concentration in distilled alcoholic beverages. J Colloid Interface Sci 81:540–542 References 477

204. de Almeida RB, Garbe L-A, Nagel R, Wackerbauer K, Tressl R (2005) Regio- and stereoselectivity of malt lipoxygenases LOX1 and LOX2. J Inst Brew 111:265–274 205. de Clerck J (1957) Textbook of brewing. Chapman, London 206. de Krasinski J, Fan Y (1984) Some viscoelastic aspects of liquid foams of high void fraction and possibilities of their applications. In: XVIth International Congress of Theoretical and Applied Mechanics (ICTAM), p 463 207. de Wet P (1978) Odour thresholds and their application to wine flavour studies. In: Proceeding of the South African society for enology and viticulture, p 28–42 208. Debrégeas G, de Gennes P-G, Brochard-Wyart F (1998) The life and death of “bare” viscous bubbles. Science 279:1704–1707 209. Debye P (1946) The intrinsic of polymer solutions. J Chem Phys 14:636–639 210. Deki M, Yoshimura M (1974) Studies on the volatile components of peated malt. I. Identification of phenolic compounds. Chem Pharm Bull 22:1748–1753 211. Deki M, Yoshimura M (1974) Studies on the volatile components of peated malt. II. Identification of neutral compounds. Chem Pharm Bull 22:1754–1759 212. Deki M, Yoshimura M (1974) Studies on the volatile components of peated malt. III. Identification of acidic and basic compounds. Chem Pharm Bull 22:1760–1764 213. del Alamo-Sanza M, Nevares I (2014) Recent advances in the evaluation of the transfer rate in oak barrels. J Agric Food Chem 62:8892–8899 214. del Alamo-Sanza M, Nevares I (2018) Oak wine barrel as an active vessel: a critical review of past and current knowledge. Crit Rev Food Sci Nutr 58:2711–2726 215. Delahunty CM, Conner JM, Piggott JR, Paterson A (1993) Perception of heterocyclic compounds in mature whisky. J Inst Brew 99:479–482 216. Delcour JA, Vandenberghe MM, Corten PF, Dondeyne P (1985) thresholds of polyphenolics in water. Am J Enol Vitic 35:134–136 217. Demachy J-F (1773) L’art du distillateur d’eaux-fortes, &c. L. F. Delatour, Paris 218. Demyttenaere JCR, Sánchez Martínez JK, Verhé R, Sandra P, De Kimpe N (2003) Analysis of volatiles of malt whisky by solid-phase microextraction and stir bath bar sorptive extraction. J Chromatogr A 985:221–232 219. Department of Inland Revenue (1884) Forty-third report of the Commissioners of Her Majesty’s Inland Revenue for the year ended 31st March 1900. Darling & Son, Ltd., London 220. Department of Inland Revenue (1900) Twenty-seventh report of the Commissioners of Her Majesty’s Inland Revenue for the year ended 31st March 1884. Eyre and Spottiswoode, London 221. Department of Justice (1909) Proceedings before and by direction of the President concerning the meaning of the term whisky. U.S. Government Printing Office, Washington, DC 222. Department of the Treasury, Bureau of Alcohol, Tobacco and Firearms (1979) Implementing the distilled spirits tax revision act of 1979. Fed Regist 44(239):71,613–71,618 223. Department of the Treasury, Bureau of Alcohol, Tobacco and Firearms (1985) Implementing the distilled spirits tax revision act and portion of crude oile windfall profit tax act. Fed Regist 50(110):23,949–23,956 224. Desaguliers JT (1729) A new kind of hydrometer made by Mr. Clarke. Philos Trans R Soc Lond A 36, 277–279 225. Deschenes RJ, Stimmel JB, Clarke S, Stock J, Broach JR (1989) RAS2 protein of Saccha- romyces cerevisiae is methyl-esterified at its carboxyl terminus. J Biol Chem 264:11865– 11873 226. Deshpande NS, Barigou M (2000) The flow of gas-liquid foams in vertical pipes. Chem Eng Sci 44:4297–4309 227. Deshpande NS, Barigou M (2001) Foam flow phenomena in sudden expansions and contractions. Int J Multiphase Flow 27:1463–1477 228. Dethier M, de Jaeger B, Barszczak E, Dufour J-P (1991) In vivo and in vitro investigations of the synthesis of S-methylmethionine during barley germination. J Am Soc Brew Chem 49:31–37 478 References

229. Diaz M (2004) Comparison between orthonasal and retronasal flavor perception at different concentrations. Flavour Fragr J 19:499–504 230. Dickenson CJ (1983) Dimethylsulphide – its origin and control in brewing. J Inst Brew 89:41– 46 231. Dickson T (1877) Accounts of the Lord High Treasurer of Scotland, vol 1. A. D. 1473–1498. Thomans and Archobald Constable, Edinburgh 232. Dittrich F, Zajonc D, Hühne K, Hoja U, Ekici A, Greiner E, Klein H, Hofmann J, Bessoule J- J, Sperling P, Schweizer E (1998) Fatty acid elongation in yeast. Biochemical characteristics of the enzyme system and isolation of elongation-defective mutants. Eur J Biochem 252:477– 485 233. Dolan TCS (2003) Malt whiskies: raw materials and processing. In: Russell I (ed) Whisky technology, production and marketing, 2nd edn. Academic Press, New York, p 27–73 234. Dougharty J (1712) The general gauger, 2nd edn. James Knapton, London 235. Douglas S (1803) Report from the committee upon the distilleries in Scotland, 11 June 1798. In: Reports from committees of the house of commons 1782–1799, vol 11, p 319–511 236. Douglas S (1803) Report from the committee upon the distilleries in Scotland, 12 July 1799. In: Reports from committees of the house of commons 1782–1799, vol 11, p 512–804 237. Drinkwater J (1848) XIX. On the preparation of absolute spirit, and the composition of “proof-spirit”. Philos Mag 32(213):123–129 238. Dudley WL (1908) The filtration of alcoholic liquids through wood charcoal. J Am Chem Soc 30:1784–1789 239. Dumas J-B (1831) Sur les procédés de l’analyse organique. Ann Chim Phys 47:198–213 240. Duncan REB, Philip JM (1966) Methods for the analysis of Scotch whisky. J Sci Food Agric 17:208–214 241. Duplais M (1871) Alcoholic liquors (trans: McKennie M). Henry Carey Baird, Philadelphia 242. Duplais P, McKennie M (1871) A treatise on the manufacture and distillation of alcoholic liquors. Henry Carey Baird, Philadelphia 243. Duportal MA-S (1811) Recherches sur l’état actuel de la distillation du vin en France et sur let moyend d’améliorer la distillation des eaux-de-vie de tous les pays. J. Klostermann, Paris 244. Egashira K, Nishi N (1998) Low-frequency Raman spectroscopy of ethanol–water binary solution: evidence for self-association of solute and solvent molecules. J Phys Chem B 102:4054–4057 245. Ellsworth HL (1840) A digest of patents issued by the United States from 1790 to January 1, 1839. Peter Force, Washington 246. Engan S (1981) Beer composition: volatile substances. In: Pollock JRA (ed) Brewing sciences, vol 2, Academic Press, London, p 98–165 247. Engel K-H, Flath RA, Buttery RG, Mon TR, Ramming DW, Teranishi R (1988) Investigation of volatile constituents in nectarines. 1. Analytical and sensory characterization of aroma components in some nectarine cultivars. J Agric Food Chem 36:549–553 248. Engel W, Bahr W, Schieberle P (1999) Solvent assisted flavour evaporation – a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur Food Res Technol 209:237–241 249. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94 250. Erratt JA, Stewart GG (1978) Genetic and biochemical studies on yeast strains able to use dextrins. J Am Soc Brew Chem 36:151–161 251. Estee CF Esq (1863) The excise tax law. Approved July 1, 1862. Fitch, Estee & Co., New York 252. European Brewery Convention (1975) Analytica - EBC. Schweizer Brauerei-Rundschau, Zurich 253. European Food Safety Authority (2007) Ethyl carbamate and hydrocyanic acid in food and beverages. Scientific opinion of the panel on contaminants. Eur Food Saf Authority J 551:1– 44 254. Evans DE, Goldsmith M, Redd KS, Nischwitz R, Lentini A (2012) Impact of mashing conditions on extract, its fermentability, and the levels of wort free amino nitrogen (FAN), β-glucan, and lipids. J Am Soc Brew Chem 70:39–49 References 479

255. Everard T (1721) Stereometry, 5th edn. Mary Huffey, London 256. Fairley T (1905) Notes on the history of distilled spirits, especially whisky and brandy. The Analyst 30:293–306 257. Fairley T (1907) The early history of distillation. J Inst Brew 13:559–582 258. Farrell RR, Wellinger M, Gloess AN, Nichols DS, Breadmore MC, Shellie RA, Yeretzian C (2015) Real-time mass spectrometry monitoring of oak wood toasting: elucidating aroma development relevant to oak-aged wine quality. Sci Rep 5:17334 259. Faulkner W (1959) The mansion. Random House, New York 260. Federal Alcohol Administration (1937) Minutes of hearing with reference to proposed amendment to Regulations No. 5, relating to labeling and advertising of distilled spirits, requiring labels on products stored in reused cooperage to bear statements indicating that fact. Italian Garden, Mayflower Hotel, Washington DC, Monday, June 28, 1937. unpublished, fOIA 2016-01-158 261. Feuillat F, Perrin JR, Keller R, Aubert D, Gelhaye P, Houssement C, Perrin J, Pierre M (1994) Simulation expérimentale de “l’interface tonneau”: mesure des cinétiques d’imprégnation du liquide dans le bois et d’évaporation de surface. J Int Sci Vigne Vin 28:227–245 262. Fifty-Fourth Congress (1897) Chapter 379. An act to allow the bottling of distilled spirits in bond. In: The statutes at large of the United Sates of America from December, 1895, to March, 1897, vol XXIX. Government Printing Office, Washington, p 626–628 263. Figala K, Petzold U (1993) Alchemy in the Newtonian circle: personal acquaintances and the problem of the late phase of Isaac Newton’s alchemy. In: Field JV, James FAJL (eds) Renaissance and revolution, Cambridge University Press, Cambridge, p 173–191 264. Filner P, Varner JE (1967) A test for de novo synthesis of enzymes: density labeling with 18 H2O of barley α-amylase induced by gibberellic acid. Proc Natl Acad Sci 58:1520–1526 265. Fincher GB (1975) Morphology and chemical composition of barley endosperm cell-walls. J Inst Brew 81:116–122 266. Firth CH, Rait RS (1911) Acts and ordinances of the Interregnum, 1642–1660. H. M. Stationary Office, London 267. Fisher R (1925) Statistical methods for research workers. Oliver and Boyd, Edinburgh 268. Flora LF, Wiley RC (1974) Sweet corn aroma, chemical components and relative importance in the overall flavor response. J Food Sci 39:770–773 269. Foley WM Jr, Sanford GE, McKennis H Jr (1952) The mechanism of the reaction of aniline with furfural in the presence of acid. J Am Chem Soc 74:5489–5491 270. Folin O, Denis W (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12:239–243 271. Follegatti-Romero LA, Lanza M, Batista FRM, Batista EAC, Oliveria MB, Coutinho JAP, Meirelles AJA (2010) Liquid-liquid equilibrium for ternary systems containing ethyl esters, anhydrous ethanol and water at 298.15, 313.15, and333.15 K. Ind Eng Chem Res 49:12613– 12619 272. Forbes RJ (1948) Short history of the art of distillation. E. J. Brill, Leiden 273. Ford H (1914) The case against the little white slaver, vol 1. Henry Ford, Detroit 274. Fownes G (1845) VIII. An account of the artificial formation of a vegeto-alkali. Philos Trans R Soc Lond 135:253–262 275. Frank HS, Evans MW (1945) Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molar entropy in dilute solutions; structure and thermodynam- ics of aqueous electrolytes. J Chem Phys 13:507–532 276. Franks F, Ives DJG (1966) The structural properties of alcohol-water mixtures. Q Rev Chem Soc 20:1–44 277. Franks F, Johnson HH (1962) Accurate evaluation of partial molar properties. Trans Faraday Soc 58:656–661 278. Fredriksson H, Silverio J, Andersson R, Eliasson A-C, Åman P (1998) The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr Polymers 35:119–134 279. French J (1667) The art of distillation. E. Cotes, London 480 References

280. Friedman M (2004) Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical science. J Agric Food Chem 52:385– 406 281. Fujieda M, Tanaka T, Suwa Y, Koshimizu S, Kouno I (2008) Isolation and structure of whiskey polyphenols produced by oxidation of oak wood ellagitannins. J Agric Food Chem 56:7305–7310 282. Furusawa T, Saita M, Nishi N (1990) Analysis of ethanol-water clusters in whisky. In: Campbell I (ed) Proceedings of the third aviemore conference on malting, brewing and distilling. Institute of Brewing, London, p 431–438 283. Gallant DJ, Bouchet B, Baldwin PM (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polymers 32:177–191 284. Gardiner BS, Dlugogorski BZ, Jameson GJ (1999) Prediction of pressure losses in pipe flow of aqueous foams. Ind Eng Chem Res 38:1099–1106 285. Gay-Lussac M (1824) Instruction pour l’usage de l’alcoomètre centésimal. M. Collardeau, Paris 286. Geddes PA (1986) The production of hydrogen sulfide by lactobacillus spp. in fermenting wort. In: Campbell I, Priest FG (eds) Proceedings of the 2nd Aviemore conference on malting, brewing, and distilling. Institute of Brewing, London, p 364–370 287. Geddes PA, Riffkin HL (1989) Influence of lactic acid bacteria on aldehyde, ester, and higher alcohol formation during Scotch whisky fermentations. In: Piggott JR, Paterson A (eds) Distilled beverage flavour, Ellis Horwood, Chichester, p 193–199 288. A Gentleman (1793) The complete distiller combining theory and practice. Peter Hill, Edinburgh 289. Germain-Robin H (2016) The maturation of distilled spirits. White Mule Press, Hayward 290. Gibbons GC, Nielsen EB (1983) New analyses in malting and brewing. J Inst Brew 89:8–14 291. Gibbons GC, Aastrup S, Munck L (1981) Rapid visualization of cell wall breakdown and alpha-amylase transport during malting of barley. In: European Brewery Convention monograph VI. E. B. C. symposium on the relationship between malt and beer. Helsinki— November 1980, Brauwelt-Verlag, Nürnberg 292. Gibbs JW (1874) On the equilibrium of heterogeneous substances. Trans Connecticut Acad Arts Sci 3:109–248, 334–524 293. Gijs L, Perpète P, Timmermans A, Collin S (2000) 3-methylpropionaldehyde as precursor of dimethyl trisulfide in aged beers. J Agric Food Chem 48:6196–6199 294. Gillespie R (1810) Gillespie’s improved steam still. Shaw & Shoemaker 37709 295. Gilliland RB (1966) Saccharomyces diastaticus—a starch-fermenting yeast. J Inst Brew 72:271–275 296. Gilpin G, Blagden C (1794) Tables for reducing the quantities by weight, in any mixture of pure spirit and water, to those by measure; and for determining the proportion, by measure, of each of the two substances in such mixtures. Philos Trans R Soc Lond 84:275–382 297. Glabasnia A, Hofmann T (2006) Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in Bourbon whiskey and oak-matured red wines. J Agric Food Chem 54(9):3380– 3390 298. Glushko V, Thaler MSR, Karp CD (1981) Pyrene fluorescence fine-structure as a polarity probe of hydrophobic regions: behavior in model solvents. Arch Biochem Biophys 210:33– 42 299. Goff EU, Fine DH (1979) Analysis of volatile N-nitrosamines in alcoholic beverages. Food Cosmet Toxicol 17:569–573 300. Goldberg DM, Hoffman B, Yang J, Soleas GJ (1999) Phenolic constituents, furans, and total antioxidant status of distilled spirits. J Agric Food Chem 47:3978–3985 301. Goldstein R, Almenberg J, Dreber A, Emerson JW, Herschkowitsch A, Katz J (2008) Do more expensive wines taste better? Evidence from a large sample of blind tastings. J Wine Econ 3:1–9 References 481

302. Golon A, Kuhnert N (2012) Unraveling the chemical composition of caramel. J Agric Food Chem 60:3266–3274 303. Goniak OJ, Noble AC (1987) Sensory study of selected volatile sulfur compounds in white wine. Am J Enol Vitic 38:223–227 304. González B, Calvar N, Gómez E, Domínguez Á (2007) Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K. J Chem Thermodyn 39:1578–1588 305. Goodykoontz JH, Dorsch RG (1967) Local heat-transfer coefficients and static pressures for condensation of high-velocity steam within a tube. Tech. Rep. TN D-3953, NASA Lewis Research Center 306. Gray SF (1828) The operative chemist. Hurst, Chance, and Co., London 307. Greeley AP (1907) The food and drugs act. A study. John Byrne, Washington, DC 308. Green DM, Moses FL (1966) On the equivalence of two recognition measures of short-term memory. Psychol Bull 66:228–234 309. Greenwood CT, MacGregor AW (1965) The isolation of α-amylase from barley and malted barley, and a study of the properties and action-patterns of the enzymes. J Inst Brew 71:405– 417 310. Greenwood CT, Thomson J (1959) A comparison of the starches from barley and malted barley. J Inst Brew 65:346–353 311. Grolier J-PE, Wilhelm E (1981) Excess volumes and excess heat capacities of water + ethanol at 298.15 K. Fluid Phase Equilib 6:283–287 312. Grosch W (1993) Detection of potent odorants in foods by aroma extract dilution analysis. Trends Food Sci Technol 4:68–73 313. Gross-Isseroff R, Lancet D (1988) Concentration-dependent changes of perceived odor quality. Chem Senses 13:191–204 314. Guadagni DG, Buttery RG, Okano S (1963) Odor thresholds of some organic compounds associated with food flavours. J Sci Food Agric 14:761–765 315. Guadagni DG, Miers JC, Venstrom DW (1969) Concentration effect on odor addition or synergism in mixtures of methyl sulfide and tomato juice. J Food Sci 34:630–632 316. Guadagni DG, Buttery RG, Turnbaugh JG (1972) Odour thresholds and similarity ratings of some potato chip components. J Sci Food Agric 23:1435–1444 317. Guichard E (1995) Chiral γ -lactones, key compounds to apricot flavour. In: Rouseff RL, Leahy MM (eds) Fruit flavors. American Chemical Society, Washington, DC, p 258–267 318. Gunter E (1623) De sector & radio. William Iones, London 319. Gunter E, Briggs H (1623) Canon triangulorum. William Iones, London 320. Günther C, Mosandl A (1986) 3-Methyl-4-octanolid—”Quercuslacton, Whiskylacton“— Struktur und Eingenschaften der Stereoisomeren. Liebigs Ann Chem 1986:2112–2122 321. Guth H (1997) Quantitation and sensory studies of character impact odorants of different white wine varieties. J Agric Food Chem 45:3027–3032 322. Guthrie J (1857) Report of the Secretary of the Treasury on the construction and distribution of weights and measures. A. O. P. Nicholson, Washington, DC 323. Guymon JF (1974) Chemical aspects of distilling wines into brandy. In: Webb A (ed) Chemistry of winemaking. American Chemical Society, Washington, DC 324. Guymon JF, Ingraham JL, Crowell EA (1961) The formation of n-propyl alcohol by Saccharomyces cerevisiae. Arch Biochem Biophys 95:163–168 325. Hagues G, Russell J (1949) Volumenometer methods I. Density of barley and malt. J Inst Brew 55:110–112 326. Hale MD, Howlett SP, Howie D, Reid KJG, Swan JS, Ward A (1992) Novel pyrolysis and mycological processes to maintain quality and cost effectiveness in the cask maturation of scotch whisky. Tech. rep., Pentlands Scotch Whisky Research Limited, lINK (FPS) Report to the Biotechnology Unit, DTI, and the Ministry of Agriculture, Fisheries & Food 327. Hale MD, McCafferty K, Larmie E, Newton J, Swan JS (1999) The influence of oak seasoning and toasting parameters on the composition and quality of wine. Am J Enol Vitic 50:495–502 328. Hall H (1813) Hall’s distiller. John Bioren, Philadelphia 482 References

329. Hall H (1818) The distiller. John Bioren, Philadelphia 330. Hamilton A (1790) Report of the Secretary of the Treasury to the House of Representatives, relative to a provision for the support of the public credit of the United States. Francis Childs and John Swaine, New York 331. Hammer SK, Avalos JL (2017) Uncovering the role of branched-chain amino acid transami- nases in Saccharomyces cerevisiae biosynthesis. Matab Eng 44:302–312 332. Hansen J, Bruun SV, Bech LM, Gjermansen C (2002) The level of MXR1 gene expression in brewing yeast during beer fermentation is a major determinant for the concentration of dimethyl sulfide in beer. FEMS Yeast Res 2:137–149 333. Harris AE (1906) Fiftieth annual report on the health and sanitary condition of the metropoli- tan borough of Islington. Vail & Co., London 334. Harris G, Ricketts RW (1958) Studies on non-biological hazes of beers III. Isolation of polyphenols and phenolic acids of malt husk. J Inst Brew 64:22–32 335. Harrison B, Fagnen O, Jack F, Brosnan J (2011) The impact of copper in different parts of malt whisky pot stills on new make spirit composition and aroma. J Inst Brew 117:106–112 336. Harrison W (1577) An historicall description of the islande of Britayne. In: Holinshed R (ed) The chronicles of England, Scotlande, and Irelande, vol 1. John Hunne, London 337. Haseba T, Mashimo K, Sugimoto J, Sato S, Ohno Y (2007) Maturation of whisky changes ethanol elimination kinetics and neural effects by increasing nonvolatile congeners. Alcohol Clin Exp Res 31:77S–82S 338. Hastie SH (1925) The application of chemistry to pot still distillation. J Inst Brew 31:198–215 339. Hastie SH (1926) Character in pot still whisky. J Inst Brew 32:209–220 340. Hastie SH, Dick WD (1928) Character in pot still whisky. J Inst Brew 34:477–494 341. Hayasaka Y, Wilkinson KL, Elsey GM, Raunkjær M, Sefton MA (2007) Identification of natural oak lactone precursors in extracts of American and French oak woods by liquid chromatography–tandem mass spectrometry. J Agric Food Chem 55:9195–9201 342. Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266, 3920 343. Hehner O (1904) Obituary notice. Alfred Henry Allen. Analyst 29:233–242 344. Heitz JE (1960) Measurement of vapor-liquid equilibria for acetaldehyde-ethanol-water mixtures. Am J Enol Vitic 11:19–29 345. Henderson WA (1793) The housekeeper’s instructor, 6th edn. W. and J. Stratford, London 346. Henry TA, Auld SJM (1905) On the probable existence of emulsin in yeast. Proc R Soc Lond B 513:568–580 347. Herráez JV, Belda R (2006) Refractive indices, densities and excess molar volumes of monoalcohols + water. J Solut Chem 35:1315–1328 348. Hewitt JT (1902) The retarding influence of aldehydes on the maturation of potable spirits. J Soc Chem Ind 21:96–102 349. Highmore A (1796) A practical arrangement of the laws relative to the excise, vol 2. J. Butterworth, London 350. Hill J, Bastin N (2007) A very canny Scot: ‘Great’ Daniel Campbell of Shawfield & Islay 1670–1753. Two Plus George, West Sussex 351. Hirschfelder J, Stevenson D, Eyring H (1937) A theory of liquid structure. J Chem Phys 5:896–912 352. Historical Manuscripts Commission (1885) Tenth Report. The manuscripts of the Earl of Westmorland, Captain Stewart, Lord Stafford, Lord Muncaster, and Others. Eyre and Spottiswoode, London 353. Hodge JE (1953) Chemistry of browning reactions in model systems. J Agric Food Chem 1:928–943 354. Hodgeson M (1689) A treatise of practical gauging. J. Richarson, London 355. Hofmann T, Schieberle P (1996) Studies on intermediates generating the flavour compounds 2-methyl-3-furanthiol, 2-acetyl-2-thiazoline and sotolon by Maillard-type reactions. In: Tay- lor AJ, Mottram DS (eds) Flavor science: recent developments. Royal Society of Chemistry, Cambridge, p 182–187 References 483

356. Hopkins RH, Carter WA (1933) The influence of slack malt on the composition of wort. Part I. J Inst Brew 39:59–70 357. Hose LP, Piggott JR (1980) Descriptive sensory analysis of Scotch whisky. In: van der Starre H (ed) Proceedings of the seventh international symposium on olfaction and taste. IRL Press, Washington, DC, p 449–450 358. Hossain SJ, Aoshima H, Koda H, Kiso Y (2002) Potentiation of the ionotropic GABA receptor response by whiskey fragrance. J Agric Food Chem 50:6828–6834 359. Hou C-Y, Lin Y-S, Wang Y, Jiang C-M, Wu M-C (2008) Effect of storage conditions on methanol content offruit and vegetable juices. J Food Comp Anal 21:410–415 360. Hough JS, Briggs DE, Stevens R (1971) Malting and brewing science. Chapman and Hall, London 361. Hough WM (1908) Discussion of subject of distilled spirits. Extempore remarks by Warwick M. Hough general counsel for the National Wholesale Liquor Dealers Association of America before the Pure Food Congress. September 13, 1904, St. Louis, Missouri. Gaylord Bros., Syracuse 362. House of Commons (1863) Accounts and papers of the House of Commons. 39 (trade), vol 67 363. House of Commons (1877) Accounts and papers of the House of Commons. 28 (trade), vol 76 364. Howie D, Swan JS (1984) Compounds influencing peatiness in Scotch malt whisky flavour. In: Nykänen L, Lehtonen P (eds) Proceedings of the Alko symposium on flavour research of alcoholic beverages. Helsinki, Foundation for Biotechnical and Industrial Fermentation Research, Helsinki, p 279–290 365. Hu N, Schaefer DW (2010) Effect of impurity compounds on ethanol hydration. J Mol Liq 155:29–36 366. Hu N, Wu D, Cross KJ, Schaefer DW (2010) Structural basis of the 1H-nuclear magnetic resonance spectra of ethanol–water solutions based on multivariate curve resolution analysis of mid-infrared spectra. Appl Spectrosc 64:337–342 367. Hu TY (1950) The liquor tax in the United States 1791–1947. Columbia University, New York 368. Hudson CS (1904) Die gegenseitige Löslichkeit von Nikotin in Wasser. Z Phys Chem 47:113– 115 369. Hudson OP (1986) Inter-relationships in malt analyses and malting parameters. In: Clarke B, Benwell R, Little G (eds) Proceedings of the nineteenth convention. Institute of Brewing, Australia and New Zealand, p 109–114 370. Hufnagel JC, Hofmann T (2008) Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine. J Agric Food Chem 56:1376–1386 371. Huh C, Scriven LE (1969) Shapes of axisymmetric fluid interfaces of unbounded extent. J Colloid Interface Sci 30:323–337 372. Huige NJ, Westermann DH (1975) Effect of malt particle size distribution on mashing and lautering performance. MBAA Tech Q 12:31–40 373. Hunt W (1687) The gaugers magazine. Mary Clark, London 374. Hutton C (1788) A treatise on mensuration, 2nd edn. G. G. J., J. Robinson, R Baldwin, G. and T. Wilkie, London 375. Ikari A (1970) On the behavior of minute amount component in simple distillation of aqueous solution of ethanol. Kagaku Kogaku¯ 34:1185–1192 376. Ikari A, Ayabe N (1969) On the vapor-liquid equilibrium of minute amount components– Water-ethanol systems containing a minute amount of 1-butanol. Kagaku Kogaku¯ 33:157– 162 377. Ikari A, Kubo R (1975) Behavior of various impurities in simple distillation of aqueous solution of ethanol. J Chem Eng Jpn 8:294–299 378. Ikari A, Toya¯ S (1971) Simple distillation of aqueous solution of ethanol containing a minute amount of furfural. Kagaku Kogaku¯ 35:1131–1135 379. Iley M (1820) The new practical gager. M. B. Iley, London 380. Inoue M, LePoutre P (1986) Kinetics of gelatinization of cornstarch adhesive. J Appl Polym Sci 31:2779–2789 484 References

381. Internal Revenue Service, Department of the Treasury (1968) Standards of identity for neutral spirits and domestic whiskies. Fed Regist 33(18):983–986 382. Isaac PCG, Anderson GK (1973) Effluents from malting and brewing. J Inst Brew 79:154–165 383. Isoe S, Katsumiura S, Sakan T (1973) The synthesis of damascenone and β-damascone and the possible mechanism of their formation from cartenoids. Helv Chim Acta 56:1514–1516 384. Izydorczyk MS, Dexter JE (2008) Barley β-glucans and arabinoxylans: molecular structure, physiochemical properties, and uses in food products. Food Res Int 41:850–868 385. Jaeger SR, McRae JF, Bava CM, Beresford MK, Hunter D, Jia Y, Chheang SL, Jin D, Peng M, Gamble JC, Atkinson KR, Axten LG, Paisley AG, Tooman L, Pineau B, Rouse SA, Newcomb RD (2013) A Mendelian trait for olfactory sensitivity affects odor experience and food selection. Curr Biol 23:1601–1605 386. Jarauta I, Cacho J, Ferreira V (2005) Concurrent phenomena contributing to the formation of the aroma of wine during aging in oak wood: an analytical study. J Agric Food Chem 53:4166–4177 387. Jaulmes P, Brun S, Tep Y (1968) Alcoholometric table based on 20 degrees. Trav Soc Pharm Montp 28:263 388. Jaulmes P, Brun S, Tep Y (1968) Relation between the alcoholometric table based on 20 degrees with those at other isotherms. Trav Soc Pharm Montp 28:275 389. Jefferson T, Looney JJ (2010) The papers of Thomas Jefferson, retirement series, vol 7: 28 November 1813 to September 1814. Princeton University Press 390. John P (1991) Current cooperage practices. Wine Ind J 6(1):66–68 391. Johnson E (1881) Drinks from drugs; or, the magic box. A startling exposure of the tricks of the liquor traffic. Revolution Temperance Publishing House, Chicago 392. Johnston WH (1865) Loftus’s Inland Revenue officer’s manual. W. R. Loftus, London 393. Joint FAO/WHO Expert Committee on Food Additives (1999) Furfural. WHO Food Additives Series 42. 51st Joint FAO/WHO Expert Committee on Food Additives, Geneva 394. Jonas P (1806) The genuine art of gauging made easy and familiar. C. Wittingham, London 395. Jonas P, Tate W (1823) The theory and practice of gauging. Sherwood, Neely, and Jones, London 396. Jones DB (1941) Factors for converting percentages of nitrogen in foods and feeds into percentages of proteins. United States Department of Agriculture, circular No. 183 397. Jones K, Wills R (1966) Separation and composition of a Scotch whisky fusel oil. J Inst Brew 72:196–201 398. Joseph E, Marché M (1972) Contribution a l’étude du vieillissement du cognac— Identification de la scopolétine, de l’aesculétine, de l’ombelliférone, de la β-methyl- ombrelliférone, de l’æsculine, et de la scopoline, hétérosides provenant du bois. Conn Vigne Vin 6(3):273–330 399. Joule JP (1850) On the mechanical equivalent of heat. Philos Trans R Soc Lond 140:61–82 400. Jounela-Eriksson P (1981) Predictive value of sensory and analytical data for distilled bev- erages. In: Schreier P (ed) Flavour ‘81: Third Weurman symposium. de Gruyter, New York, p 145–164 401. Jounela-Eriksson P, Lehtonen M (1981) in the aroma of distilled beverages. In: Charalambous G, Inglett GE (eds) The quality of foods and beverages: chemistry and technology, vol 1. Academic, New York, p 167–181 402. Kächele M, Monakhova YB, Kuballa T, Lachenmeier DW (2014) NMR investigation of acrolein stability in hydroalcoholic solution as a foundation for the valid HS-SPME/GC-MS quantification of the unsaturated aldehyde in beverages. Anal Chim Acta 820:112–118 403. Kadir S, Decloux M, Giampaoli P, Joulia X (2008) Liquid-liquid equilibria of the ternary systems 3-methyl-1-butanol + ethanol + water and 2-methyl-1-propanol + ethanol + water at 293.15 K. J Chem Eng Data 53:910–912 404. Kahlweit M, Busse G, Jen J (1991) Adsorption of amphiphiles at water/air interface. J Phys Chem 95:5580–5586 405. Kahn JH (1969) Compounds identified in whisky, wine, and beer: a tabulation. J Assoc Off Anal Chem 52:1166–1178 References 485

406. Kahn JH, LaRoe EG, Conner HA (1968) Whiskey composition: identification of components by single-pass gas chromatography-mass spectrometry. J Food Sci 33:395–400 407. Kahn JH, Trent FM, Shipley PA, Vordenberg RA (1968) Gas chromatography of fusel oils in alcoholic distillates. J Assoc Off Anal Chem 1330–1333 408. Kahn JH, Shipley PA, LaRoe EG, Conner HA (1969) Whiskey composition: identification of additional components by single-pass gas chromatography-mass spectrometry. J Food Sci 34:587–591 409. Kahnjahn D, Jarms U, Maier HG (1997) Hydroxymethylfurfural and furfural in coffee and related beverages II. Coffee. Dtsch Lebensmitt Rundsch. 93:44–46 410. Kalyanasundaram K, Thomas JK (1977) Solvent-dependent fluorescence of pyrene-3- carboxaldehyde and its applications in estimation of polarity at micelle-water interfaces. J Phys Chem 81:2176–2180 411. Kanda LR, Voll FAP, Corazza ML (2013) LLE for the systems ethyl palmitate (palmitic acid)(1) + ethanol(2) + glycerol(water)(3). Fluid Phase Equilib 354:147–155 412. Karlsson BCG, Friedman R (2017) Dilution of whisky—the molecular perspective. Sci Rep 7:6489 413. Katake T, Kawamoto H, Saka S (2013) Pyrolysis reactions of coniferyl alcohol as a model of the primary structure formed during lignin pyrolysis. J. Anal. Appl. Pyrolysis 104:573–584 414. Kaukovirta-Norja A, Reinikainen P, Olkku J, Laakso S (1998) Influence of barley and malt storage on lipoxygenase reaction. Cereal Chem 75:742–746 415. Kawamoto H (2017) Lignin pyrolysis reactions. J Wood Sci 63:117–132 416. Kawasaki T, Minowa Z, Inamatsu T (1968) A new alcoholometric specific gravity table. Bull NRLM 17 417. Keeler MF, Cole MJ, Bidwell WB (eds) (1978) Commons debates 1628, vol IV. Yale University Press, New Haven 418. Kentucky (1895) Reports of civil and criminal cases decided by the court of appeals of Kentucky, vol 95. Containing cases decided from October 3,1893, to September 17, 1894. Capital Printing Company, Frankfort 419. Kepler J (1615) Nova stereometria doliorum vinariorum. Johannes Plancus, Linz 420. Kew W, Goodall I, Clarke D, Unrín D (2017) Chemical diversity and complexity of Scotch whisky as revealed by high-resolution mass spectrometry. J Am Soc Mass Spectrom 28:200– 213 421. Kinzurik MI, Herbst-Johnstone M, Gardner RC, Fedrizzi B (2016) Hydrogen sulfide produc- tion during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide. Food Chem 209:341–347 422. Kitaoka S, Suzuki K (1967) Caramels and caramelization. Part I. The nature of caramelan. Agric Biol Chem 31:753–755 423. Kiyohara O, Benson GC (1981) Thermodynamics of aqueous mixtures of nonelectrolytes III. Compressibilities and isochoric heat capacities of water—n-alcohol mixtures at 20 ◦C. J Solut Chem 10:281–290 424. Kobayashi A (1989) Sotolon. Identification, formation, and effect on flavor. In: Teranishi R, Buttery RG, Shahidi F (eds) Flavor chemistry. American Chemical Society, Washington, p 49–59 425. Koda H, Hossain SJ, Kiso Y, Aoshima H (2003) Aging of whiskey increases the potentiation of GABAa receptor response. J Agric Food Chem 51:5238–5244 426. Koehler PE, Mason ME, Odell GV (1971) Odor threshold levels of pyrazine compounds and assessment of their role in the flavor of roasted foods. J Food Sci 36:816–818 427. Koga K, Yoshizumi H (1977) Differential scanning calorimetry (DSC) studies on the structures of water-ethanol mixtures and aged whiskey. J Food Sci 42:1213–1217 428. Koga K, Taguchi A, Koshimizu S, Suwa Y, Yamada Y, Shirasaka N, Yoshizumi H (2007) Reactive oxygen scavenging activity of matured whiskey and its active phenols. J Food Sci 72:S212–S217 429. Koga Y, Nishikawa K, Westh P (2004) “Icebergs” or no “icebergs” in aqueous alcohols? Composition-dependent mixing schemes. J Phys Chem A 108:3873–3877 486 References

430. Koljonen T, Hämäläinen JJ, Sjöholm K, Pietilä K (1995) A model for the prediction of fermentable sugar concentrations during mashing. J Food Eng 26:329–350 431. KocákovᡠH, Rouyer F, Pigeonneau F (2013) Film drainage of viscous liquid on top of bare bubble: influence of the Bond number. Phys Fluids 25:022105 432. Kurihara K, Nakamichi M, Kojima K (1993) Isobaric vapor-liquid equilibria for methanol+ethanol+water and the three constituent binary systems. J Chem Eng Data 38:446– 449 433. Lahey RT Jr, Podowski MZ (1989) On the analysis of various instabilities in two-phase flows. Multiph Sci Technol 4:183–370 434. Lahne J (2010) Aroma characterization of American rye whiskey by chemical and sensory assays. Master’s thesis, University of Illinois Urbana-Champaign 435. Lahne J, Collins TS, Heymann H (2016) Replication improves sorting-task results analyzed by DISTATIS in a consumer study of American bourbon and rye whiskeys. J Food Sci 81:S1263–S1271 436. Lahne J, Abdi H, Collins T, Heymann H (2019) Bourbon and rye whiskeys are legally distinct but are not discriminated by sensory descriptive analysis. J Food Sci 84:629–639 437. Laitila A, Manninen J, Priha O, Smart K, Tsitko I, James S (2018) Characterisatoin of barley- associated bacteria and their impact on wort separation performance. J Inst Brew 124:314–324 438. Lama RF, Lu BC-Y (1965) Excess thermodynamic properties of aqueous alcohol solutions. J Chem Eng Data 10:216–219 439. Landaud S, Helinck S, Bonnarme P (2008) Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food. Appl Microbiol Biotechnol 77:1191–1205 440. Lang JC, Morgan RD (1980) Nonionic surfactant mixtures. I. Phase equilibria in C10E4-H2O and closed-loop existence. J Chem Phys 73:5849–5861 441. Larkin JA (1975) Thermodynamic properties of aqueous non-electrolyte mixtures I. Excess enthalpy for water+ethanol at 298.15 to 383.15 K. J Chem Thermodyn 7:137–148 442. LaRoe EG, Shipley PA (1970) Whiskey composition: formation of alpha– and beta ionone by the thermal decomposition of beta-carotene. J Agric Food Chem 18:174–175 443. Lawless HT, Heymann H (2010) Sensory evaluation of food, 2nd edn. Springer, New York 444. Lazarus JH, Smyth PPA, Taylor PN, Weibel S, Zimmermann MB (2017) Iodine in malt whisky: a preliminary analysis. Thyroid 27:477–478 445. Leadbetter C (1750) The royal gauger. E. Wicksteed, London 446. Léauté R (1990) Distillation in alambic. Am J Enol Vitic 41:90–103 447. Lee KYM, Paterson A, Piggott JR (2000) Measurement of thresholds for reference com- pounds for sensory profiling of Scotch whisky. J Inst Brew 106:287–294 448. Lee K-YM, Paterson A, Piggott JR, Richardson GD (2001) Origins of flavour in whiskies and a revised flavour wheel: a review. J Inst Brew 107:287–313 449. Lehtonen M (1982) Phenols in whisky. Chromatographia 16:201–203 450. Lehtonen M (1983) Gas-liquid chromatographic determination of volatile phenols in matured distilled alcoholic beverages. J Assoc Off Anal Chem 66:62–70 451. Lehtonen M (1983) High performance liquid chromatographic determination of nonvolatile phenolic compounds in matured distilled alcoholic beverages. J Assoc Off Anal Chem 66:71– 78 452. Lehtonen M, Aikasalo R (1987) Beta glucan in two and six row barley. Cereal Chem 64:191– 193 453. Lehtonen M, Aikasalo R (1987) Pentosans in barley varieties. Cereral Chem 64:133–134 454. Lehtonen P (1984) Liquid chromatographic determination of phenolic aldehydes from distilled alcoholic beverages. In: Nykänen L, Lehtonen P (eds) Proceedings of the Alko symposium on flavour research of alcoholic beverages. Helsinki, Foundation for Biotechnical and Industrial Fermentation Research, Helsinki, p 121–130 455. Leppänen O, Ronkainen P, Denslow J, Laasko R, Lindeman A, Nykänen I (1983) Polysul- phides and thiophenes in whisky. In: Piggott JR (ed) Flavour of distilled beverages: origin and development. Ellis Horwood, Chichester, p 206–214 References 487

456. Lhuissier H, Villermaux E (2011) Bursting bubble aerosols. J Fluid Mech 696:5–44 457. Li X, Wang X, Evans GM, Stevenson P (2011) Foam flowing vertically upwards in pipes through expansions and contractions. Int J Multiphase Flow 37:802–811 458. Li Y, Lu J, Gu G (2005) Control of arabinoxylan solubilization and hydrolysis in mashing. Food Chem 90:101–108 459. Liebmann AJ, Rosenblatt M (1943) Changes in whisky while maturing. Ind Eng Chem 35:994–1002 460. Liebmann AJ, Scherl B (1949) Changes in whisky while maturing. Ind Eng Chem 41:534– 543 461. Lightbody F (1702) Every man his own gauger. G. C., London 462. Liltorp K, Westh P, Koga Y (2005) Thermodynamic properties of water in the water-poor region of binary water + alcohol mixtures. Can J Chem 83:420–429 463. Lindet ML (1890) Sur la présence du furfural dans les alcools commerciaux. C R Hebd Seances Acad Sci 111:236–237 464. Liu Y, Selomulyo VO, Zhou W (2008) Effect of high pressure on some physiochemical properties of several native starches. J Food Eng 88:126–136 465. Livermore D (2011) Quantification of oak wood extractives via gas chromatography—mass spectrometry and subsequent calibration of near infrared reflectance to predict the Canadian whisky ageing process. PhD thesis, Heriot-Watt 466. Lloyd RA, Miller CW, Roberts DL, Giles JA, Dickerson JP, Nelson NH, Rix CE, Ayers PH (1976) Flue-cured tobacco flavor. I. Essence and components. Tob Sci 40:40–48 467. Lo LL (1983) The meniscus on a needle—a lesson in matching. J Fluid Mech 132:65–78 468. Loftus WR (1869) The new mixing and reducing book. B. Pardon and Son, London 469. Luchsinger WW, Cochrane DG, Kneen E (1960) Studies on the endo-beta-glucanase system of barley malt. Cereal Chem 37:525–534 470. Lynen F (1967) The role of biotin-dependent carboxylations in biosynthetic reactions. Biochem J 102:381–399 471. Maarse H, ten Noever de Brauw MC (1974) Another catty odour compound causing air pollution. Chem Ind 44:36–37 472. Maçatelli M, Piggott JR, Paterson A (2010) Structure of ethanol-water systems and its consequences for flavour. In: Walker GM, Hughes PS (eds) Distilled spirits. New horizons: energy, environment and enlightenment. Proceedings of the worldwide distilled spirits conference. Nottingham University Press, Nottingham, p 235–242 473. MacDonald A (2016) Whisky. Livonia Print, Latvia, an annotated reprint by Ian Buxton of a pseudonymous book first published in 1930 474. Macfarlane C (1968) The estimation and identification of phenols in malt from peat-fired kilns and some applications of the analysis. J Inst Brew 74:272–275 475. Macfarlane C, Lee JB, Evans MB (1973) The qualitative composition of peat smoke. J Inst Brew 79:202–209 476. MacGregor EA (2004) The proteinaceous inhibitor of limit dextrinase in barley and malt. Biochim Biophys Acta, Proteins Proteomics 1696:165–170 477. MacKenzie WM, Aylott RI (2004) Analytical strategies to confirm Scotch whisky authentic- ity. Analyst 129:607–612 478. MacKenzie WM, Clyne AH, MacDonald LS (1990) Ethyl carbamate formation in grain based spirits Part II. The identification and determination of cyanide related species involved in ethyl carbamate formation in Scotch grain whisky. J Inst Brew 96:223–232 479. MacLean JD (1952) Preservative treatment of wood by pressure methods. Agricultural handbook No. 40. U. S. Department of Agriculture, Washington, DC 480. Maclean JO (1881) Gauging and operations in bond. E. T. Olver, London 481. MacNamara K, Brunerie P, Squarcia F, Rozenblum A (1995) Investigation of flavour compounds in whisky spent lees. In: Charalambous G (ed) Food flavors: generation, analysis and process influence. Elsevier, New York, p 1753–1766 482. MacNamara K, van Wyk CJ, Augustyn OPH, Rapp A (2001) Flavour components of whiskey. I. Distribution and recovery of compounds by fractional vacuum distillation. S Afr J Enol Vitic 22:69–74 488 References

483. MacNamara K, van Wyk CJ, Augustyn OPH, Rapp A (2001) Flavour components of whiskey. II. Ageing changes in the high-volatility fraction. S Afr J Enol Vitic 22:75–81 484. MacNamara K, van Wyk CJ, Brunerie P, Augustyn OPH, Rapp A (2001) Flavour components of whiskey. III. Ageing changes in the low-volatility fraction. S Afr J Enol Vitic 22:82–92 485. MacNamara K, Dabrowska D, Baden M, Helle N (2011) Advances in the ageing chemistry of distilled spirits matured in oak barrels. LC-GC Europe, p 448–466 486. MacWilliam IC (1968) Wort composition—a review. J Inst Brew 74:38–54 487. Maga JA (1981) Pyridines in food. J Agric Food Chem 29:895–898 488. Maga JA (1984) Flavour contribution of wood in alcoholic beverages. In: Adda J (ed) Proceedings of the 3rd Weurman flavour research symposium. Dourdan, France, Elsevier, Amsterdam, p 409–416 489. Maga JA (1989) The contribution of wood to the flavor of alcoholic beverages. Food Rev Int 5:39–99 490. Maga JA (1989) Formation and extraction of cis– and trans-β-methyl-γ -octalactone from Quercus alba. In: Piggott JR, Paterson A (eds) Distilled beverage flavour. Ellis Horwood, Chichester, p 171–176 491. Mahoney CS (1912) Hoffman House bartender’s guide. Richard K. Fox Publishing, New York 492. Maillard L-C (1912) Action des acides aminés sur les sucres; formation des mélanoïdines par voie méthodique. C R Acad Sci 154:66–68 493. Mainland JD, Keller A, Li YR, Zhou T, Trimmer C, Snyder LL, Moberly AH, Adipietro KA, Liu WLL, Zhuang H, Zhan S, Lee SS, Lin A, Matsunami H (2014) The missense of smell: functional variability in the human odorant receptor repertoire. Nat Neurosci 17:114–120 494. Majid A, Burnehult N (2014) Odors are expressible in language, as long as you speak the right language. Cognition 130:266–270 495. Makanjuola DB, Springham DG (1984) Identification of lactic acid bacteria isolated from different stages of malt whisky distillery fermentations. J Inst Brew 90:13–19 496. Mallett J (2014) Malt: a practical guide from field to brewhouse. Brewers Publications, Boulder 497. Mämmelä P, Savolainen H, Lindroos L, Kangas J, Vartiainen T (2000) Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry. J Chromatogr A 891:75–83 498. Mapes JJ (1841) On the effects of arts, trades, and professions, as well as habits of living, on health and longevity. no. XII. Am Rep Arts Sci Manuf 3(6):401–413 499. Marc A, Engasser JM, Moll M, Flayeux R (1983) A kinetic model of starch hydrolysis by α- and β-amylase during mashing. Biotechnol Bioeng 25:481–496 500. Marché M, Joseph E (1975) Étude théorique sur le cognac, sa composition et son vieillisse- ment naturel en futs de chêne. Rev Fr D’œnol 57:1–108 501. Mariotti F, Tomé D, Mirand PP (2008) Converting nitrogen in to protein—beyond 6.25 and Jones’ factors. Crit Rev Food Sci Nutr 48:177–184 502. Markham G (1653) The english house-wife. W. Wilson, London 503. Marquardt L (1882) Quantitative Bestimmung des Fuselöls im Branntwein. Ber Dtsch Chem Ges Banner 15(2):1661–1665 504. Martin B (1747) Philosophia britannica, vol 1. C. Micklewright and Co., Reading 505. Martin M (1703) A description of the western islands of Scotland. Andrew Bell, London 506. Martin T (2009) Gauging: the art behind the slide rule. J Brewery Hist 133:69–86 507. Martin B, Etievant PX, Henry RN (1990) The chemistry of sotolon: a key parameter for the study of a key component of flor sherry wines. In: Bessiére Y, Thomas AF (eds) Flavour science and technology. Wiley, New York 508. Martinez J, Cadahía E, Fernández de Simón B, Ojeda S, Rubio P (2008) Effect of the seasoning method on the chemical composition of oak heartwood to cooperage. J Agric Food Chem 56:3089–3096 509. Masson E, Baumes R, Guernevé CL, Puech J-L (2000) Identification of a precursor of β- methyl-γ -octalactone in the wood of sessile oak (Quercus petraea (Matt.) Liebl.). J Agric Food Chem 48:4306–4309 References 489

510. Masuda M, Nishimura K (1971) Branched nonalactones from some Quercus species. Phytochemistry 10:1401–1402 511. Masuda M, Nishimura K (1980) Occurrence and formation of damascenone in alcoholic beverages. J Food Sci 45:396–397 512. Masuda M, Nishimura K (1981) Changes in volatile sulfur compounds of whisky during aging. J Food Sci 47:101–105 513. Masuda M, Okawa EIC, Nishimura KIC, Yunome H (1984) Identification of 4,5-dimethyl- 3-hydroxyl-2(5h)-furanone (sotolon) and ethyl 9-hydroxynonanoate in botyrised wine and evaluation of the roles of compounds characteristic of it. Agric Biol Chem 48:2707–2710 514. Masuda Y, Mori K, Hirohata T, Kuratsune M (1966) Carcinogenesis in the esophagus. III. Polycyclic aromatic hydrocarbons and phenols in whisky. Gan 57:549–557 515. Masuku CP (1992) Thermolytic decomposition of coniferyl alcohol. J Anal Appl Pyrolysis 23:195–208 516. Matsumoto M, Nishi N, Furusawa T, Saita M, Takamuku T, Yamagami M, Yamaguchi T (1995) Structure of clusters in ethanol-water binary solutions studied by mass spectrometry and X-ray diffraction. Bull Chem Soc Jpn 68:1775–1783 517. Matthews TB (1905) The manufacture of whisky in Kentucky. Wine Spirit Bull 19(6):22–29 518. Maxwell R (1743) Select transactions of the honourable the society of improvers in the knowledge of agriculture in Scotland. Sands, Brymer, Murray and Cochran, Edinburgh 519. Mayne J (1675) Arithmetick vulgar, decimal, & algebraical. J. A., London 520. McCabe WL, Thiele EW (1925) Graphical design of fractionating columns. Ind Eng Chem 17:605–611 521. McClear BV, Glennie-Holmes M (1985) Enzymic quantification of (1 → 3)(1 → 4)-β-D- glucan in barley and malt. J Inst Brew 91:285–295 522. McEwen BC (1923) Studies in mutual . Part II. The mutual solubility of glycerol and alcohols, aldehydes, phenols, and their derivatives. J Chem Soc Trans 123:2284–2288 523. McGill DJ, Morley AS (1990) Ethyl carbamate formation in grain spirits Part IV. Radiochem- ical studies. J Inst Brew 96:245–246 524. McNulty WJ (1923) Smuggling whisky from Canada. Curr Hist Forum 18:123–125 525. McRae JF, Jaeger SR, Bava CM, Beresford MK, Hunter D, Jia Y, Chheang SL, Jin D, Peng M, Gamble JC, Atkinson KR, Axten LG, Paisley AG, Williams L, Tooman L, Pineau B, Rouse SA, Newcomb RD (2013) Identification of regions associated with variation in sensitivity to food-related odors in the human genome. Curr Biol 23:1596–1600 526. Meacham SH (2009) Every home a distillery. John Hopkins University Press, Baltimore 527. Meier H (1961) Isolation and characterisation of an acylated glucomannan from pine (Pinus silvestris L.). Acta Chem Scand 15:1381–1385 528. Meilgaard MC (1975) Flavor chemistry of beer part II: flavor and threshold of 239 aroma volatiles. MBAA Technol Q 12:151–168 529. Meilgaard MC, Dalgliesh CE, Clapperton JF (1979) Beer flavour terminology. J Inst Brew 85:38–42 530. Mendeleev D (1869) Ueber die Verbingungen del Alkohols mit Wasser. Ann Phys 138:103– 141, 230–279 531. Mendeleev D (1887) The compounds of ethyl alcohol with water. J Chem Soc Trans 51:778– 782 532. Mendeleev DJ (1865) Rassuzhdenie o soedinenii spirta s vodoi. PhD thesis, St. Petersburg 533. Merck’s Market Report (1895) Progress and events 534. M’Harry S (1809) The practical distiller. John Wyeth, Harrisburgh 535. Mian AJ, Timell TE (1960) Isolation and properties of a glucomannan from the wood of red maple (Acer rubrum L.). Can J Chem 38:1511–1517 536. Michel C, Velasco C, Spence C (2015) Cutlery matters: heavy cutlery enhances diners’ enjoyment of the food served in a realistic dining environment. Flavour 4:26 537. Middlekauff JE (1995) Sanitation and pest control: Part B. Microbiological aspects. In: Hardwick WA (ed) Handbook of brewing. Marcel Dekker, New York, p 480–499 490 References

538. Mijakovic´ M, KežicB,Zorani´ c´ L, Sokolic´ F, Asenbaum A, Pruner C, Wilhelm E, Perera A (2011) Ethanol-water mixtures: ultrasonics, Brillouin scattering and molecular dynamics. J Mol Liq 164:66–73 539. Mills DE, Baugh WD, Conner HA (1954) Studies on the formation of acrolein in distillery mashes. Appl Microbiol 2:9–13 540. Mirvish SS (1970) Kinetics of dimethylamine nitrosation in relation to nitrosamine carcino- genesis. J Natl Cancer Inst 44:633–639 541. Mitenbuler R (2013) Bourbon empire. Viking, New York 542. Moore R (2017) ‘We are a modern Navy’: abolishing the Royal Navy’s rum ration. Mariner’s Mirror 103:67–79 543. Moray R (1678) An account of the manner of making malt in Scotland. Philos Trans Roy Soc 12:1069–1071 544. Morewood S (1838) A philosophical and statistical history of the inventions and customs of ancient and modern nations in the manufacture and use of inebriating liquors. William Curry Jr. and Co. and William Carson, Dublin 545. Mori H, Iwata S, Kawachi T, Matsubara T, Nobuoka Y, Aragaki T (2004) Practical correlations of excess molar volumes of binary, ternary, and quaternary mixtures of water, methanol, ethanol and 1-propanol by NRTL-type equation. J Chem Eng Jpn 37:850–857 546. Morrall PC, Basson ABK (1989) The effect of process time on commercial malt quality. In: Proceedings of the 2nd scientific and technical convention. Institute of Brewing, Central and Southern Africa Section, p 56–81 547. Morrison RL (1962) The determination of acetaldehyde in high-proof fortifying spirits, beverage brandy, and wine. Am J Enol Vitic 13:159–168 548. Morrot G, Brochet F, Dubourdieu D (2001) The color of odors. Brain Lang 79:309–320 549. Mosedale JR (1995) Effects of oak wood on the maturation of alcoholic beverages with particular reference to whisky. Forestry 68:203–230 550. Moss T (1779) A treatise of gauging, 3rd edn. G. Robinson, London 551. Moss MS, Hume JR (2000) The making of Scotch whisky. Canongate, Edinburgh 552. Mould DL (1954) Potentiometric and spectrophotometric studies of complexes of hydrolysis products of amylose with iodine and potassium iodide. Biochem J 58:593–600 553. Mozell MM (1964) Evidence for sorption as a mechanism of the olfactory analysis of vapours. Nature 203:1181–1182 554. Mozell MM (1970) Evidence for a chromatographic model of olfaction. J Gen Physiol 56:46– 63 555. Mozell MM, Jagodowicz M (1973) Chromatographic separation of odorants by the nose: retention times measured across in vivo olfactory mucosa. Science 181:1247–1249 556. Mozell MM, Kent PF, Murphy SJ (1991) The effect of flow rate upon the magnitude of the olfactory response differs for different odorants. Chem Senses 16:631–649 557. Mullins JT, NeSmith C (1988) Nitrogen levels and yeast viability during ethanol fermentation of grain sorghum containing condensed tannins. Biomass 16:77–87 558. Muspratt S (1860) Chemistry, theoretical, practical, and analytical, as applied and relating to the arts and manufactures, vol 1. W. Mackenzie, Glasgow 559. Mysels KJ, Shinoda K, Frankel S (1959) Soap films. Studies of their thinning. Pergamon, New York 560. Naguleswaran S, Vasanthan T, Hoover R, Bressler D (2013) The susceptibility of large and small granules of waxy, normal, and high-amylose genotypes of barley and corn starches toward amylolysis at sub-gelatinization temperatures. Food Res Int 51:771–782 561. Nakamura H (1963) Studies on the manufacture of distillated liquor. Part I. Changes of the components during distillation and a cutting method of potable alcohol of raw whisky. Kagaku Kogaku¯ 37:309–314 562. Napier J (1614) Mirifici logarithmorum canonis descriptio. Andreae Hart, Edinburgh 563. Napier J (1616) A description of the admirable table of logarithmes (trans: Edward Wright). Nicholass Okes, London References 491

564. Narendranath NV, Power R (2004) Effect of yeast inoculation rate on the metabolism of contaminating lactobacilli during fermentation of corn mash. J Ind Microbiol Biotechnol 31:581–583 565. National Association of State Dairy and Food Departments (1903) Journal of the proceedings of the seventh annual convention of state dairy and food departments 566. National Association of State Dairy and Food Departments (1904) Journal of the proceedings of the eighth annual convention of state dairy and food departments 567. National Bureau of Standards (1916) Circular 19. Standard density and volumetric tables. Government Printing Office, Washington, DC 568. Nedjma M, Hoffmann N (1996) Hydrogen sulfide reactivity with in the presence of copper(II) in hydroalcoholic solutions or Cognac brandies: formation of symmetrical and unsymmetrical dialkyl trisulfides. J Agric Food Chem 44:3935–3938 569. Nemoto S (1975) Possibilities of utilization of butyric acid bacteria for rum making. Ann Technol Agric 24:397–410 570. Nesbit A, Little W (1822) A treatise on practical gauging. Thomas Wilson and Sons, York 571. Nettleton JA (1913) The manufacture of whisky and plain spirit. G. Cornwall & Sons, Aberdeen 572. Newcomb RD, Xia MB, Reed DR (2012) Heritable differences in chemosensory ability among humans. Flavour 1:9 573. Newton J (1668) The scale of interest. Dixy Page, London 574. Newton J (1669) The art of practical gauging. Dixy Page, London 575. Nguyen CT, Gonnermann HM, Chen Y, Huber C, Maiorano AA, Gouldstone A, Dufek J (2013) Film drainage and the lifetime of bubbles. Geochem Geophys Geosyst 14:3616–3631 576. Nicol D (2014) Batch distillation. In: Russell I, Stewart G (eds) Whisky technology, production and marketing, 2nd edn, Academic Press, New York, p 155–178 577. Niemcewicz JU (1965) Under their vine and fig tree: travels through America in 1797– 1799, 1805 with some further account of life in New Jersey (trans: Budka MJE). Grassmann, Elizabeth, New Jersey 578. Nishi N, Yamamoto K (1987) Conversion of liquids to cluster beams by adiabatic expansion of liquid jets: mass spectrometric analysis of molecular association in aqueous solution systems. J Am Chem Soc 109:7353–7361 579. Nishi N, Koga K, Oshima C, Yamamoto K, Nagashima U, Nagami N (1988) Molecular association in ethanol-water mixtures studied by mass spectrometric analysis of clusters generated through adiabatic expansion of liquid jets. J Am Chem Soc 110:5246–5255 580. Nishimura K, Masuda M (1971) Minor constituents of whisky fusel oils 1. Basic, phenolic, and lactonic compounds. J Food Sci 36:819–822 581. Nishimura K, Matsuyama R (1989) Maturation and maturation chemistry. In: Piggott JR, Sharp R, Duncan REB (eds) The science and technology of whiskies. Longman Scientific & Technical, New York, p 235–263 582. Nishimura K, Ohnishi M, Masuda M, Koga K, Matsuyama R (1983) Reactions of wood components during maturation. In: Piggott JR (ed) Flavour of distilled beverages: origin and development. Ellis Horwood, Chichester, p 241–255 583. Nishimura O, Mihara S (1990) Investigation of 2-hydroxy-2-cyclopenten-1-ones in roasted coffee. J Agric Food Chem 38:1038–1041 584. Noble AC (1994) Wine flavour. In: Piggott JR, Paterson A (eds) Understanding natural flavors. Blackie, Glasgow, p 228–242 585. Nóbrega ICC, Pereira JAP, Paiva JE, Lachenmeier DW (2011) Ethyl carbamate in cachaça (Brazilian sugarcane spirit): extended survey confirms simple mitigation approaches in pot still distillation. Food Chem 127:1243–1247 586. Nonier M-F, Vivas de Gaulejac N, Vivas N, Vitry C (2005) Glycosidically bound flavor compounds in Quercus patraea Libl. wood. Flavour Fragr J 20:567–572 492 References

587. Nonier MF, Vivas N, Vivas de Gaulejac N, Absalon C, Soulié P, Fouquet E (2006) Pyrolysis- gas chromatography/mass spectrometry of Quercus sp. wood. Application to structural elucidation of macromolecules and aromatic profiles of different species. J Anal Appl Pyrolysis 75:181–193 588. Noordermeer MA, Veldink GA, Vliegenthart JFG (2001) Fatty acid hydroperoxidase lyase: a plant cytochrome P450 enzyme involved in wound healing and pest resistance. Chem- BioChem 2:494–504 589. Nordström K (1963) Formation of esters from acids by brewer’s yeast II. Formation from lower fatty acids. J Inst Brew 70:42–55 590. Nordström K (1966) Yeast growth and glycerol formation. Acta Chem Scand 20:1016–1025 591. Noskov SY, Lamoureux G, Roux B (2005) Molecular dynamics study of hydration in ethanol- water mixtures using a polarizable force field. J Phys Chem B 109:6705–6713 592. Nykänen L (1984) Aroma compounds liberated from oak chips and wooden casks by alcohol. In: Nykänen L, Lehtonen P (eds) Proceedings of the Alko symposium on flavour research of alcoholic beverages. Helsinki, Foundation for Biotechnical and Industrial Fermentation Research, Helsinki, p 141–148 593. Nykänen L (1986) Formation and occurrence of flavour compounds in wine and distilled beverages. Am J Enol Vitic 37:84–96 594. Nykänen L, Nykänen I (1977) Production of esters by different yeast strains in sugar fermentations. J Inst Brew 83:30–31 595. Nykänen L, Suomalainen H (1963) The aroma compounds of alcoholic beverages. Teknillisen Kemian Aikak 20:789–795 596. Nykänen L, Suomalainen H (1983) Aroma of beer, wine, and distilled alcoholic beverages. D. Reidel, Boston 597. Nykänen L, Puputti E, Suomalainen H (1968) Volatile fatty acids in some brands of whisky, Cognac, and rum. J Food Sci 33:88–92 598. Nykänen L, Nykänen I, Suomalainen H (1977) Distribution of esters produced during sugar fermentation between the yeast cell and the medium. J Inst Brew 83:32–34 599. Oates CG (1997) Towards and understanding of starch granule structure and hydrolysis. Trends Food Sci Technol 8:375–382 600. Obst JR (1983) Analytical pyrolysis of hardwood and softwood lignins and its use in lignin- type determination of hardwood vessel elements. J Wood Chem Technol 3:377–397 601. O’Dwyer MH (1923) The hemicelluloses III. The hemicellulose of American white oak. Biochem J 17:501–509 602. Ohloff G (1978) Importance of minor components in flavors and fragrances. Perfumer Flavorist 3:11–22 603. Ohtake K, Yamasaki H, Kojima K (1995) Evaluation of mass-transfer by mist as a new parameter in the control of wash distillation. In: Campbell I, Priest FG (eds) Proceedings of the fourth aviemore conference on malting, brewing, and distilling, 1994. Institute of Brewing, London, p 202–208 604. Ömür-Özbek P, Dietrich AM (2008) Developing hexanal as an odor reference standard for sensory analysis of drinking water. Water Res 42:2598–2604 605. Onishi M, Guymon JF, Crowell EA (1977) Changes in some volatile constituents of brandy during aging. Am J Enol Vitic 28:152–158 606. Onori G, Santucci A (1996) Dynamical and structural properties of water/alcohol mixtures. J Mol Liq 69:161–181 607. Organization Internationale de Métrologie Légale (1975) Recommendation 22. International Alcoholometric Tables, Paris 608. Osborne NS, McKelvy EC, Bearce HW (1913) Density and thermal expansion of ethyl alcohol and of its mixtures with water. Bull Bur Stan 9(3):327–474 609. Osman AM (2002) The advantages of using natural substrate-based methods in assessing the roles and synergistic and competitive interactions of barley malt starch-degrading enzymes. J Inst Brew 108:204–214 References 493

610. Ostsuka K, Zenibayashi Y, Itoh M, Totsuka A (1974) Presence and significance of two diasteromers of β-methyl-γ -octalactone in aged distilled spirits. Agric Biol Chem 38:485– 490 611. Ott JB, Stouffer CE, Cornett GV, Woodfield BF, Wirthlin RC, Christensen JJ (1986) Excess enthalpies for (ethanol+water) at 298.15 K and pressures of 0.4, 5, 10, and 15 MPa. J Chem Thermodyn 18:1–12 612. Ott JB, Sipowska JT, Gruszkiewicz MS, Woolley ST (1993) Excess volumes for (ethanol+water) at the temperatures (298.15 and 348.15) K and pressure (0.4, 5, and 15) MPa and at the temperature 323.15 K and pressure (5 and 15) MPa. J Chem Thermodyn 25:307–318 613. Otten L, Samaan G (1980) Determination of the specific heat of agricultural materials: part II. Experimental results. Can Agric Eng 22:25–27 614. Oughtred W (1633) The new artificial gauging line or rod. Aug. Mathewes, London 615. Oughtred W (1639) The circles of proportion and the horizontall instrument (trans: William Forster). Elias Allen, London 616. Owens J (1879) Plain papers relating to the excise branch of the Inland Revenue Department. Linlithgow 617. Paine AJ, Dayan AD (2001) Defining a tolerable concentration of methanol in alcoholic drinks. Hum Exp Toxicol 20:563–568 618. Paine JB III, Pithawalla YB, Naroral JD (2008) Carbohydrate pyrolysis mechanisms from isotopic labeling. Part 3. The pyrolysis of D-glucose: formation of C3 and C4 carbonyl compounds and a cyclopentenedione by electrolytic fragmentation mechanism. J Anal Appl Pyrolysis 82:42–69 619. Paine JB III, Pithawalla YB, Naroral JD (2008) Carbohydrate pyrolysis mechanisms from isotopic labeling. Part 4. The pyrolysis of D-glucose: the formation of furans. J Anal Appl Pyrolysis 83:37–63 620. Parker M (1824) Arcana of arts and sciences, or farmers’ & mechanics’ manual. J. Grayson, Washington 621. Parliament of Scotland (1814) The acts of the Parliaments of Scotland, vol II. A. D. 1424– 1567. Edinburgh 622. Parliament of Scotland (1819) The acts of the Parliaments of Scotland, vol VI. A. D. 1643– 1651. Edinburgh 623. Pasteur ML (1857) Mémoire sur la fermentation alcoolique. C R Hebd Seances Acad Sci 45:1032–1036 624. Pasteur ML (1863) Études sur les vins. Première partie: de l’influence de l’oxygène de l’air dans la vinification. C R Hebd Seances Acad Sci 57:936–942 625. Paterson A, Piggott JR (1989) The contributions of the process to flavour in Scotch malt whisky. In: Piggott JR, Paterson A (eds) Distilled beverage flavour. Ellis Horwood, Chichester, p 151–169 626. Paterson A, Swanston JS, Piggott JR (2003) Production of fermentable extracts from cereals and fruits. In: Lea AGH, Piggott JR (eds) Fermented beverage production, 2nd edn, Kluwer, New York, p 1–24 627. Paterson R, Smith GD (2011) Goodness nose. Neil Wilson, Castle Douglas 628. Patterson RLS, Rhodes DN (1967) Catty odours in food: their production in meat stores from mesityl oxide in paint solvents. Chem Ind 37:2003–2004 629. Pearce TJP, Peacock JM, Aylward F, Haisman DR (1967) Catty odours in food: reactions between hydrogen sulfide and unsaturated ketones. Chem Ind 37:1562–1563 630. Pedraza-Avella JA, Acevedo-Peña P, Pedraza-Rosas JE (2008) Photocatalytic oxidation of cyanide on TiO2: an electrochemical approach. Catal Today 133–135:611–618 631. Pennant T (1771) A tour in Scotland. John Monk, Chester 632. Pennant T (1774) A tour in Scotland and voyage to the Hebrides. John Monk, Chester 633. Pepys S (1899) The diary of Samuel Pepys, vol 8. George Bell and Sons, London 494 References

634. Perpéte P, Duthoid O, de Maeyer S, Imray L, Lawton AI, Stavropoulos KE, Gitonga VW, Hewlins MJE, Dickinson JR (2006) Methionine catabolism in Saccharomyces cerevisiae. FEMS Yeast Res 6:48–56 635. Perry DR (1986) Whisky maturation mechanisms. In: Campbell I, Priest FG (eds) Pro- ceedings of the 2nd Aviemore Conference on Malting, Brewing, and Distilling. Institute of Brewing, London, p 409–412 636. Perry DR (1989) Odor intensities of whisky compounds. In: Piggott JR, Paterson A (eds) Distilled beverage flavour. Ellis Horwood, Chichester, p 200–207 637. Perry RH, Green DW, Maloney JO (eds) (1997) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, New York 638. Peterson RG (1976) Formation of reduced pressure in barrels during wine aging. Am J Enol Vitic 27:81–81 639. Pecarˇ D, Dolecekˇ V (2005) Volumetric properties of ethanol-water mixtures under high temperatures and pressures. Fluid Phase Equilib 230:36–44 640. Pham TT, Guichard E, Schlich P, Charpentier C (1995) Optimal conditions for the formation of sotolon from α-ketobutyric acid in the French “vin jaune”. J Agric Food Chem 43:2616– 2619 641. Philp HM (1986) Scotch whisky flavour development during maturation. In: Campbell I, Priest FG (eds) Proceedings of the 2nd Aviemore conference on malting, brewing, and distilling. Institute of Brewing, London, p 148–163 642. Philp JM (1989) Cask quality and warehouse conditions. In: Piggott JR, Sharp R, Duncan REB (eds) The science and technology of whiskies, Longman Scientific & Technical, New York, p 264–294 643. A Physician (1834) Desultory notes on the origin, uses, and effects of ardent spirit. Adam Waldie, Philadelphia 644. Piggott JR (1991) Selection of terms for descriptive analysis. In: Lawless HT, Klein BP (eds) Sensory science theory and applications. M. Dekker, New York, p 339–351 645. Piggott JR, Canaway PR (1981) Finding the word for it—methods and uses of descriptive sensory analysis. In: Schreier P (ed) Flavour ‘81: 3rd Weurman symposium. de Gruyter, New York, p 33–46 646. Piggott JR, Conner JM (2003) Whiskies. In: Lea AGH, Piggott JR (eds) Fermented beverage production, 2nd edn, Kluwer, New York, p 239–262 647. Piggott JR, Findlay AJF (1984) Detection thresholds of ester mixtures. In: Nykänen L, Lehtonen P (eds) Proceedings of the Alko symposium on flavour research of alcoholic beverages. Helsinki, Foundation for Biotechnical and Industrial Fermentation Research, Helsinki, p 189–197 648. Piggott JR, Jardine SP (1979) Descriptive sensory analysis of whisky flavour. J Inst Brew 85:82–85 649. Piggott JR, Paterson A, Conner JM, Haack G (1993) Heterocyclic nitrogen compounds in whisky. In: Charalambous G (ed) Food flavors, ingredients and composition. Elsevier, New York, p 521–532 650. Piggott JR, González Viñas MA, Conner JM, Withers SJ, Paterson A (1996) Effect of chill filtration on whisky composition and headspace. In: Taylor AJ, Mottram DS (eds) Flavor science: recent developments. Royal Society of Chemistry, Cambridge, p 319–324 651. Pirie G, Graham B, Kubie J (2000) Membrane filtration of whisky. In: Food & drink 2000: processing solutions for innovative products. Chemical Engineers, UK, p 9–11 652. Pisarnitskii AF, Askenderov KA (2008) Unsaturated fatty acids and aldehydes during treatment of oak wood. Appl Biochem Microbiol 45:443–445 653. Pisarnitskii AF, Rubeniya TY, Rutitskii AO (2006) Oak wood hemicelluloses extracted with aqueous-alcoholic media. Appl Biochem Microbio 42:514–518 654. Pittet AO, Rittersbacher P, Muralidhara R (1970) Flavor properties of compounds related to maltol and isomaltol. J Agric Food Chem 18:929–933 655. Plassmann H, O’Doherty J, Shiv B, Rangel A (2008) Marketing actions can modulate neural representations of experienced pleasantness. Proc Natl Acad Sci 105:1050–1054 References 495

656. Poisson L (2003) Charakterisierung der Schlüsselaromastoffe in amerikanischem Bour- bon Whisky und schottishchem Single Malt Whisky. PhD thesis, Technischen Universität München 657. Poisson L, Schieberle P (2008) Characterization of the most odor-active compounds in an American bourbon whisky by application of the aroma extract dilution analysis. J Agric Food Chem 56:5813–5819 658. Poisson L, Schieberle P (2008) Characterization of the key aroma compounds in an American bourbon whisky by quantitative measurements, aroma recombination, and omission studies. J Agric Food Chem 56:5820–5826 659. Ponchon M (1921) Étude graphique de la distillation fractionnée industrielle. Tech Mod 13(1):20–24 660. Pons A, Lavigne V, Landais Y, Darriet P, Dubourdieu D (2008) Distribution and organoleptic impact of sotolon enantiomers in dry white wines. J Agric Food Chem 56:1606–1610 661. Poocharoen B, Barbour JF, Libbey LM, Scanlan RA (1992) Precursors of N- nitrosodimethylamine in malted barley. 1. Determination of hordenine and gramine. J Agric Food Chem 40:2216–2221 662. Pope S (2016) The first tank crews. Helion & Co Ltd., Solihull 663. Popov D, Buléon A, Burghammer M, Chanzy H, Montesanti N, Putaux J- L, Potocki- Véronèse G, Riekel C (2009) Cyrstal structure of A-amylose: A revisit from synchrotron microdiffraction analysis of single crystals. Macromolecules 42:1167–1174 664. Porter AL (1830) The chemistry of the arts, vol 2. Carey & Lea, Philadelphia 665. A practical liquor manufacturer (1857) The Bordeaux wine and liquor dealer’s guide. Dick & Fitzgerald, New York 666. Pravisani CI, Califano AN, Calvelo A (1985) Kinetics of starch gelatinization in potato. J Food Sci 50:657–660 667. Preston-Thomas H (1990) The international temperature scale of 1990 (ITS-90). Metrologia 27(1):3–10 668. Preyer ER (1901) Whiskey. Information and guide for the liquor business. Edgar R. Preyer, New York 669. Price PB, Parsons JG (1975) Lipids of seven cereal grains. J Am Oil Chem Soc 52:490–493 670. Price WS, Ide H, Arata Y (2003) Solution dynamics in aqueous monohydric alcohol systems. J Phys Chem A 107:4784–4789 671. Prime & McKean (1871) Prime & McKean’s combination gauging instrument. Gibson Brothers, Washington, DC 672. Princen HM, Mason SG (1965) Shape of a fluid drop at a fluid–liquid interface II. Theory for three-phase systems. J Colloid Sci 20:246–266 673. Pryde J, Conner J, Jack F, Lancaster M, Meek L, Owen C, Paterson R, Steele G, Strang F, Woods J (2011) Sensory and chemical analysis of ‘Shackelton’s’ Mackinlay Scotch whisky. J Inst Brew 117:156–165 674. Puech J-L, Moutounet M (1988) Liquid chomatographic determination of scopoletin in hydroalcoholic extract of oak wood and in matured distilled alcoholic beverages. J Assoc Off Anal Chem 71:512–514 675. Puech J-L, Visockis RJ (1986) Extraction et evolution des composés phénoliques du bois du chêne au cours du vieillissement des whiskies. Lebensm Wiss Technol 19:469–471 676. Puech J-L, Feuillat F, Mosedale JR (1999) The tannins of oak heartwood: structure, properties, and their influence on wine flavor. Am J Enol Vitic 50:469–478 677. Puech J-L, Mertz C, Michon V, le Guernevé C, Doco T, du Penhoat CH (1999) Evolution of catalagin and vescalagin in ethanol solutions. Identification of new derivatives. J Agric Food Chem 47:2060–2066 678. Ramsay CM, Berry DR (1984) The effect of inoculum level on the formation of higher alcohols, fatty acids and esters in the malt whisky fermentation. Food Microbiol 1:111–115 679. Ramsay CM, Berry DR (1984) Effect of temperature and pH on the formation of higher alcohols, fatty acids and esters in the malt whisky fermentation. Food Microbiol 1:117–121 496 References

680. Rankine BC (1967) Formation of higher alcohols by wine yeasts, and relationship to taste thresholds. J Sci Food Agric 18:583–589 681. Rankine BC (1968) The importance of yeasts in determining the composition and quality of wines. Vitis 7:22–49 682. Rauhut D (2017) Usage and formation of sulfur compounds. In: König H, Unden G, Fröhlich J (eds) Biology of microorganisms on grapes, in must and in wine, 2nd edn, Springer, Cham, p 255–291 683. Rausch KD, Belyea RL (2006) The future of coproducts from corn processing. Appl Biochem Biotechnol 128:47–85 684. Rayleigh L (1902) On the distillation of binary mixtures. Philos Mag S 6 4:521–537 685. Reaich D (1999) The influence of copper on malt whisky character. In: Campbell I (ed) Proceedings of the fifth Aviemore conference on malting, brewing and distilling. Institute of Brewing, London, p 141–152 686. Reazin GH (1981) Chemical mechanisms of whiskey maturation. Am J Enol Vitic 32:283– 289 687. Reazin GH, Scales H, Andreasen A (1973) Production of higher alcohols from theonine and isoleucine in alcoholic fermentations of different types of grain mash. J Agric Food Chem 21:50–54 688. Reazin GH, Baldwin S, Scales HS, Washington HW, Andreasen AA (1976) Determination of congeners produced from ethanol during whisky maturation. J Assoc Off Anal Chem 59:770– 776 689. Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40:345–348 690. Reed DR, Tanaka T, McDaniel AH (2006) Diverse tastes: genetics of sweet and bitter perception. Physiol Behav 88:215–226 691. Refsgaard HHF, Rasmussen M, Skibsted LH (1993) Light sensitivity of colourants used in alcoholic beverages. Z Lebensm Unters Forsch 197:517–521 692. Reid KJG, Swan JS, Gutteridge CS (1993) Assessment of Scotch whisky quality by pyrolysis– mass spectrometry and the subsequent correlation of quality with the oak wood cask. J Anal Appl Pyrolysis 25:49–62 693. Rennie H, Ball K (1979) The influence of malt storage on wort separation. J Inst Brew 85:247– 249 694. Renon H, Prausnitz JM (1968) Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J 14:135–144 695. Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006) Handbook of enology vol 2: the chemistry of wine stabilization and treatments. Wiley, Chichester 696. Richardson J (1784) Statical estimates of the materials of brewing. G. Robinson, London 697. Riffkin HL, Wilson R, Bringhurst TA (1989) The possible involvement of Cu2+ pep- tide/protein complexes in the formation of ethyl carbamate. J Inst Brew 95:121–122 698. Riffkin HL, Wilson R, Howie D, Muller SB (1989) Ethyl carbamate formation in the production of pot still whisky. J Inst Brew 95:115–119 699. Riffkin HL, Bringhurst TA, McDonald AML, Howlett SP, Page HC, Sibbald IA (1990) The effect of sodium hypochlorite on ethyl carbamate formation in distilled spirits. In: Campbell I (ed) Proceedings of the third aviemore conference on malting, brewing and distilling. Institute of Brewing, London, p 439–441 700. Riley RH (1959) The “bonding period” in federal taxation of distilled spirits. PhD thesis, University of Wisconsin 701. Rizzi GP (1972) A mechanistic study of alkylpyrazine formation in model systems. J Agric Food Chem 20:1081–1085 702. Robbins W (1911) A plot against the people. A history of the audacious attempt by certain Kentucky straight whisky interests to pervert the Pure Food Law in order to create a monopoly for their fusel oil whiskies and to outlaw all refined whiskies, 3rd edn. Hiram Walker & Sons, Walkerville References 497

703. Roberts DD, Acree TE (1995) Developments in the isolation and characterization of β- damascenone precursors from apples. In: Rouseff RL, Leahy MM (eds) Fruit flavors. Biogenesis, characterization, and authentication. American Chemical Society, Washington, p 190–199 704. Robertson-Durham JA (1901) The Pattison trial. Neill & Co., Edinburgh, states (No. 39 of Productions) 705. Roessler EB, Warren J, Guymon JF (1948) Significance in triangular taste tests. J Food Sci 13:503–505 706. Rollins EA (1867) Manual for inspectors and gaugers. Intern Revenue Record 5(11):83–85 707. Ronkainen P (1973) The formation of volatile sulphur compounds during pressure cooking of grain/water mixtures. J Inst Brew 79:200–202 708. Ronkainen PP, Denslow J, Leppänen OA (1973) The gas chromatographic analysis of some volatile sulfur compounds. J Chromatogr Sci 11:384–390 709. Rorabaugh WJ (1979) The alcoholic republic. Oxford University Press, New York 710. Ross S, Nishioka G (1977) The relation of foam behavior to phase separations in polymer solutions. Colloid Polym Sci 255:560–565 711. Rouse PE Jr (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272–1280 712. Rowe D (2000) More fizz for your buck: high impact aroma chemicals. Perfumer Flavorist 25(5):1–19 713. Royal Commission (1908) Minutes of evidence taken by the Royal Commission on Whiskey and Other Potable Spirits. Jas Treuscott & Sons, London 714. Rubens P, Heremans K (2000) Pressure-temperature gelatinization phase diagram of starch: an in situ Fourier transform infrared study. Biopolymers 54:524–530 715. Rundle RE, Edwards FC (1943) The configuration of starch in the starch-iodine complex. IV. An X-ray diffraction investigation of butanol-precipitated amylose. J Am Chem Soc 65:2200– 2203 716. Ryan ED, Kohlhaw GB (1974) Subcellular localization of isoleucine-valine biosynthetic enzymes in yeast. J Bacteriol 120:631–637 717. Sablani SS, Kasapis S, Al-Tarqe ZH, Al-Marhubi I, Al-Khuseibi M, Al-Khabori T (2007) Isobaric and isothermal kinetics of gelatinization of waxy maize starch. J Food Eng 82:443– 449 718. Saerens SMG, Delvaux F, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR (2008) Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 74:454–461 719. Sakuma H, Munakata S, Sugawara S (1981) Volatile products of cellulose pyrolysis. Agric Biol Chem 45:443–451 720. Sakurai M, Nakamura K, Takenaka N (1994) Apparent molar volumes and apparent molar adiabatic compressions of water in some alcohols. Bull Chem Soc Jpn 67:352–359 721. Salamon G, Goldie EN (1900) The manufacture of caramel. J Soc Chem Ind 19:301–310 722. Salo P (1970) Determining the odor thresholds for some compounds in alcoholic beverages. J Food Sci 35:95–99 723. Salo P, Nykänen L, Suomalainen H (1972) Odor thresholds and relative intensities of volatile aroma components in an artificial beverage imitating whisky. J Food Sci 37:394–398 724. Sánchez-López JA, Ziere A, Martins SIFS, Zimmermann R, Yeretzian C (2016) Persistence of aroma volatiles in the oral and nasal cavities: real-time monitoring of decay rate in air exhaled through the nose and mouth. J Breath Res 10:036005 725. Saridakis CD (1903–1904) History of fermenting and distilling arts. Lasche’s Mag 1:157– 160, 189–199, 233–239, 273–280, 307–312, 351–357, 397–403, 2:37–43, 71–80, 109–113, 139–143, 169–177, 314–327, 353–359, and 396–407 726. Sato T, Chiba A, Nozaki R (1999) Dynamical aspects of mixing schemes in ethanol-water mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process. J Chem Phys 110:2508–2521 727. Saunders R (1765) Poor Richard improved. B. Franklin and D. Hall, Philadelphia 498 References

728. Savarit P (1922) Élements de distillation. Théorie des colonnes a distiller: colonnes d’épuisement, colonnes de concentration, emploi de la méthode graphique. Arts Métiers 75(3):65–69, 75(5):142–145, 75(6):178–180, 75(8):241–246, 75(9):266–272, and 75(10):307–313 729. Savchuk SA, Vlasov VN, Appolonova SA, Arbuzov VN, Vedenin AN, Mezinov AB, Grigor’yan BR (2001) Application of chromatography and spectrometry to the authentication of alcoholic beverages. J Anal Chem 56:246–264 730. Scalbert A, Monties B, Favre J-M (1988) Polyphenols of Quercus Robur: adult tree and in vitro grown calli and shoots. Phytochemistry 27:3483–3488 731. Scanlan RA, Barbour JF, Hotchkiss JH, Libbey LM (1980) N-nitrosodimethylamine in beer. Food Cosmet Toxicol 18:27–29 732. Scarisbrick J (1893) Spirit assaying by weight. J Soc Chem Ind 12(11):893–901 733. Schidrowitz P (1902) The chemistry of whisky I. J Soc Chem Ind 21:814–819 734. Schidrowitz P (1903) Whisky. Brit Med J 2:1645–1651 735. Schidrowitz P, Kaye F (1905) The chemistry of whisky II. J Soc Chem Ind 24:585–589 736. Schidrowitz P, Kaye F (1906) The distillation of whisky. J Inst Brew 12:496–517 737. Schieberle P (1995) New developments in methods for analysis of volatile flavor compounds and their precursors. In: Goankar AG (ed) Characterization of food: emerging methods. Elsevier, New York, p 403–431 738. Schieberle P (1995) Quantitation of important roast-smelling odorants in popcorn by stable isotope dilution assays and model studies on flavor formation during popping. J Agric Food Chem 43:2442–2448 739. Schoch TH, Maywald EC (1956) Microscopic examination of modified starches. Anal Chem 28:382–387 740. Schwarz PB, Li Y, Barr J, Horsley RD (2007) Effect of operational parameters on the determination of laboratory extract and associated wort quality factors. J Am Soc Brew Chem 65:219–228 741. Scott RC (1902) Art of aging or treating spirits. Patent US704389A, Feb 1902 742. Scott RW (1972) The viscosity of worts in relation to their content of β-glucan. J Inst Brew 78:179–186 743. Select Committee on British and Foreign Spirits (1890) Report. 22 July, 1890. Henry Hansard and Son, London 744. Select Committee on British and Foreign Spirits (1891) Report. 30 April, 1891. Henry Hansard and Son, London 745. Selfridge TB, Amerine MA (1978) Odor thresholds and interactions of ethyl acetate and diacetyl in an artificial wine medium. Am J Enol Viticult 29:1–6 746. Serjak WC, Day WH, van Lanen JM, Boruff CS (1954) Acrolein production by bacteria found in distillery grain mashes. Appl Microbiol 2:14–20 747. Seventy-Fourth Congress (1936) Chapter 830: liquor tax administration act. Government Printing Office, Washington 748. Shaw LM (1904) Semiannual index to Treasury decisions under customs and other laws, vol 7. Government Printing Office, Washington 749. Shinkle CA (1912) American commercial methods of manufacturing preserves, pickles, canned foods, etc. Herald Leader Press, Menominee 750. Shinoda K, Yamaguchi T, Hori R (1961) The surface tension and the critical micelle concentration in aqueous solution of β-D-alkyl glucosides and their mixtures. Bull Chem Soc Jpn 34:237–241 751. Shirtcliffe R (1740) The theory and practice of gauging. H. Woodfall, London 752. Shortreed GW, Rickards P, Swan JS, Burtles SM (1979) The flavour terminology of Scotch whisky. Brewers’ Guardian 108:55, 57, 59, 61–62 753. Siegrist M, Cousin M-E (2009) Expectations influence sensory experience in a wine tasting. Appetite 52:762–765 754. Silva Ferreira AC, Hogg T, Guedes de Pinho P (2003) Identification of key odorants related to the typical aroma of oxidation-spoiled white wines. J Agric Food Chem 51:1377–1381 References 499

755. Silver WL, Maruniak JA (1981) Trigeminal chemoreception in the nasal and oral cavities. Chem Senses 6:295–305 756. Simmonds C (1919) Alcohol: its production, properties, chemistry, and industrial applica- tions. Macmillan, London 757. Simpson KL, Pettersson B, Priest FG (2001) Characterization of lactobacilli from Scotch malt whisky distilleries and description of Lactobacillus ferintoshensis sp. nov., a new species isolated from malt whisky fermentations. Microbiology 147:1007–1016 758. Singleton VL (1974) Some aspects of the wooden container as a factor in wine maturation. In: Webb AD (ed) Chemistry of winemaking, vol 46. American Chemical Society, Washington, p 254–277 759. Sjöström E (1993) Wood chemistry. Academic Press, New York 760. Skinner WW, LeClerc JA, Warren LE, Sale JW, Frary GG, Lapp ME (1930) Official and tentative methods of analysis of the Association of Official Agricultural Chemists, 3rd edn. Association of Official Agricultural Chemists, Washington, DC 761. Slaghenaufi D, Marchand-Marion S, Richard T, Waffo-Teguo P, Bisson J, Monti J-P, Merillon J-M, de Revel G (2013) Centrifugal partition chromatography applied to the isolation of oak wood precursors. Food Chem 141:2238–2245 762. Smith J (1673) Stereometrie: or the art of practical gauging. William Godbid, London 763. Smith A (1776) An inquiry into the nature and causes of the wealth of nations, vol 3. Dublin 764. Smith EG (1899) Memoirs of a highland lady. Longmans, Green, and Co., New York 765. Smith G (1749) A compleat body of distilling, explaining the mysteries of that science in a most easy and familiar manner. Henry Lintot, London 766. Smith MM, Hartley RD (1983) Occurrence and nature of ferulic acid substitution of cell-wall polysaccharides in graminaceous plants. Carbohydr Res 118:65–80 767. Smith SB, Owsley HC (eds) (1980) The papers of Andrew Jackson. Volume 1, 1770–1803. University of Tennessee Press, Knoxville 768. Sobolov M, Smiley KL (1960) Metabolism of glycerol by an acrolein-forming lactobacillus. J Bacteriol 79:261–266 769. Speck JC Jr (1958) The Lobry de Bruyn-Alberda van Ekenstein transformation. Adv Carbohydr Chem 13:63–103 770. Speer W (1802) An enquiry into the causes of the errors and irregularities which take place in ascertaining the strengths of spirituous liquors by the hydrometer. Payne and Mac’Kenlay, London 771. Speer W (1802) On the hydrometer. Philos Mag 14(55):151–162, (55) 229–237 772. Spence C (2016) Oral referral: on the mislocation of odours to the mouth. Food Qual Prefer 50:117–128 773. Spence C (2017) Gastrophysics: the new science of eating. Penguin, New York 774. Spence C, Wan X (2015) Beverage perception and consumption: the influence of the container on the perception of the contents. Food Qual Perfer 39:131–140 775. Spence C, Levitan CA, Shankar MU, Zampini M (2010) Does food color influence taste and flavor perception in humans? Chem Percept 3:68–84 776. Spiegelhalder B, Eisenbrand G, Preussmann R (1979) Contamination of beer with trace quantities of N-nitrosodimethylamine. Food Cosmet Toxicol 17:29–31 777. Spillman PJ, Sefton MA, Gawel R (2004) The contribution of volatile compounds derived during oak barrel maturation to the aroma of a Chardonnay and Cabernet Sauvignon wine. Aust J Grape Wine Res 10:227–235 778. Spiropoulos A, Tanaka J, Flerianos I, Bisson LF (2000) Characterization of hydrogen sulfide formation in commercial and natural wine isolates of Saccharomyces. Am J Enol Vitic 51:233–248 779. Stanyhurst R (1577) The historie of Irelande. In: Holinshed R (ed) The chronicles of England, Scotlande, and Irelande, vol 1. John Hunne, London 780. Staveley LAK, Hart KR, Tupman WI (1953) The heat capacities and other thermodynamic properties of some binary liquid mixtures. Discuss Faraday Soc 15:130–142 500 References

781. Steinke RD, Paulson MC (1964) Phenols from grain. The production of steam-volatile phenols during the cooking and alcoholic fermentation of grain. J Agric Food Chem 12:381– 387 782. Stenhouse J (1870) Ueber Furfuranilin und Furfurtoluidin. Liebigs Ann Chem 156:197–205 783. Stephen L (1886) Dictionary of national biography. Macmillan, New York 784. Stephenson WH, Biawa J-P, Miracle RE, Bamforth CW (2003) Laboratory-scale studies of the impact of oxygen on mashing. J Inst Brew 109:273–283 785. Sulser H, Habegger M, Büchi W (1972) Synthese und Geschmacksprüfungen von 3,4- disubstituierten 2-Hydroxy-2-buten-1,4-oliden. Z Lebensm Unters Forsch 148:215–221 786. Sundholm G (1964) Vapour-liquid equilibria of six organic compounds present in impurity concentrations in ethanol-water mixtures. Finska Kemistsamfundets Meddelanden 73:1–15 787. Suomalainen H (1970) Yeast and its effect on the flavour of alcoholic beverages. J Inst Brew 77:164–177 788. Suomalainen H, Lehtonen M (1979) The production of aroma compounds by yeast. J Inst Brew 85:149–156 789. Suomalainen H, Nykänen L (1970) Composition of whisky flavour. Proc Biochem 5(7):13–18 790. Suomalainen H, Nykänen L (1970) Investigations on the aroma of alcoholic beverages. Naeringsmiddelindustrien 23:15–30 791. Swan JS, Burtles SM (1978) The development of flavour in potable spirits. Chem Soc Rev 7:201–211 792. Swan JS, Howie D (1983) Sensory and analytical studies on the regional composition of Scotch malt whiskies. In: Priest FG, Campbell I (eds) Current developments in malting, brewing and distilling. Institute of Brewing, London, p 129–142 793. Swan JS, Howie D, Burtles SM, Williams AA, Lewis MJ (1981) Sensory and instrumental studies of Scotch whisky flavour. In: Charalambous G, Inglett GE (eds) The quality of foods and beverages: chemistry and technology, vol 1. Academic, New York, p 201–223 794. Swan JS, Reid KJG, Howie D, Howlett SP (1996) A study of the effects of air and kiln drying of cooperage oakwood. In: Taylor AJ, Mottram DS (eds) Flavor science: recent developments. Royal Society of Chemistry, Cambridge, p 557–561 795. Swartz RD, Millman RP, Billi JE, Bondar NP, Migdal SD, Simonian SK, Monforte JR, McDonald FD, Harness JK, McDonald FD, Harness JK, Cole KL (1981) Epidemic methanol poisoning: clinical and bochemical analysis of a recent episode. Medicine 60:373–382 796. Symons W (1793) The practical gager. F. Wingrave, London 797. Taft WH (1910) President Taft decides what is whisky. Am Food J 5:1–4 798. Tanaka T, Kouno I (1996) Whisky lactone precursor from the wood of Platyrcarya strobi- lacea. J Nat Prod 59:997–999 799. Tang H, Mitsunaga T, Kawamura Y (2006) Molecular arrangement in blocklets and starch granule architecture. Carbohydr Polym 63:555–560 800. Tauler R, Smilde A, Kowalski B (1995) Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. J Chemometr 9:31–58 801. Taylor EH (1917) From Washington to Wilson: the magnitude of the financial problem the submission of a state or national “prohibition amendment” would present to Kentucky and the Nation, 3rd edn. E. H. Taylor, Jr., and Sons, Frankfort 802. Taylor EH Jr (1882) Making whisky. Patent US262256, Aug 1882 803. Taylor GT, Thurston PA, Kirsop BH (1979) The influence of lipids derived from malt spent grains on yeast metabolism and fermentation. J Inst Brew 85:219–227 804. ter Heide R (1982) Advances in the knowledge of alcoholic beverages. In: Adda J (ed) Col- loque international sur les aromes alimentaires. Proceedings of the international symposium on food flavors. Lavoisier, Paris, p 27–45 805. Tewari YB, Goldberg RN (1989) Thermodynamics of hydrolysis of disaccharides— cellobiose, gentiobiose, isomaltose, and maltose. J Biol Chem 264:3966–3971 806. Thomann G (1885) Liquor laws in the United States, their spirit and effect, 4th edn. United States Brewers’ Association, New York References 501

807. Thomas MH (1947) Professor McCulloh of Princeton, Columbia, and Points South. Princeton University Library Chronicle 9:17–29 808. Thomas DK, Thomas TAJ (1960) Viscosity-concentration relationships in solutions of high polymers. J Appl Polym Sci 3:129–131 809. Thomson T, Stewart W (1849) Brewing and distillation. Adam and Charles Black, Edinburgh 810. Thomson W (1886) Capillary attraction. Nature 34:270–272, 290–294, 366–369 811. Thornton WW (1912) The law of pure food and drugs. W. H. Anderson, Cincinnati 812. Thorpe TE (1890) Dictionary of applied chemistry. Longmans and Green, London 813. The Times (1906) Tue., May 29, pg. 3; Wed., May 30, pg. 4; Thu., May 31, pg. 3; Fri., June 1, pg. 4; Sat., June 2, pg. 5; Wed., June 20, pg. 3; Tue., June 26, pg. 4 814. The Times (1968) Wed., July 26, 1961, pg. 8; Sat., Nov. 23, pg. 13 815. Toba Y (1959) Drop production by bursting of air bubbles on the sea surface (II) Theoretical study on the shape of floating bubbles. J Oceanogr Soc Jpn 15:121–130 816. Todd T, Rowlandson M (1841) The gaugers’ useful companion. Pigot and Slater, Manchester 817. Tolbert NE, Amerine MA (1943) Charcoal treatment of brandy. Ind Eng Chem 35:1078–1082 818. Tominga T, Murat M-L, Dubourdieu D (1998) Development of a method for analyzing the volatile thiols involved in the characteristic aroma of wines made from Vitas vinifera L. Cv. Sauvignon blanc. J Agric Food Chem 46:1044–1048 819. Tovey C (1864) British & foreign spirits. Whittaker, London 820. Tralles JG (1811) Untersuchungen über die specifischen Gewichte der Mischungen aus Alkohol und Wasser, und Tafeln für den Gebrauch und die Verfertigung der Alkoholometer. Ann Phys 39:349–431 821. Treasury Departmemt, Alcohol and Tobacco Tax and Trade Bureau (2018) Modernization of the labeling and advertising regulations for wine, distilled spirits, and malt beverages. Fed Regist 83(227):60562–60693 822. Treasury Department (1866) Special report, no. 5—distilled spirits as a source of national revenue. Executive documents of the first session of the Thirty-ninth congress, vol 8, no 62 823. Treasury Department (1907) Internal-Revenue gauger’s manual, 2nd edn. Government Printing Office, Washington, DC, document No. 2159 824. Treasury Department, Federal Alcohol Administration (1936) Labeling and advertising of distilled spirits. Fed Regist 1(14):92–103 825. Treasury Department, Federal Alcohol Administration (1936) Labeling and advertising of distilled spirits (regulations no. 5). Fed Regist 1(14):92–103 826. Treasury Department, Federal Alcohol Administration (1937) Notice of hearing with ref- erence to proposed amendment to regulations no. 5, relating to labeling and advertising of distilled spirits. Fed Reg 2(116):1040 827. Treasury Department, Federal Alcohol Administration (1938) Ammending certain provisions of the distilled spirits labeling regulations with reference to the proper labeling of whiskey stored in reused cooperage and to other matters. Fed Regist 3(42):561 828. Treasury Department, Internal Revenue Service (1967) Notice of hearing on petitions proposing changes in regulations. Fed Regist 32(132):10,208 829. Tressl R, Bahri D, Engel K-H (1981) oxidation in fruits and vegetables. In: Teranishi R, Berrera-Benitez H (eds) Quality of selected fruits and vegetables of North America. American Chemical Society, Washington, p 213–232 830. Tsonopoulos C (1974) An empirical correlation of second virial coefficients. AIChE J 20:263–272 831. Turner R (1761) The young gauger’s best instructor. B. Law, London 832. Twede D (2005) The cask age: the technology and history of wooden barrels. Packag Technol Sci 18:253–264 833. Tylecote RF (1992) A history of metallurgy, 2nd edn. Institute of Materials, Brookfield 834. Udo M (2006) The Scottish whisky distilleries. Black & White, Edinburgh 835. United States (1816) Laws of the United States of America from the 4th of March, 1789, to the 4th of March, 1815, vol 4. John Bioren and W. John Duane, Philadelphia 502 References

836. United States (1839) The public and general statutes passed by the Congress of the United States of America from 1789 to 1836 inclusive, vol 2, 2nd edn. T. and J. W. Johnson, Philadelphia 837. United States Congress (1906) Hearings before the committee on agriculture on bills relating to the department of agriculture. Fifty-ninth congress, first session. Government Printing Office, Washington 838. United States Congress (1907) Hearings before the committee on agriculture on estimates of appropriations for the department of agriculture for the fiscal year ending June 30, 1908. Fifty-ninth congress, second session. Government Printing Office, Washington 839. United States Department of Agriculture (1906) Food inspection decision 45: blended whiskies. United States Department of Agriculture, U. S. Bureau of Chemistry 840. United States Department of Commerce (1949) Historical statistics of the United States 1789– 1945. Government Printing Office, Washington, DC 841. United States House of Representatives (1893) Whisky Trust Investigation. In: Reports of committees of the House of Representatives for the second session of the fifty-second congress, 1892–1893, Government Printing Office, Washington 842. United States Supreme Court (1918) Rock Springs Distilling Co. v. W. A. Gaines & Co. (38 Supreme Court Rep. 327). Trade-Mark Reporter 8:155–163 843. Urban R, Mancke R (1972) Federal regulation of whiskey labelling: from the repeal of prohibition to the present. J Law Econ 15:411–426 844. Valaer P, Frazier WH (1936) Changes in whisky stored for four years. Ind Eng Chem 28:92– 105 845. van Beek S, Priest FG (2000) Decarboxylation of substituted cinnamic acids by lactic acid bacteria islated during malt whisky fermentation. Appl Environ Microbiol 66:5322–5328 846. van Deemter JJ, Zuiderweg FJ, Klinkenberg A (1956) Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem Eng Sci 5:271–289 847. Vanbeneden N, van Roey T, Willems F, Delvaux F, Delvaux FR (2008) Release of phenolic flavour precursors during wort production: influence of process parameters and grist compo- sition on ferlulic acid release during brewing. Food Chem 111:83–91 848. Vanderhaegen B, Neven H, Verachtert H, Derdelinckx G (2006) The chemistry of beer aging—a critical review. Food Chem 95:357–381 849. Vargaftik NB, Volkov BN, Voljak LD (1983) International tables of the surface tension of water. J Phys Chem Ref Data 12:817–820 850. Vázquez G, Alvarez E, Navaza JM (1995) Surface tension of alcohol + water from 20 to 50 ◦C. J Chem Eng Data 40:611–614 851. Veach MR (2013) Kentucky bourbon whiskey. University Press of Kentucky, Lexington 852. Velasco C, Jones R, King S, Spence C (2013) Assessing the influence of the multisensory environment on the whisky drinking experience. Flavour 2:23 853. Viëtor RJ, Kormelink FJM, Angelino SAGF, Voragen AGJ (1994) Substitution patterns of water-unextractable arabinoxylans from barley and malt. Carbohydr Polym 24:113–118 854. Viro M (1984) Heterocyclic nitrogen compounds in whisky and beer. Chromatographia 19:448–451 855. Viro M (1984) N-heterocyclic aroma compounds in whisky. In: Nykänen L, Lehtonen P (eds) Flavour research of alcoholic beverages. Foundation for Biotechnical and Industrial Fermentation Research, Helsinki, p 227–233 856. Vis RB, Lorenz K (1998) Malting and brewing with a high β-glucan barley. Lebensm Wiss Technol 31:20–26 857. Vivas N, Glories Y (1993) Étude de la flore fongique du chêne (Quercus sp.) caractéristique du séchage naturel des bois destinés a la tonnellerie. Cryptogam Mycol 14:127–148 858. Vivas N, Nonier M-F, Pianet I, Vivas de Gaulejac N, Fouquet E (2006) Proanthocyanidins from Quercus petraea and Q. robur heartwood: quantification and structures. C R Chimie 9:120–126 References 503

859. Vuilleumier C, Cayeux I, Velazco MI (2002) Dose-response curves of odor and taste stimuli: influence of sweetening agents. In: Given P, Paredes D (eds) Chemistry of taste. American Chemical Society, Washington, p 140–157 860. Wagenbreth H (1970) Die Dichte von Äthanol-Wasser-Mischungen zwischen −20 ◦C und +20 ◦C. PTB-Mitteilungen 90:81–86 861. Wagenbreth H (1973) Éstablissement des tables alcoométriques internationales—Measures et calculs. Bull OIML 51:7–14, 52:7–23 862. Wagenbreth H, Blanke W (1973) Analytische Darstellung der Dichte von Äthanol-Wasser- Mischungen zur Berechnung der Internationalen Alkoholtafeln der OIML. PTB-Mitteilungen 83:90–96 863. Wainwright T (1986) The chemistry of nitrosamine formation: relevance to malting and brewing. J Inst Brew 92:49–64 864. Walker RJ (1848) A report of researches on hydrometers and spirituous liquors made under the superintendence of Professor A. D. Bache, by Professor R. S. McCulloh. Executive documents of the first session of the thirtieth congress, vol 6, no 50 865. Wang XD, Bohlscheid JC, Edwards CG (2003) Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimable nitrogen and/or pantothenic acid. J Appl Microbiol 94:349–359 866. Wanikawa A, Hosoi K, Kato T (2000) Conversion of unsaturated fatty acids to precursors of γ -lactones by lactic acid bacteria during the production of malt whisky. J Am Soc Brew Chem 58:51–56 867. Wanikawa A, Hosoi K, Takise I, Kato T (2000) Detection of γ -lactones in malt whisky. J Inst Brew 106:39–43 868. Wanikawa A, Hosoi K, Shoji H, Nakagawa K-I (2001) Estimation of the distribution of enantiomers of γ -decalactone and γ -dodecalactone in malt whisky. J Inst Brew 107:253–259 869. Wanikawa A, Hosoi K, Kato T, Nakagawa K-I (2002) Identification of green note compounds in malt whisky using multidimensional gas chromatography. Flavour Fragr J 17:207–211 870. Wanikawa A, Shoji H, Hosoi K, Nakagawa K (2002) Stereospecificity of 10-hydroxystearic acid and formation of 10-ketostearic acid by lactic acid bacteria. J Am Soc Brew Chem 60:14– 20 871. War Office (1916) Second Supplement. London Gazette Tue. 14th Nov. (29824):11055 872. War Office (1919) Fifth Supplement. London Gazette Fri. 30th May (31370):6800 873. Ward A, Hale MD, Cardias-Williams FC (1998) Isolation of fungi from air and kiln drying oak wood used for the maturation of alcoholic beverages. Holzforschung 52:359–364 874. Ward C (2003) The Glenkinchie story since 1723. Prestoungrange University Press, Preson- pans 875. Ward G (1693) The gauger’s practice. T. Basset, London 876. Warwicker LA (1960) Instability in potable spirits. I. Scotch whisky. J Sci Food Agric 11:709– 716 877. Wathen JW (1910) Distillery operation and control. In: Wiley HW (ed) Manufacture of denatured alcohol based on the operations of an experimental still at Washington, D. C., and a course of lectures delivered in connection therewith, Government Printing Office, Washington, DC, p 109–113 878. Watson DC (1981) The development of specialised yeast strains for use in Scotch malt whisky fermentations. In: Stewart GG, Russell I (eds) Current developments in yeast research. Pergamon, New York, p 57–62 879. Watson DC (1983) A laboratory apparatus for distillation research. In: Priest FG, Campbell I (eds) Proceedings of the aviemore conference on malting, brewing and distilling. Institute of Brewing, London, p 249–255 880. Watson DC (1985) Current developments in the potable distilling industry. Crit Rev Biotech- nol 2:147–192 881. Weir RB (1984) Distilling and agriculture 1870–1939. Agric Hist Rev 32:49–62 882. Weir R (1995) The history of the distillers company, 1877–1939. Clarendon Press, Oxford 883. White ES (1860) The maltster’s guide. W. R. Loftus, London 504 References

884. Whitby BR (1992) Traditional distillation in the whisky industry. Ferment 5:261–267 885. Whitfield FB, Last JH, Shaw KJ, Tindale CR (1988) 2,6-Dibromophenol: the cause of an iodoform-like off-flavour in some Astralian crustacea. J Sci Food Agric 46:29–42 886. Wiley HW (1906) Foreign trade practices in the manufacture and exportation of alcoholic beverages and canned goods. US Department of Agriculture, Bureau of Chemistry Bulletin No 102 887. Wiley HW (1919) Beverages and their adulteration. P. Blakiston’s Son, Philadelphia 888. Wilkes FJ, Laing DG, Hutchinson I, Jinks AL, Monteleone E (2009) Temporal processing of olfactory stimuli during retronasal perception. Behav Brain Res 200:68–75 889. Wilkinson KL, Elsey GM, Prager RH, Pollnitz AP, Sefton MA (2004) Rates of formation of cis– and trans–oak lactone from 3-methyl-4-hydroxyoctanoic acid. J Agric Food Chem 52:4213–4218 890. Wilkinson KL, Prida A, Hayasaka Y (2013) Role of glycoconjugates of 3-methyl-4- hydroxyoctanoic acid in the evolution of oak lactone in wine during oak maturation. J Agric Food Chem 61:4411–4416 891. Williams AW (1941) Quality Bourbon cooperage pays in the end. Wooden Barrel 10(4):7, 14 892. Williams GC (1962) Vapor-liquid equilibria of organic homologues in ethanol–water solu- tions. Am J Enol Vitic 13:169–180 893. Williams GC, Fallin EA (1943) Activated carbon treatment of raw whisky. Ind Eng Chem 35:251–254 894. Williams LA, Knuttel WP (1983) Computer modeling of aroma compound behavior during batch distillation. In: Piggott JR (ed) Flavour of distilled beverages: origin and development. Ellis Horwood, Chichester, p 134–144 895. Williams PJ, Strauss CR (1975) 3,3-diethoxybutan-2-one and 1,1,3-triethoxypropane— acetals in spirits distilled from vitis-vinifera grape wines. J Sci Food Agric 26:1127–1136 896. Willkie F, Blankmeyer HC (1944) An outline for industry. Charles C. Thomas, Springfield 897. Willkie HF, Prochaska JA (1943) Fundamentals of distillery practice. Joseph E. Seagram & Sons, Louisville 898. Wilson CA (2008) The role of water composition on malt spirit quality. PhD thesis, Heriot- Watt 899. Wilson CW III, Shaw PE, Knight RJ Jr (1990) Importance of some lactones and 2,5-dimethyl- 4-hydroxyl-3(2h)-furanone to mango (Mangifera indica L.) aroma. J Agric Food Chem 38:1556–1559 900. Wilson P (1826) Biographical account of Alexander Wilson, M. D. late Professor of Practical Astronomy in Glasgow. Trans R Soc Edinb 10:279–297 901. Wilson SM, Burton RA, Doblin MS, Stone BA, Newbigin EJ, Fincher GB, Bacic A (2006) Temporal and spatial appearance of wall polysaccharides during cellularization of barley (Hordeum vulgare) endosperm. Planta 224:655–667 902. Wingate E (1645) The use of the rule of proportion in arithmetique and geometrie. P. Stephens, London 903. Winterhalter P, Sefton MA, Williams PJ (1990) Volatile C13-norisoprenoid compounds in Riesling wine are generated from multiple precursors. Am J Enol Vitic 41:277–283 904. Mr Winthorp (1678) The description, culture, and use of maiz. Philos Trans R Soc 12:1065– 1069 905. Withers SJ, Piggott JR, Conner JM, Paterson A (1995) Comparison of Scotch malt whisky maturation in oak miniature casks and American standard barrels. J Inst Brew 101:359–364 906. Withers SJ, Piggott JR, Leroy G, Conner JM, Paterson A (1995) Factors affecting pungency of malt distillates and ethanol–water mixtures. J Sens Stud 10:273–283 907. Withers SJ, Piggott JR, Conner JM, Paterson A (1996) Peaty characteristics of Scotch malt whisky. In: Taylor AJ, Mottram DS (eds) Flavor science: recent developments. Royal Society of Chemistry, Cambridge, p 354–357 908. Wolfe U (1857) Elucidations of imposition in the imitation and adulteration of Holland and English gin. John A. Gray, New York References 505

909. Woollgar JW (1839) The calculator, no. 6, extension of power in the sliding rule. Mech Mag 32(849):101–102 910. Woollgar JW (1839) The calculator, no. 7, cask gauging. Mech Mag 32(855):215–216 911. Wright FB (1907) A practical handbook on the distillation of alcohol from farm products, 2nd edn. Spon & Chamberlain, London 912. Yaws CL (1999) Chemical properties handbook. McGraw-Hill, New York 913. Yeo W (1749) The method of ullaging and inching. E. Owen, London 914. Yoemans MR, Chambers L, Blumenthal H, Blake A (2008) The role of expectancy in sensory and hedonic evaluation: the case of smoked salmon ice-cream. Food Qual Prefer 19:565–573 915. Yoo LJ, Barbour JF, Libbey LM, Scanlan RA (1992) Precursors of N-nitrosodimethylamine in malted barley. 2. Determination of dimethylamine. J Agric Food Chem 40:2222–2225 916. Yoshihashi T, Huong NTT, Inatomi H (2002) Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety. J Agric Food Chem 50:2001–2004 917. Young T (1823) Copy of a report to the Board of Customs, containing a description of an improved sliding rule for gauging casks. Q J Sci Lit Arts 16:357–364 918. Yuan J, Mishra P, Ching CB (2017) Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 44:107–117 919. YWorth W (1694) The Britannian magazine, or a new art of making above twenty sorts of English wines, 2nd edn. T. Salusbury, London 920. Zabetakis MG (1965) Flammability characteristics of combustible gases and vapors. Bulletin 627, Bureau of Mines, US Department of the Interior, Washington, DC. 921. Zacarías I, Yáñez CG, Araya M, Oraka C, Olivares M, Uauy R (2001) Determination of the taste threshold of copper in water. Chem Senses 26:85–89 922. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic vaporiza- tion of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599 923. Zana R, Eljebari MJ (1993) Fluorescence probing investigation of the self-association of alcohols in aqueous solution. J Phys Chem 97:11134–11136 924. Zohoun S, Agoua E, Degan G, Perre P (2003) An experimental correction proposed for an accurate determination of mass diffusivity of wood in steady regime. Heat Mass Transf 39:147–155 Subject Index

A Barrel Acrospire, 85, 116 anatomy, 280 Adam, Jean-Édouard, 13 capacity, 367–371, 415 Adams-Bashforth, 385 char, 28, 259, 307 Aerometer, 390 charred vs. uncharred, 262 Agonists, 47 entering proof, 39 Alcohol and Tobacco Tax and Trade Bureau standard size, 39 (TTB), 41, 333, 395, 396, 399 surface to volume ratio, 313 Allen, Alfred Henry, 260 ullage, 368, 372–373, 418 Allen-Marquardt, 261, 270 variety, 368–370 Allt A’Bhainee, 110 Bear, 5 Animal feed, 122 Beer, 24, 26, 31, 32, 241, 246, 247, 250, 251 Antagonists, 47 Benriach, 106 Antoine’s equation, 201 Benrinnes, 110 ethanol, 201 Bere, 5 water, 201 Bilge, 280 Aqua vitae, 2, 4 Biological oxygen demand, 86 Ardbeg, 106, 109, 110, 165 Birefringence, 123 Aroma, 46 Black Bush, 106 Aroma extract dilution analysis (AEDA), 64, Bluing, see haze 65, 310 Boll, 2, 9 Aroma standards, 70 Bonaparte, Charles Joseph, 37 Association of Official Analytical Chemists Bond number, 403–405, 407, 408, 411 (AOAC), 385 Bottled in bond, 33, 34, 42 Auchentoshan, 110 Bourbon, 40, 65–78, 262–264, 266, 268, 285, Auchriosk, 110 292, 293, 295, 296, 301, 307, 314, Aultmore, 110 315 Azeotrope, 194 barrel, 260, 274, 281, 307 compared to rye, 81 special status, vii B Bowmore, 107, 110 Bacon, 104 Box, George Edward Pelham, 323 Bain Marie, vi, 24 Boyle, Robert, 387 Ballentines, 107 Braeval, 110 Barnard, Alfred, 15 Brewer’s points, 90

© Springer Nature Switzerland AG 2019 507 G. H. Miller, Whisky Science, https://doi.org/10.1007/978-3-030-13732-8 508 Subject Index

Briggs, Henry, 371 Crow, James, 29 Bruichladdich, 106, 107 Cucumber, 98, 443 Brunswig, Heironymous, 2 Bubble curve, 193 Bung, 280 D Bunnahabhain, 106, 110 Dailuaine, 112 Burns, Robert, 367 Darcy’s law, 132, 133 Debye, Peter Joseph William, 134 Densitometer C hydrometer, 7, 376, 387, 391 Cabin Still, 106 vibrating tube, 174, 412 Cachaça, 116 Dephlegmator, 116, 117, 165 Cake, 132 Dew curve, 193 Cambus, 15 Diageo, 166 Cameron Bridge, 15 Diagonal rod, 368 Cameron Brig, 106 Differential scanning calorimeter (DSC), 124, Cannon Mills, 9, 12 126, 332 Caol Ila, 106, 109, 110 Dip rod, 368 Caprice, legislative, 393 Dissolved solids, 264, 272, 315 Caramel, 22, 24, 41, 84, 109, 301, 307, Distillers Company Limited (DCL), 22, 42, 318–321, 428, 445, 462 143, 166, 174 Carlisle, John Griffin, 34 Dog Cat urine, 170, 449, 451 panting, 189 Cellulose, 135 wet, 430 Char, 28, 259, 307 Doig, Charles Chree, 112 Charles Mackinlay & Co., 178 Doubler, 25, 26, 31, 32, 168, 224, 226, 228, CHARM, 64 229, 246, 248–250 Chaucer, Geoffrey, 3 Douglas, Sylvester, 10 Chime, 280 Draper, Norman Richard, 323 Chugging, 189 Civil War English, 5, 117 E US, 26–29, 39, 42, 393, 394 Earlywood, 277 Coffee, 101, 176 Edradour, 165 Coffey still, 29 Ehrlich pathway, 144, 146, 147, 151 Coffey, Aeneas, 15 Elijah Craig, 106 Cologne spirits, 29, 31, 33, 34, 42 Enthalpy, 339, 351, 352 Color, 259, 263, 264, 272, 315 excess, 202, 327–329 effect of entry proof, 315 partial molar, 327, 328 Condenser formation, 202 shell and tube, 22, 172, 189 gelatinization, 126 worm, 6, 22, 25, 172 hydration, 129 Constant molar overflow, 198, 244 phase diagram, 197 Control volume, 230–232, 234, 236, 237, 250, vaporization, 202, 327 383 Entropy, 202, 324, 327, 339, Copper 351, 352 catalysis, 116, 174 excess, 329 mineralization, 170 Equilibrium constant, 178 sulfur removal, 170 Ergun equation, 134 tinned, 169 Ester hydrolysis, 173, 251 Craigend, 10 Everard, Thomas, 371, 373, 414 Critical micelle concentration (CMC), 339, Eötvös number, 403 343, 353 Subject Index 509

F Gravity Federal Alcohol Administration, 38 degrees, 90 Feed, 122 Grist, 132 Feints, 5, 24, 208, 218, 222, 224, 225, 229, 251 Grist box, 121 Fischer-Speier mechanism, 174 Grist-water ratio, 127, 128, 136 Fitzgeralds, 106 Grog, 260, 310 Flame ionization detector (FID), 65, 362 Gunter, Edmund, 371, 414 Flavor, 46 Guymon, James, 179, 244, 265, 268 Flavor dilution index (FD), 65 Flavor wheel, 58, 60 H Fluorescence, 296 Hall, Harrison, 122 Ford, Henry, 176 Hamilton, Alexander, 390, 392 Fordham, Edward Snow, 20 Hangovers, 175, 260 Franklin, Benjamin, 23 Hastie, Stuart Henderson, 166–168, 173, 176, Free amino nitrogen (FAN), 87, 88, 150, 151 250 French, John, 3, 24 Haze, 22, 42, 138, 297, 361 Fresh weight basis, 85 Hazelburn, 18, 165, 174 Fungus, 143, 306 Heat capacity Fusel oil, 19, 264, 271 ethanol, 202 excess, 203 water, 202 G Heaven Hill, 106 Gall, 5 Helix, double, 123 Galletti, Antoni, 376 Hemicellulose, 265 Gas chromatograph (GC), 362 High wines, 24 Gas chromatograph olfactometer (GCO), 64, High-performance liquid chromatography 65 (HPLC), 282, 303, 304, 313, 318 Gas chromatography mass spectroscopy High-resolution gas chromatograph (HRGC), (GCMS), 81, 104, 304, 305, 312, 65 318 Highland line, 7 Gas liquid chromatography (GLC), 316 Highland Park, 110 Gauge points, 415 Hiram Walker, 38, 314 line of, 416, 417 Hohenheimer, 107 Gauging tables, 333, 395–399 Holdup, 196, 220, 221, 252 Gelatinization, 122, 125, 126, 137 Hoop, 280 enthalpy, 125, 126 Hough, Warwick Massey, 23, 34, 36, 38 kinetics, 125 Husk, 121, 122, 132, 136, 138, 139 temperature, 123, 125 Hydrometer malting and, 125 Boyle, 387 Gibbs, 198 Clarke, 7, 375, 387, 388 Gillespie, Robert, 26 Dicas, 391, 392, 419 Glen Elgin, 110 force balance, 378 Glen Garioch, 107 how to read, 377 Glen Scotia, 107 jar, 382 Glenfarclas, 110 sensitivity, 379 Glenfiddich, 69, 71, 73 Sikes, 375, 388, 419 Glengoyne, 110 Glenlivet, 12, 17 The Glenlivet, 107 I Glenlossie, 110 Iceberg model, 326 Glenochil, 15 Inoculation level, 146 β-Glucanase, 110 Internal Revenue Service (IRS), 333 Glycolysis, 144 The Invergordon, 106 Granules, starch, 123 Islington, 20, 37, 42 510 Subject Index

J Maillard, 22, 101, 107, 176, 178, 190, 307 Jack Daniels, 107 Maize, 21, 23, 28, 38, 40, 70, 90, 119, 122, 125, Jackson, Andrew, 186 126, 137, 141, 161 Jameson, 106, 107 Malt, 2, 83–119 Jefferson, Thomas, 26, 392 green, 98 Jim Beam, 67, 70, 72, 76, 77, 80, 107 slack, 130 Johnnie Walker, 107 Maple, 309, 428 Johnston, Donald, 131, 162, 198 Marriage, 321 Joule, James Prescott, 131 Martin, Martin, 4 Juggler, 393 Martyrdom, 260 Jura, 107 Mash, 9, 21, 23, 24, 40, 43, 83, 86, 89, 91–93, 95, 97, 109, 110, 112, 119, 121–141, 150, 151, 153, 158, 159, 161–163, K 261, 300 Kelvin, 385 sour, 158, 262, 263 Kepler, Johannes, 367, 419 sweet, 262, 263 Keto acid overflow theory, 150 Mashing-in temperature, 136 Kirliston, 13 Maturation Knockando, 106 in glass, 262 McCabe-Thiele, 198 McCulloh, Richard Sears, 393 L Mealy, barley, 84, 86 Lactobacilli, 158 Medullary ray, 278, 280 Lagavulin, 105–107, 109, 110 Mendeleev, Dmitri, 324, 397 Landseer, Sir Edwin, 11 Mill, 121 Laphroaig, 69, 71, 75, 105–107, 109, 110 Mist transfer, 180 Lautering, 132 Misting test, 185 Le Châtelier’s principle, 269 Modification, 83 Lee, Robert Edward, 394 Molar overflow, 198 Lever rule, 195 Moor’s head, 116, 117 Light whisky, 39–41 Morewood, Samuel, 3, 15 Lignin, 137 Mortlach, 106 Lincoln, Abraham, 393, 394 Mucus, 49, 50 Lipids, 98, 150 Multivariate curve resolution – alternating least Liter absolute alcohol (LAA), 374 squares (MCR-ALS), 348, 350 Lobry de Bruyn—Alberda van Ekenstein transformation, 319 Loftus, William Robert, 17 N Longmorn, 106, 312 Napier, John, 414 Lord Rayleigh, 205 Navier-Stokes equation, 405–407, 409 Lovibond Nettleton, Joseph Alfred, 21, 159 #52 for whisky color, 263 Newton, Isaac, 374 Low wines, 5, 7, 24, 207, 208, 218, 222, 225, Niemcewicz, Julian Ursyn, 122 251 Nikka, 276 Lower explosive limit (LEL), 188 Non-random two-liquid (NRTL), 252 Lower flammability limit (LFL), 186 Nuclear magnetic resonance (NMR), 347 Lyne arm, 6, 11, 165

O M Oak M’Harry’s Practical Distiller, 259 and maturation, 259–277 M’Harry, Samuel, 122 aroma, 460, 461 Macallan, 110 barrels, 22, 40 The Macallan, 69, 71, 75, 106 charred barrels, 28, 39 Subject Index 511

charring, 306–310 Proof, 264, 265 constituents, 281–302 change and climate, 265 diffusivity, 277 Clarke, 7 extract, 354, 356, 362, 363 classes, 391, 392 new barrels, 39 Dicas, 391, 392 new charred barrels, 38–40, 42, 268, entry, 315 357 Gay-Lussac, 374 new uncharred barrels, 40 measurement, 374–387 seasoning, 302–306 Sikes, 2 slow vs. fast growth, 277 Tralles, 374 structure, 277–281 UK, 374 toasting, 306–310 definition, 388 Oats, 4, 5, 42, 85, 117 vs US, 388 Odor activity value (OAV), 64, 69 Proof gallon (PG), 374, 389 Odor referral, 46 Psychophysics, 54 Old Pulteney, 107 Puff von Schrick, Michael, 2 Old Weller, 400, 401 Puking, 189, 190 Olfactory epithelium, 46, 49 Pure Food and Drug Act, 34 Omission test, 77 Purifier, 165 Orange juice, 151 Pycnometer, 376 Organization Internationale de Métrologie Légale (OIML), 388 Oughtred, William, 371, 414 Q Quarter, 86, 117 Quartersawn boards, 280 P Pagoda, 112 R Panting, 189 R-index, 78 Partial least squares (PLS), 82, 109, 110 Rachilla, 84 Partition coefficient, 49, 178, 190 Raoult’s law, 199 Passions, 34 Receiver operating characteristic (ROC), 78 Pasteur, Louis, 163, 260 Rectifier, 24, 309 Patent still, 15 Red Book of Ossory, 2 Pear drops, 268 Redlich-Kister correction, 180 Peat, 107 Reflux, 220, 246 Penderyn, 105 Residence time, 251 Pennant, Thomas, 5 Rice hulls, 132 Pentosan, 136 Rittenhouse, 80 Pericarp, 84, 136 Roosevelt, Theodore, 37 Permeability, 132 Rouse, Prince Earl, Jr., 134 Persistence, 50 Royal Commission on Whisky, 21, 176, 261, pH, 264, 267 262 Philosophical bubbles, 375, 376 Rummager, 11 Phylloxera, 27 Rye, 4, 23, 29, 30, 40, 41, 79, 80, 82, 85, 90, Physiology, 276, 322 119, 122, 132, 262–264, 314, 315 Pigs, 122 Pitch rate, 146, 150 PK, 219 S Ponchon-Savarit diagram, 203 Saccharification, 125 Popcorn, 178, 188, 467 Sample dilution analysis (SDA), 81 Pressure oscillation, 22, 189 Saponification, 268 Principal component analysis (PCA), 312 Sawdust, 307 Prohibition, 29, 38, 39, 168, 263, 390, 394, 396, Schidrowitz, Philip, 42, 173, 251, 262, 270 397 Scotch Whisky Regulations, 21 512 Subject Index

Scottish Malt Distillers Limited (SMD), 174 Teed, Frank, 20 Scutellum, 84 Tennessee process, 309 Seagram, 39, 150, 268, 289, 315 Testa, 84 Select Committee on British and Foreign Thermal conductivity detector (TCD), 90, 363 Spirits, 18 Thermogram, 124 Sensory evaluation, 55 Thump keg, 168 Shackleton, Ernest Henry, 178 Tobacco, 309 Shakespeare, William, 3 Tovey, Charles, 16 Sherry, 259, 260, 262, 301, 316, 442 Trestarig, 4 Sieve tray, 121 Triangle test, 71 Sikes, Bartholomew, 388 Trigeminal nerve, 46 Singlings, 24, 259 Tun, 132 Slack malt, 130 Tyloses, 277 Slaking heat, 128–130 Slop odor, 263 Smith, Adam, 9 U Smith, Elizabeth Grant, 12 Ullage, 196, 368, 372–373, 418 Soap, 173, 189 United Distillers, 166 Solid-phase microextraction (SPME), 310 Upper flammability limit (UFL), 186 Sour mash, 158, 262, 263 Usher, Andrew, 17 Southern Comfort, 107 Usquebaugh, 3, 4 Spagirical operations, 374, 375 -baul, 5 Spirit whisky, 40 Springbank, vii, 118 V Stanyhurst, Richard, 2 Van Krevelen diagram, 320 Starch, 123 Van Laar’s model, 201 Stave, 280 Vapor liquid equilibrium (VLE), 198–205, 354 Steam, 22, 190 Ventilator, 112 Steely, barley, 85, 86 Virginia Gentleman, 106 Stein, Robert, 13 Viscosity, 91–95, 97, 110, 119, 128, 132, Stewart, Potter, 1 134–136, 337–338, 349, 405–410 Still Volstead act, 27 beer, 25 low wine, 6 wash, 6 W Stokes-Einstein relation, 349 Wantage, 372 Straight Warehouse vs. crooked, 37 bonded, 16, 27 whisky, 28, 34, 37, 38, 40 heated, 262 Strecker degredation, 104 Washback, 158, 173 Strike temperature, 129 Washington, George, 122, 186 Suntory, 293 Wet dog, 430 Surface tension, 193, 338, 378–380, 382, 383, Wheat, 9, 40 385, 401, 404, 405, 410 Whisky Sutton, Marvin ‘Popcorn’, 188 additives, 41, 316–321 crooked, 37 light, 39–41 T regulation Taft, William Howard, 37, 38 Scotland, 21 Tamdhu, 106 US, 40 Tannins, 264, 271, 273, 276, 277, 281, 288, science, 1–467 295, 303, 306, 315, 318 spirit, 40 Taste, 46 straight, 28, 34, 37, 38, 40 Taylor, Colonel Edmund Haynes, Jr., 33, 158 vs whiskey, vii Subject Index 513

Whisky Trust, 26, 33 Y Wild Turkey, 80, 400 Yates continuity correction, 77 Wiley, Harvey Washington, 34, 37, 38, 42, 43, Yoker, 15 166, 309 Young-Dupre equation, 378 Wilson, Alexander, 375 Young-Laplace pressure, 382, 383, 403 Wine gallon (WG), 374, 396, 415 YWorth, William, 374 Wort, 121, 132

X Z Xylem, 277 Zabetakis, Michael George, 186 Chemical Index

A 2-Acetylpyrrole, 108 Acetal, 182, 218, 225, 229, 247, 249, 464 2-Acetyl-1-pyrroline, 69, 178, 467 (aka 1,1-Diethoxyethane; Acetaldehyde (aka 1-(3,4-Dihydro-2H-pyrrol-5-yl)ethan- diethyl acetal) 1-one) Acetaldehyde, 70, 71, 81, 108, 111, 137, 145, 2-Acetylthiazole, 106, 356 147, 153, 180, 182, 212, 213, 218, Acids, 262, 263, 273 225, 229, 247, 249, 268, 274, 302, fixed, 264, 265, 267 363, 439 total, 264–266 Acetaldehyde diethyl acetal, 271, 274, 464 volatile, 265, 315 (aka Acetal; 1,1-Diethoxyethane) Acrolein, 138, 159, 160, 163, 182, 212, 213, Acetaldehyde 2,4-dinitrophenylhydrazone, 111 218, 225, 229, 247, 249, 442 Acetic acid, 59, 80, 108, 182, 208, 209, 218, (aka Prop-2-enal) 225, 229, 247, 249, 265, 268, 300, Acrolein diethyl acetal, 160 311, 363, 428 Active , 148, 185, 425 α-Aceto-α-hydroxybutyric acid, 147, 148 (aka 2-Methylbutanol) Acetoin, 180, 182, 216–218, 225, 229, 247, Active valeric acid, 178 249, 445 Aconitic acid, 432 (aka 3-Hydroxybutan-2-one) Acutissimin α-Acetolactic acid, 147, 148 A, 282, 284 Acetone, 445 B, 282, 284 (aka Propan-2-one) Adenosine triphosphate, 145 Acetophenone, 446 (aka ATP) (aka 1-Phenylethanone) Adipic acid, 300 Acetosyringone, 294, 295, 311 ADP, 144, 145 Acetovanillone, 294, 295, 311, 456 Aesculetin, 297 (aka 1-(4-Hydroxy-3- Aesculin, 297 methoxyphenyl)ethanone) Alcohol dehydrogenase (ADH), 157 Acetyl, 216, 217 Aldehydes, 261–264, 270, 315 Acetyl-CoA, 144, 145 Aldol, 442 2-Acetylfuran, 108, 463 (aka 3-Hydroxybutanal) (aka 1-(Furan-2-yl)ethanone) , 182, 210, 211, 218, 225, 229, O-Acetyl-4-O-methylglucurono-β-D-xylan, 247, 249 291 4-Allyl-2,6-dimethoxyphenol, 456 Acetylpropionyl, 445 (aka 4-Allylsyringol) (aka Pentane-2,3-dione) 4-Allyl-2-methoxyphenol, 67, 69, 72, 75, 453 2-Acetylpyridine, 105 (aka Eugenol)

© Springer Nature Switzerland AG 2019 515 G. H. Miller, Whisky Science, https://doi.org/10.1007/978-3-030-13732-8 516 Chemical Index

4-Allylsyringol, 304, 311, 456 2-Bromophenol, 458 (aka 4-Allyl-2,6-dimethoxyphenol) 4-Bromophenol, 458 1-(2-Aminophenyl)ethanone, 446 Butanal, 439 Amygdalin, 312 (aka Butyraldehyde) Amyl acetate, 50, 155, 436 Butane-2,3-diol, 424 (aka Pentyl acetate) meso-2,3-Butane diol, 180 Amyl alcohol, 144, 149, 150, 182, 210, 211, Butane-2,3-dione, 72, 73, 75, 77, 444 218, 225, 229, 247, 249, 260 (aka Diacetyl) (aka 1-Pentanol) Butane-1-thiol, 449 Amylase, 123 (aka n-Butyl mercaptan) α, 126–129 Butane-2-thiol, 449 β, 127–129 (aka sec-Butyl mercaptan) n-Amyl butyrate, 437 Butanoic acid, 178, 429 (aka Pentyl butanoate) (aka Butyric acid) tert-Amyl mercaptan, 449 1-Butanol, 180, 182, 185, 210, 211, 218, 225, (aka 2-Methylbutane-2-thiol) 229, 247, 249, 323, 424 Amylopectin, 122, 123, 125 (aka n-Butanol) structure, 124 2-Butanol, 424 Amylose, 122, 123, 125 (aka sec-Butanol) crystal structure, 123 Butan-2-one, 445 1,6-Anhydro-β-D-glucofuranose, 320 Butan-2-yl acetate, 437 1,6-Anhydro-β-D-glucopyranose, 320 (aka sec-Butyl acetate) Arabinic acid lactone, 317 (E)-But-2-enal, 142, 439 Arabinofuranose, 317 (aka trans-2-Butenal, crotonaldehyde) Arabinopyranose, 317 (E)-But-2-enedioic acid, 429 Arabinose, 135, 291, 292, 316, 317 (aka Fumaric acid) Arabinoxylan, 132, 136 4-(2-Butenylidene)-3,5,5-trimethylcyclohex-2- ATP, 144, 145 en-1-one, 309 (aka Adenosine triphosphate) Butyl acetate, 62, 436 Azelaic acid, 300 (aka n-Butyl acetate) sec-Butyl acetate, 437 (aka Butan-2-yl acetate) B tert-Butyl acetate, 62, 63, 437 Benzalacetone, 446 tert-Butyl alcohol, 182, 210, 211, 218, 225, (aka (E)-4-Phenylbut-3-en-2-one) 229, 247, 249, 424 Benzaldehyde, 47, 71, 108, 305, 311, 356, (aka 2-Methylpropan-2-ol) 442 n-Butyl mercaptan, 449 , 326 (aka Butane-1-thiol) Benzoic acid, 108, 300 sec-Butyl mercaptan, 449 Benzothiazole, 305 (aka Butane-2-thiol) 1,3-Benzothiazole, 171, 274, 275, 450 tert-Butyl mercaptan, 449 Benzothiophene, 171, 274, 275 (aka 2-Methylpropane-2-thiol) Benzylacetone, 446 5-Butyl-4-methyloxolan-2-one, 460 (aka 4-Phenylbutan-2-one) (aka Whisky lactone; β-Methyl-γ - Benyzl alcohol, 108, 426 octalactone) (aka Phenylmethanol) 5-Butyloxolan-2-one, 459 β-Bisabolene, 301 (aka γ -Octalactone) 1,3-Bisphosphoglycerate, 145 1-Butylsulfanylbutane, 449 Borneol, 301 (aka Di-n-butyl sulfide) Bourbonal, 47 Butyraldehyde, 108, 180, 182, 212, 213, 218, (aka Ethyl vanillin) 225, 229, 247, 249, 439 Brevifolin , 288 (aka Butanal) Chemical Index 517

Butyric acid, 59, 80, 158, 182, 208, 209, 218, Coniferyl alcohol, 289, 292, 308, 311 225, 229, 247, 249, 266, 300, 429 Coniferyl aldehyde, 289, 293–296, 303, 309, (aka Butanoic acid) 313 Butyrolactone, 305 Copper, 90, 113–115, 169, 172, 190, 467 Copper thiocyanate, 113 Corundum, 332 C Coumaric acid, 313 Cadalene, 300 p-Coumaric acid, 137, 138, 162, 458 Cadinene, 301 ethyl ester, 438 δ, 300 (aka (E)-3-(4-Hydroxyphenyl)prop-2-enoic α-Cadinol, 300 acid) τ-Cadinol, 300 Coumarin, 297 Caffeic acid, 457 p-Coumaryl alcohol, 289, 292 ethyl ester, 438 Covellite, 170 (aka (E)-3-(3,4-Dihydroxyphenyl)prop-2- Creosol, 452 enoic acid) (aka 4-Methylguaiacol; 2-Methoxy-4- Caftaric acid, 458 methoxyphenol; p-Methylguaiacol) α-Calacorene, 300 m-Cresol, 108, 109, 184, 454 Calamenene, 300 (aka 3-Methylphenol) Capric acid, 266, 430 o-Cresol, 59, 107–109, 184, 295, 296, 454 (aka Decanoic acid) (aka 2-Methylphenol) Caproic acid, 266, 430 p-Cresol, 80, 108, 109, 184, 454 (aka Hexanoic acid) (aka 4-Methylphenol) Caprylic acid, 266, 430 Crotonaldehyde, 439 (aka Octanoic acid) (aka (E)-But-2-enal) Caramel, 292 Epi-Cubenol, 300 Caramelan, 320 Cuminaldehyde, 444 Carbon disulfide, 171 (aka 4-Propan-2-ylbenzaldehyde) Carbon tetrachloride, 326 Cuprous cyanide, 113 Carbonyl disulfide, 171 α-Curcumene, 300 Carbonyl sulfide, 138 Cyanidin, 138 Carboxyl ellagic acid, 288 Cyanogenic glycoside, 312 β-Carotene, 137 Cyanohydrin, 114 D-Carvone, 446 Cyclohexanone, 311, 445 (aka (5S)-2-Methyl-5-prop-1-en-2- Cyclohex-3-ene-1-carbaldehyde, 442 ylcyclohex-2-en-1-one) (aka 1,2,3,6-Tetrahydrobenzaldehyde) (R)-(-)-Carvone, 50 Cyclooctanecarboxaldehyde, 443 Castacrenin B, 284, 288 Cyclopentanone, 445 Castalagin, 282, 283, 465 Cyclotene, 308, 311, 428 Catechin, 464 (aka 2-Hydroxy-3-methyl-2- D-(+)-Catechin, 138 cyclopentenone) Cat urine ketone, 451 Cysteine, 158 (aka 4-Mercapto-4-methyl-2-pentanone) Cellulose, 134 Cinnamaldehyde, 443 D (aka (E)-3-Phenylprop-2-enal) β-Damascenone, 47, 67, 69, 72, 73, 75, 77, 80, Cinnamic acid, 108 176, 177, 190, 447 Citral, 52, 441 α-Damascone, 67 (aka Geranial; (E)-3,7-Dimethylocta-2,6- Decadienal, 138 dienal) (E,E)-2,4-Decadienal, 67, 70, 72, 73, 75, 142, Citronellal, 443 441 (aka 3,7-Dimethyloct-6-enal) (E,Z)-2,4-Decadienal, 142 CoA, 145 518 Chemical Index

Decalactone (aka Tartaric acid) δ, 460 α, β-Dihydroxyisovaleric acid, 148 (aka 6-Pentyloxan-2-one) 2,3-Dihydroxy-3-methylvaleric acid, 147, 148 γ , 47, 67, 69, 73, 75, 161, 459 (aka α, β-Dihydroxyisovaleric acid) (aka 5-Hexyloxolan-2-one) (E)-3-(3,4-Dihydroxyphenyl)prop-2-enoic γ -Decalactone, 300 acid, 457 1-Decanal, 142, 307, 359, 443 (aka Caffeic acid) Decanoic acid, 300, 430 2,3-Dihydroxypropanal, 442 (aka Capric acid) (aka D-Glyceraldehyde) 1-Decanol, 59, 359, 427 Di-isopropyl sulfide, 449 2-Decanol, 427 (aka 2-Propan-2-ylsulfanylpropane) Decan-2-one, 446 1,3-Dimethoxy-2-hydroxybenzene, 455 Decan-3-one, 446 (aka Syringol) 2,4,7-Decatrienal, 142 2,6-Dimethoxyphenol, 80 (E)-2-Decenal, 67, 72, 73, 75, 142, 443 Dimethyl amine, 112, 113 (aka trans-2-Decenal) 3,3-Dimethylbutan-2-one, 445 trans-2-Decenal, 443 (aka Pinacolone) (aka (E)-2-Decenal) 3,4-Dimethyl-1,3-cyclohexane- (Z)-2-Decenal, 142 carboxaldehyde, 443 (aka cis-2-Decenal) Dimethyl disulfide, 138, 171, 274, 275, 448 (Z)-Dec-7-en-5-olide, 462 2,4-Dimethyl furan, 311 (aka Jasmine lactone; 6-[(Z)-Pent-2- 2,6-Dimethylheptan-4-one, 446 enyl]oxan-2-one) (E)-2,2-Dimethylhept-4-enal, 443 Delphinidin, 138 Dimethyl nitrosamine, 113 5-Deoxy myo-, 317 (E)-3,7-Dimethylocta-2,6-dienal, 441 33-Deoxy-33-carboxyvescalagin, 465 (aka Citral; Geranial) Diacetyl, 59, 180, 182, 216–218, 225, 229, 247, 2,7-Dimethylocta-1,6-dien-3-ol, 427 249, 321, 444 (aka Linalool) (aka Butane-2,3-dione) (Z)-3,7-Dimethyl-2,6-octadien-1-ol, 427 Diastase, 126–129 (aka Nerol) 2,4-Dibromophenol, 107, 458 3,7-Dimethyloct-6-enal, 443 2,6-Dibromophenol, 105, 107, 458 (aka Citronellal) Di-n-butyl sulfide, 449 2,4-Dimethylpentan-3-one, 445 (aka 1-Butylsulfanylbutane) 2,3-Dimethylphenol, 458 Dichloromethane, 304 (aka 2,3-Xylenol) 1,1-Diethoxyethane, 67, 69–73, 75, 274, 464 2,3-Dimethylpyrazine, 105, 106, 466 (aka Acetal; Acetaldehyde diethyl acetal) 2,5-Dimethylpyrazine, 51, 104–106, 108, 356, Diethyl disulfide, 157, 448 466 , 302 2,6-Dimethylpyridine, 105 2,3-Diethylpyrazine, 106 3,4-Dimethylpyridine, 105 2,6-Diethylpyrazine, 108 Dimethyl sulfide, 59, 61, 70, 100, 138, 171, Diethyl sulfide, 448 275, 447 Dihydroconiferyl alcohol, 309 Dimethyl sulfoxide, 100 2,3-Dihydrofuran, 311 2,5-Dimethylthiophene, 171 Dihydrokaempferol-3-O-α-L-rhamnoside, 464 Dimethyl trisulfide, 59, 171, 172, 190, 274, Dihydro-2-methyl-3(2H)-thiophenone, 171, 275, 448 275 (5E)-6,10-Dimethylundeca-5,9-dien-2-one, 5,6-Dihydro-2H-pyran-2-one, 311 446 1-(3,4-Dihydro-2H-pyrrol-5-yl)ethan-1-one, (aka Geranylacetone) 467 2,4-Dinitrophenylhydrazine, 111 (aka 2-Acetyl-1-pyrroline) Dissolved solids, 273, 363 Dihydroquercetin-3-O-α-L-rhamnoside, 464 Djurleite, 170 Dihydroxyacetone phosphate, 145 DMDS, see Dimethyl disulfide 2,3-Dihydroxybutanedioic acid, 432 DMTS, see Dimethyl trisulfide Chemical Index 519

γ -Dodecalactone, 67, 69, 73, 75, 161, 460 Ethyl caproate, 153, 358, 434 (aka 5-Octyloxolan-2-one) (aka Ethyl hexanoate) Dodecanal, 359, 444 Ethyl caprylate, 153, 175, 358, 435 Dodecanoic acid, 431 (aka Ethyl octanoate) (aka Lauric acid) Ethyl carbamate, 112–116, 190 1-Dodecanol, 355, 359, 428 (aka Urethane) Dodecan-2-one, 446 trans-Ethylcinnamate, 67, 69, 72, 73, 75, 80, (Z)-6-Dodecen-γ -lactone, 67, 69 438 (aka Ethyl 3-phenylprop-2-enoate) Ethyl decanoate, 155, 356, 357, 359, 360, 362, E 435 EDTA, 114, 115 (aka Ethyl caprate) (aka Ethylenediaminetetraacetic acid) 3-Ethyl-2,5-dimethylpyrazine, 69 Ethyl isovalerate, 249 Ethyl dodecanoate, 356, 360–362, 435 Elemol, 300 (aka Ethyl laurate) Ellagic acid, 276, 295, 303, 313, 465 Ethylenediaminetetraacetic acid, 115 Ellagic acid rhamnoside, 287 (aka EDTA) Ellagitannin, 282 Ethyl 3-ethoxypropionate, 160 Enanthic acid, 266, 430 Ethyl formate, 436 (aka Heptanoic acid) 4-Ethylguaiacol, 108, 109, 162, 184, 304, 452 Entropy, 326 (aka 4-Ethyl-2-methoxyphenol; p- Epicatechin, 464 Ethylguaiacol) Epiheterodentrin, 116 p-Ethylguaiacol, 311, 452 trans-4,5-Epoxy-trans-2-decenal, 142 (aka 4-Ethyl-2-methoxyphenol; 4- Esters, 262–264, 269, 273, 315 Ethylguaiacol) Ethanal, 157 Ethyl heptanoate, 436 1,1-Ethanediol, 274 Ethyl hexadecanoate, 108, 356, 358, 360–362, Ethanethiol, 157, 171, 178, 449 433 (aka Ethyl mercaptan) (aka Ethyl palmitate) Ethanol, 70–73, 75, 77, 144, 147, 179, 207, Ethyl (E)-hexadec-9-enoate, 433 249, 253–258 (aka Ethyl palmitoleate) Ethanol lignin, 289, 292, 296 2-Ethylhexanal, 442 4-Ethenyl-2-methoxyphenol, 453 Ethyl hexanoate, 48, 59, 67, 69–73, 75, 80, 137, (aka Vinylguaiacol) 155, 311, 356, 434 4-Ethenylphenol, 455 (aka Ethyl caproate) (aka 4-Vinylphenol; p-Vinylphenol) 2-Ethylhex-2-enal, 442 Ethers, 262 Ethyl hydrogen succinate, 437 1-Ethoxyethanol, 274 (aka 4-Ethoxy-4-oxobutanoic acid) 4-Ethoxy-4-oxobutanoic acid, 437 Ethyl 3-Hydroxyhexanoate, 69 (aka Ethyl hydrogen succinate) Ethyl 4-hydroxy-3-methoxybenzoate, 456 3-Ethoxypropionaldehyde diethyl acetal, 160 (aka Ethyl vanillate) Ethyl acetate, 59, 70, 71, 155, 175, 268, 269, (S)-Ethyl-2-hydroxy-3-methylbutanoate, 69, 274, 356, 363, 434 73, 75, 438 Ethyl 2-amino-4-(methylsulfanyl)butanoate, Ethyl-2-hydroxy-3-methylpentanoate, 73 450 (2R,4S)-Ethyl-2-hydroxy-3-methylpentanoate, (aka Ethyl methionate) 75 2-Ethylbutanal, 439 (2S,3S)-Ethyl-2-hydroxy-3-methylpentanoate, Ethyl butanoate, 51, 67, 69–73, 75, 432 69, 72, 73, 75, 438 (aka Ethyl butyrate) Ethyl 2-hydroxypropanoate, 432 Ethyl butyrate, 59, 62, 80, 153, 158, 356, 358, (aka Ethyl lactate) 432 Ethyl isobutyrate, 80, 182, 214, 215, 218, 225, (aka Ethyl butanoate) 229, 247, 249, 437 Ethyl caprate, 153, 169, 175, 358, 435 (aka Ethyl 2-methylpropanoate) (aka Ethyl decanoate) 520 Chemical Index

Ethyl isovalerate, 80, 182, 214, 215, 218, 225, Ethyl palmitoleate, 361, 433 229, 247, 437 (aka Ethyl (E)-hexadec-9-enoate) (aka Ethyl-3-methylbutanoate) Ethyl pentadecanoate, 438 Ethyl lactate, 163, 432 Ethyl pentanoate, 69–71, 436 (aka Ethyl 2-hydroxypropanoate) (aka Ethyl valerate) Ethyl laurate, 59, 169, 175, 401, 402, 435 3-Ethylphenol, 70, 73, 75 (aka Ethyl dodecanoate) 4-Ethenylphenol, 455 Ethyl levulinate, 437 4-Ethylphenol, 67, 72, 73, 75, 80 (aka Ethyl 4-oxopentanoate) (aka p-Ethylphenol) Ethyl linoleate, 108, 169, 433 p-Ethylphenol, 107, 108, 162, 455 (aka Ethyl (9Z,12Z)-octadeca-9,12- (aka 4-Ethylphenol) dienoate) Ethyl phenylacetate, 67, 69, 75 Ethyl mercaptan, 449 (aka Ethyl 2-phenylacetate) (aka Ethanethiol) Ethyl 3-phenylprop-2-enoate, 438 Ethyl methionate, 275, 450 (aka trans-Ethylcinnamate) (aka Ethyl 2-Amino-4- Ethyl propanoate, 69–71, 73, 75, 80, 432 (methylsulfanyl)butanoate) (aka Ethyl propionate) 4-Ethyl-2-methoxyphenol, 67, 69, 72, 73, 75, Ethyl propionate, 48, 62, 63, 432 80, 311, 452 (aka Ethyl propanoate) (aka 4-Ethylguaiacol; p-Ethylguaiacol) Ethylpyrazine, 106 (S)-Ethyl-2-methylbutanoate, 67, 69–73, 75, 2-Ethylpyrazine, 108, 467 438 3-Ethylpyridine, 105 Ethyl-3-methylbutanoate, 67, 69–73, 75, 437 4-Ethylpyridine, 106 (aka Ethyl isovalerate) Ethyl pyridine-3-carboxylate, 437 Ethyl 2-methylpropanoate, 67, 69–73, 75, 437 (aka Ethyl nicotinate) (aka Ethyl isobutyrate) Ethyl pyruvate, 436 2-Ethyl-3-methylpyrazine, 106, 467 (aka Ethyl 2-oxopropanoate) 3-Ethyl-2-methylpyrazine, 69 Ethyl stearate, 433 5-Ethyl-2-methylpyrazine, 106 (aka Ethyl octadecanoate) Ethyl 3-(methylthio)propanoate, 171, 275 Ethyl syringate, 294, 295 Ethyl myristate, 108, 175, 432 Ethyl tetradecanoate, 432 (aka Ethyl tetradecanoate) (aka Ethyl myristate) Ethyl nicotinate, 437 Ethyl tridecanoate, 438 (aka Ethyl pyridine-3-carboxylate) Ethyl undecanoate, 437 Ethyl nonanoate, 436 Ethyl valerate, 436 Ethyl (9Z,12Z)-octadeca-9,12-dienoate, 433 (aka Ethyl pentanoate) (aka Ethyl linoleate) Ethyl vanillate, 80, 294, 295, 456 Ethyl octadecanoate, 433 (aka Ethyl 4-hydroxy-3-methoxybenzoate) (aka Ethyl stearate) Ethyl vanillin, 47 Ethyl (E)-octadec-9-enoate, 433 (aka Bourbonal) (aka Ethyl oleate) Ethyl vinyl ketone, 445 Ethyl octanoate, 48, 51, 67, 69, 72, 73, 75, 137, (aka 1-Penten-3-one) 155, 356, 435 α-Eudesmol, 300 (aka Ethyl caprylate) β-Eudesmol, 300 Ethyl oleate, 108, 169, 433 γ -Eudesmol, 300 (aka Ethyl (E)-octadec-9-enoate) Eugenol, 59, 80, 295, 296, 298, 304, 308, 311, 5-Ethyloxolan-2-one, 459 313, 453 (aka γ -Hexalactone) (aka 4-Allyl-2-methoxyphenol) Ethyl 4-oxopentanoate, 437 (aka Ethyl levulinate) Ethyl 2-oxopropanoate, 436 F (aka Ethyl pyruvate) Ferulic acid, 135–138, 162, 174, 175, 190, 294, Ethyl palmitate, 108, 169, 175, 401, 402, 433 313, 457 (aka Ethyl hexadecanoate) ethyl ester, 438 Chemical Index 521

(aka (E)-3-(4-Hydroxy-3- (aka 3,4,5-Trihydroxybenzoic acid) methoxyphenyl)prop-2-enoic Geosmin, 59 acid) Geranial, 441 Flavin mononucleotide (FMN), 154 (aka Citral; (E)-3,7-Dimethylocta-2,6- Floroglucin, 317 dienal) Folin-Denis reagent, 271 , 59 Formaldehyde, 108, 439 Geranyl acetate, 301 Formic acid, 59, 182, 208, 209, 218, 225, 247, Geranylacetone, 446 249 (aka (5E)-6,10-Dimethylundeca-5,9-dien- Frucose, 143 2-one) α-D-Fructofuranose, 319 Gibberelic acid, 86 β-D-Fructofuranose, 319, 320 β-Glucan, 132, 134–136, 143 α-D-Fructopyranose, 319 Glucitol, 317 β-D-Fructopyranose, 319 Glucoamylase, 143 Fructose, 291, 316, 317 Glucomannan, 291 D, 319 2-Keto-D-gluconic acid, 316, 317 Fructose-1,6-bisphosphate, 145 Glucopyranose, 317 Fructose-6-phosphate, 145 α-D-Glucopyranose, 319, 320 Fumaric acid, 300, 429 β-D-Glucopyranose, 319, 320 (aka (E)-But-2-enedioic acid) Glucose, 122, 125, 128, 129, 143–145, 291, Furan-2-carbaldehyde, 463 292, 317, 321 (aka Furfural) α, 127 Furancarboxylic acid, 300 α-D, 124 2,5-Furandicarboxylic acid, 300 β-D, 124 2-Furanmethanol, 463 D, 147, 319 (aka Furfuryl alcohol, 5- β-Glucose, 135 hydroxymethylfuran) Glucose-6-phosphate, 145 3-Furanmethanol, 311 α-Glucosidase, 126–129 2-(5H) Furanone, 311 D-Glyceraldehyde, 442 1-(Furan-2-yl)ethanone, 305, 311, 463 (aka 2,3-Dihydroxypropanal) (aka 2-Acetylfuran) Glyceraldehyde-3-phosphate, 145 (E)-3-(Furan-2-yl)prop-2-enal, 464 Glyceric acid, 317 (aka Furylacrolein) Glycerol, 144, 145, 159, 291, 316, 317, 323 Furfural, 19, 22, 59, 103, 107, 108, 167, 175, Glycerol-3-phosphate, 145 176, 180, 182, 190, 216–218, 225, Glyoxal, 321, 444 229, 247, 249, 262–264, 269, 270, (aka Oxaldehyde) 305, 307, 308, 311, 356, 463 Glyoxylic acid, 431, 444 (aka Furan-2-carbaldehyde) (aka Oxaldehydic acid) Furfurol, 19 Gramine, 112, 113 Furfuryl alcohol, 305, 463 Grandinin, 282, 283, 465 (aka 2-Furanmethanol) Grapefruit mercaptan, 47 1-Furfurylpyrrole, 108 (aka (R)-2-(4-Methylcyclohex- 2-Furoic acid, 108 3-enyl)propane-2-thiol, Furylacrolein, 464 1-p-menthene-8-thiol) (aka (E)-3-(Furan-2-yl)prop-2-enal) Grasshopper ketone, 177 Fuschin sulfite, 269 Guaiacol, 47, 51, 59, 80, 107–109, 184, 304, Fusel oil, 169, 260–262, 271 307, 308, 311, 323, 451 (aka 2-Methoxyphenol) Guaiacylpropane, 311 G Galactose, 291, 292, 316, 317 D-Galacturonic acid, 151, 152 H Gallic acid, 276, 295, 298, 303, 317, 458 Hemicellulose, 134, 136, 287, 291, 309 ethyl ester, 438 Heptadecanoic acid, 266 522 Chemical Index

Heptadienal, 138 (aka (Z)-Hex-3-enal) (E,E)-2,4-Heptadienal, 142 trans-3-Hexenal, 142 (E,Z)-2,4-Heptadienal, 142 (Z)-Hex-3-enal, 139, 440 γ -Heptalactone, 459 (aka cis-3-Hexenal) (aka 5-Propyloxolan-2-one) Hex-3-enoic acid, 430 1-Heptanal, 50, 142, 440 (E)-2-Hexen-1-ol, 426 2-Heptanal, 440 (Z)-3-Hexen-1-ol, 47, 59, 426 Heptanoic acid, 300, 430 Hexyl acetate, 69, 73 (aka Enanthic acid) n-Hexyl acetate, 436 1-Heptanol, 59, 108, 426 5-Hexyloxolan-2-one, 459 2-Heptanol, 108, 426 (aka γ -Decalactone) 3-Heptanol, 108 Homoserine, 100 Heptan-2-one, 47, 51, 69, 445 Hordenine, 112, 113 Heptan-3-one, 445 Hydrazine, 261 Heptan-4-one, 445 , 303 (E)-2-Heptenal, 67, 142, 440 Hydrogen cyanate, 114 (aka trans-2-Heptenal) Hydrogen sulfide, 59, 138, 156–158, 171 trans-2-Heptenal, 142 Hydroperoxide lyase, 99, 139 cis-4-Heptenal, 440 (9Z,11E)-13-Hydroperoxy-9,11- (aka (Z)-Hept-4-enal) octadecadienoic acid, 99 (Z)-Hept-4-enal, 440 (10E,12Z)-9-Hydroperoxy-10,12- (aka cis-4-Heptenal) octadecadienoic acid, 99 1-Hepten-3-ol, 426 (9Z,11E,15Z)-13-Hydroperoxy-9,11,15- Heptyl butanoate, 437 octadecatrienoic acid, 139 (aka sec-Heptyl butyrate) (10E,12Z,15E)-9-Hydroperoxy-1-,12,15- sec-Heptyl butyrate, 437 octadecatrienoic acid, 139 (aka Heptyl butanoate) 3-Hydroxybutanal, 442 n-Heptyl acetate, 436 (aka Aldol) Hexadecanoate-L,D-glucopyranoside, 317 3-Hydroxybutan-2-one, 445 Hexadecanoic acid, 317, 431 (aka Acetoin) (aka Palmitic acid) 4-[(E)-3-Hydroxybut-1-enyl]-3,5,5- 1-Hexadecanol, 428 trimethylcyclohex-2-en-1-one, (9Z)-Hexadec-9-enoic acid, 431 309 (aka Palmitoleic acid) α-Hydroxy-β-carboxybutyrate, 147 trans-2-cis-4-Hexadienal, 442 β-Hydroxy-β-carboxybutyrate, 147 (aka (2E,4Z)-Hexa-2,4-dienal) α-Hydroxy-β-carboxyisocaproate, 147 (2E,4Z)-Hexa-2,4-dienal, 442 β-Hydroxy-β-carboxyisocaproate, 147 (aka trans-2-cis-4-Hexadienal) 3-Hydroxy-β-damascone, 177 2,3-(S)-Hexahydroxydiphenoyl-D-glucose, 4-Hydroxy-3,5-dimethoxy benzaldehyde, 456 290 (aka Syringaldehyde) γ -Hexalactone, 459 4-Hydroxy-3,5-dimethoxybenzoic acid, 456 (aka 5-Ethyloxolan-2-one) (aka Syringic acid) Hexanal, 59, 63, 99, 142, 359, 439 3-(4-Hydroxy-3,5-dimethoxyphenol)prop-2- Hexane-2,3-dione, 445 enal, 458 Hexanoic acid, 300, 430 (aka Sinapaldehyde) (aka Caproic acid) (E)-3-(4-Hydroxy-3,5-dimethoxyphenyl)prop- 1-Hexanol, 359, 426 2-enoic acid, 458 2-Hexanol, 426 (aka Sinapic acid) Hexan-2-one, 445 3-Hydroxy-4,5-dimethylfuran-2(5H)-one, 67, (E)-Hex-2-enal, 138, 139, 440 69, 462 (aka trans-2-Hexenal) (aka Sotolon) trans-2-Hexenal, 142, 440 7-Hydroxy-3,7-dimethyloctanal, 444 (aka (E)-Hex-2-enal) 4-(2-Hydroxyethyl)phenol, 427 cis-3-Hexenal, 142, 440 (aka Tyrosol) Chemical Index 523

4-Hydroxy-3-methoxy benzaldehyde, 67, 69, (aka (E)-4-(2,6,6-Trimethylcyclohexen- 70, 72, 73, 75, 77, 78, 457 1-yl)but-3-en-2-one) (aka Vanillin) Iron oxide, 169 4-Hydroxy-3-methoxybenzoic acid, 458 Isoamyl isovalerate, 433 (aka Vanillic acid) (aka 3-Methylbutyl 3-methylbutanoate) 1-(4-Hydroxy-3-methoxyphenyl)ethanone, 456 Isoamyl acetate, 51, 59, 77, 80, 153, 175, 269, (aka Acetovanillone) 435 (E)-3-(4-Hydroxy-3-methoxyphenyl)prop-2- (aka 3-Methylbutyl acetate) enoic acid, 457 Isoamyl alcohol, 148, 175, 179, 182, 185, 210, (aka Ferulic acid) 211, 218, 225, 229, 247, 249, 363, 4-Hydroxy-2-methylacetophenone, 311 425 3-Hydroxy-3-methylbutan-2-one, 445 (aka 3-Methylbutanol) 2-Hydroxy-3-methyl-2-cyclopentenone, 307, Isoamyl caprate, 175, 433 308, 428 (aka 3-Methylbutyl decanoate) (aka Cyclotene) Isoamyl caproate, 433 2-Hydroxy-4-methyl-2-cyclopentenone, 108 (aka 3-Methylbutyl hexanoate) 5-Hydroxymethylfuran, 108 Isoamyl caprylate, 433 (aka 2-Furanmethanol) (aka 3-Methylbutyl octanoate) 5-(Hydroxymethyl)furan-2-carbaldehyde, 463 Isoamyl formate, 182, 214, 215, 218, 225, 229, (aka 5-(Hydroxymethyl)furfural) 247, 249, 436 5-(Hydroxymethyl)furfural, 303, 305, 307, (aka 3-Methylbutyl formate) 309, 311, 463 Isoamyl isobutyrate, 433 (aka 5-(Hydroxymethyl)furan-2- (aka 3-Methylbutyl 2-methylpropanoate) carbaldehyde) Isoamyl mercaptan, 449 3-Hydroxy-2-methylpyran-4-one, 428 (aka 3-Methyl-1-butanethiol) (aka Maltol) Isoamyl nonanoate, 437 2-Hydroxy-4-(methylthio)butyric acid, 157 (aka 3-Methylbutyl nonanoate) 2-Hydroxy-2-phenylacetic acid, 431 Isoamyl propionate, 437 (aka Mandelic acid) (aka 3-Methylbutyl propanoate) 2-(4-Hydroxyphenly)ethanal, 146 Isoamyl n-valerate, 433 2-(4-Hydroxyphenly)ethanol, 146 (aka Pentyl 3-methylbutanoate) (Z)-3-Hydroxy-2-Phenylprop-2-enal, 443 Isobutanal, 441 (E)-3-(4-Hydroxyphenyl)prop-2-enoic acid, (aka Isobutyraldehyde; 2-Methylpropanal) 458 Isobutanol, 144, 147–150, 175, 179, 182, 185, (aka p-Coumaric acid) 210, 211, 218, 225, 229, 247, 249, 2-Hydroxypropanoic acid, 431 363, 424 (aka Lactic acid) (aka 2-Methylpropan-1-ol) 3-Hydroxypropionaldehyde, 159, 160 Isobutyl acetate, 155, 433 3-Hydroxypropionic acid, 159, 160 (aka 2-Methylpropyl acetate) 2-Hydroxybutyric acid, 157 Isobutyl formate, 182, 214, 215, 218, 225, 229, 247, 249, 436 (aka 2-Methylpropyl formate) I Isobutyl mercaptan, 449 2-(Indol-3-yl)-ethanal, 146 (aka 2-Methylpropane-1-thiol) 2-(Indol-3-yl)-ethanol, 146 2-Isobutylthiazole, 450 Inositol, 292, 316, 317 (aka 2-(2-Methylpropyl)-1,3-thiazole) myo-Inositol, 316, 317 Isobutyraldehyde, 47, 108, 147, 148, 182, 212, Iodine, 105, 467 213, 218, 225, 229, 247, 249, 441 Ionone (aka Isobutanal; 2-Methylpropanal) α, 59, 137, 447 Isobutyric acid, 182, 208, 209, 218, 225, 229, (aka (E)-4-(2,6,6-Trimethylcyclohex-2- 247, 249, 266, 300, 429 en-1-yl)but-3-en-2-one) (aka 2-Methylpropanoic acid) β, 47, 59, 67, 69, 80, 137, 300, 447 Isoeugenol, 304, 309, 311 Isoleucine, 146–148 524 Chemical Index

Isomaltol, 305 (aka 2,7-Dimethylocta-1,6-dien-3-ol) Isomaltose, 130, 131 Linoleic acid, 98, 99, 136, 138, 140, 142, 169, Isomerase, 99 266, 300, 307, 431 Isopropanol, 50, 179, 182, 210, 211, 218, 225, (aka (9Z,12Z)-9,12-Octadecadienoic acid) 229, 247, 249 Linolenic acid, 98, 136, 138, 139, 142, 300, Isopropyl acetate, 182, 214, 215, 218, 225, 229, 317 247, 249 2-Butanol, 185 α-Isopropylmalate, 148 2,3-Lutidine, 106 β-Isopropylmalate, 148 2,6-Lutidine, 106 2-Isopropyl-3-methoxypyrazine, 67, 467 Lyoniresinol, 276, 466 3-Isopropyl-2-methoxypyrazine, 69 2-Isopropyl-5-methyl-2-hexenal, 103 4-Isopropylpyridine, 106 M Isorhamnetin-3-O-β-D-glucopyranoside, 464 Macarangioside E, 309, 310 Isovaleraldehyde, 108, 147, 442 Malic acid, 158, 317 (aka 3-Methylbutanal) Maltase, 127–129 Isovaleric acid, 47, 59, 80, 178, 266, 300, 429 Maltol, 59, 305, 307, 308, 428 (aka 3-Methylbutanoic acid) (aka 3-Hydroxy-2-methylpyran-4-one) Maltose, 125, 127, 130, 131, 143, 320 Maltotetrose, 143 J Maltotriose, 143 Jasmine lactone, 462 Mandelic acid, 431 (aka (Z)-Dec-7-en-5-olide; 6-[(Z)-Pent-2- (aka 2-Hydroxy-2-phenylacetic acid) enyl]oxan-2-one) α-D-Mannopyranose, 319 β-D-Mannopyranose, 319 Mannose, 291, 292, 317 K D, 319 α-Ketobutyrate, 147, 157 Megastigmatrienone, 298, 309, 310 α-Ketobutyric acid, 148 (aka 4-(2-Butenylidene)-3,5,5- α-Keto-β-carboxybutyrate, 147 trimethylcyclohex-2-en-1-one) α-Ketoisocaproate, 147 4-Mercapto-4-methyl-2-pentanone, 161, 451 α-Ketoisocaproic acid, 148 (aka Cat urine ketone) Ketoisophorone, 309, 310 Mesaconic acid, 300 (aka 2,6,6-Trimethyl-2-cyclohexene-1,4- Mesityl oxide, 59, 161, 445 dione) (aka 4-Methyl-3-penten-2-one) α-Ketoisovalerate, 147 Methanethiol, 138, 157, 171, 449 α-Ketoisovaleric acid, 148 (aka Methylmercaptan) α-Keto-β-methylvaleric acid, 147 Methanol, 151, 179, 210, 211, 219, 252–258, 303, 323, 424 1-p-Menthene-8-thiol, 47 L (aka Grapefruit mercaptan; Lactic acid, 158, 163, 431 (R)-2-(4-Methylcyclohex-3- (aka 2-Hydroxypropanoic acid) enyl)propane-2-thiol) Lactonitrile, 114 Methional, 157, 449 Lauric acid, 266, 300, 431 (aka 3-Methylsulfanylpropanal) (aka Dodecanoic acid) Methionine, 100, 138, 146, 157 Leucine, 146–148 Methionol, 157 Leucoanthocyanidin, 138 Methionyl acetate, 275, 450 Lignin, 281, 289, 309 (aka 3-Methylsulfanylpropyl acetate) Limit dextrinase, 127–129 Methonine, 157 Limonene, 47, 52, 464 6-Methoxy-m-cresol, 457 (aka 1-Methyl-4-(1-methylethenyl)- (aka 5-Methyl-2-methoxyphenol) cyclohexene) Methoxyeugenol, 311 Linalool, 52, 427 p-Methoxyguaiacol Chemical Index 525

(aka Creosol; 4-Methylguaiacol; 2-Methylbutyric acid, 300 2-Methoxy-4-methoxyphenol) 3-Methylbutyric acid, 69, 108, 300 2-Methoxy-3-isopropylpyrazine, 69 Methyl caprate, 437 2-Methoxy-4-methylphenol, 452 (aka Methyl decanoate) (aka Creosol; 4-Methylguaiacol; 4-Methylcyclohexan-1-one, 446 p-Methylguaiacol) (R)-2-(4-Methylcyclohex-3-enyl)propane-2- 2-Methoxyphenol, 67, 69, 70, 72, 75, 107, 451 thiol, 47 (aka Guaiacol) (aka Grapefruit mercaptan; 1-p-Menthene- 2-Methylphenol, 73 8-thiol) 4-Methylphenol, 69 2-(4-Methyl-1-cyclohex-3-enyl)propan-2-ol, Methoxysuccinic acid, 300 427 Methyl acetate, 436 (aka α-Terpineol) 2-Methyl-5-acetylpyrazine, 108 Methyl decanoate, 437 4-Methylacetophenone, 67, 69 (aka Methyl caprate) 5-Methylbenzoic acid, 317 4-Methyl-2,3-dihydrofuran, 311 2-Methylbutanal, 59, 70, 71, 146, 442 Methyl formate, 436 3-Methylbutanal, 59, 70–73, 75, 77, 103, 146, (aka Methyl methanoate) 442 α-Methyl furan, 311 (aka Isovaleraldehyde) 5-Methylfuran-2-carbaldehyde, 463 2-Methylbutane-2-thiol, 449 (aka 5-Methylfurfural) (aka tert-Amyl mercaptan) 3-Methyl-2,5-furandione, 311 3-Methyl-1-butanethiol, 449 5-Methyl-2(3H)-furanone, 311 (aka Isoamyl mercaptan) 2-Methylfurfural, 307 2-Methylbutanoic acid, 178 5-Methylfurfural, 103, 107, 108, 305, 307, 309, 3-Methylbutanoic acid, 178, 429 311, 463 (aka Isovaleric acid) (aka 5-Methylfuran-2-carbaldehyde) 2-Methylbutanol, 73, 75, 144, 146, 147, 425 4-O-Methyl-α-D-glucuronic acid, 291 (aka Active amyl alcohol) 4-Methylguaiacol, 51, 108, 109, 137, 162, 184, 3-Methylbutanol, 67, 69–73, 75, 77, 144, 146, 304, 307, 308, 452 147, 425 (aka Cresol; 2-Methoxy-4-methoxyphenol; (aka Isoamyl alcohol) p-Methylguaiacol) 3-Methylbutan-2-one, 445 p-Methylguaiacol, 311, 452 3-Methylbutanol, 80, 311 2-Methylhepta-2-trans-4-dien-6-one, 446 2-Methylbutyl acetate, 73, 75 6-Methylheptan-3-one, 446 3-Methylbutyl acetate, 67, 69–73, 75, 77, 435 2-Methylhept-2-en-6-one, 446 (aka Isoamyl acetate) 5-Methylhexan-2-one, 445 3-Methylbutyl decanoate, 433 Methyl 2-hydroxybenzoate, 432 (aka Isoamyl caprate) (aka Methyl salicylate) 3-Methylbutyl formate, 436 3-Methyl-4-hydroxyoctanoic acid, 300 (aka Isoamyl formate) 2-Methyl iso-borneol, 59 3-Methylbutyl hexanoate, 433 Methyl mercaptan, 449 (aka Isoamyl caproate) (aka Methanethiol) 3-Methylbutyl 3-methylbutanoate, 433 Methyl methanoate, 436 (aka Isoamyl isovalerate) (aka Methyl formate) 3-Methylbutyl 2-methylpropanoate, 433 S-Methylmethionine, 100 (aka Isoamyl isobutyrate) 4-Methyl-2-methoxyphenol, 72, 73, 75 3-Methylbutyl nonanoate, 437 5-Methyl-2-methoxyphenol, 69, 72, 73, 75, (aka Isoamyl nonanoate) 457 3-Methylbutyl octanoate, 433 (aka 6-Methoxy-m-cresol) (aka Isoamyl caprylate) 1-Methyl-4-(1-methylethenyl)-cyclohexene, 3-Methylbutyl propanoate, 437 464 (aka Isoamyl propionate) (aka Limonene) 2-Methyl-1-butyraldehyde, 148 Methyl-(2-methyl-3-furyl)disulfide, 59, 171, (aka β-Methylbutyraldehyde) 448 526 Chemical Index

3-Methyl-2,4-nonadione, 69 5-Methyl-2-thiophene-carboxaldehyde, 171, β-Methyl-γ -octalactone, 305, 460 274, 275 (aka Whisky lactone; 5-Butyl-4- 2-Methylthiophene-3-ol, 450 methyloxolan-2-one) 3-(Methylthio)propanal, 146, 171, 275 2-Methyl-1-pentanol, 108 3-(Methylthio)propanol, 146, 171, 275 4-Methylpentan-2-one, 445 3-(Methylthio)propyl acetate, 171, 275 4-Methyl-3-penten-2-one, 445 4-Methylumbelliferone, 297 (aka Mesityl oxide) 4-Methylvaleric acid, 108 2-Methylphenol, 72, 75, 454 4-Methyl-5-vinylthiazole, 106 (aka o-Cresol) 3-Methoxy-4-hydrophenol 1-O-β-D(6- 3-Methylphenol, 73, 75, 454 O-galloyl)glucopyranoside, (aka m-Cresol) 290 4-Methylphenol, 73, 75, 454 Muurolene, 301 (aka p-Cresol) Myristic acid, 266, 300, 431 2-Methylpropanal, 70–73, 75, 77, 146, 441 (aka Tetradecanoic acid) (aka Isobutanal; Isobutyraldehyde) Myrtenol, 300 2-Methylpropane-1-thiol, 449 (aka Isobutyl mercaptan) 2-Methylpropane-2-thiol, 449 N (aka tert-Butyl mercaptan) NAD, 144, 145 2-Methylpropan-1-ol, 59, 67, 69, 80, 146, 424 (aka Nicotineamide dinucleotide) (aka Isobutanol) NADH, 144, 145 2-Methylpropan-2-ol, 424 Naphthalene, 59 (aka tert-Butyl alcohol) Neoxanthin, 176, 177, 190 2-Methylpropanoic acid, 429 Nerol, 427 (aka Isobutyric acid) (aka (Z)-3,7-Dimethyl-2,6-octadien-1-ol) (5S)-2-Methyl-5-prop-1-en-2-ylcyclohex-2-en- , 323 1-one, 446 Nicotineamide adenine dinucleotide, 144 (aka D-Carvone) Ninhydrin, 87, 88 2-Methylpropionic acid, 108 Nitrobenzene, 303 2-Methylpropyl acetate, 433 Nitrogen oxides (NOX), 90 (aka Isobutyl acetate) Nonadienal 2-Methylpropyl formate, 436 (2E,4E), 67, 69, 72, 73, 75, 142, 443 (aka Isobutyl formate) (2E,6Z), 67, 69, 72, 73, 75, 138, 139, 142, 2-(2-Methylpropyl)-1,3-thiazole, 450 443 (aka 2-Isobutylthiazole) (aka Violet leaf aldehyde) 2-Methylpyrazine, 105, 106, 466 (3Z,6Z), 139 2-Methylpyridine, 105 Nonalactone 3-Methylpyridine, 105 δ, 67, 69 Methyl salicylate, 432 γ , 67, 69, 70, 72, 73, 75, 77, 80, 459 (aka Methyl 2-hydroxybenzoate) (aka 5-Pentyloxolan-2-one) Methylsuccinic acid, 300 γ -Nonalactone, 300 3-Methylsulfanylpropanal, 449 Nonanal, 67, 142, 440 (aka Methional) Nonanoic acid, 300, 430 3-Methylsulfanylpropyl acetate, 450 (aka Pelargonic acid) (aka Methionyl acetate) Nonanol, 108 4-Methylsyringol, 304 1-Nonanol, 427 2-Methylthio acetaldehyde, 449 2-Nonanol, 427 Methyl thioacetate, 171 2-Nonanone, 69, 446 4-Methylthiobutan-2-ol, 450 2-Nonenal, 59 2-Methylthio ethanol, 449 (E)-2-Nonenal, 67, 69, 72, 73, 75, 99, 142, 163, 4-Methylthio-2-oxobutyric acid, 157 307, 441 2-Methylthiophene, 171 (aka trans-2-Nonenal) trans-2-Nonenal, 441 Chemical Index 527

(aka (E)-2-Nonenal) Octyl hexanoate, 437 (Z)-2-Nonenal, 69, 142 (aka Octyl caproate) (aka cis-2-Nonenal) 5-Octyloxolan-2-one, 460 trans-3-Nonenal, 142 (aka γ -Dodecalactone) (Z)-3-Nonenal, 99, 142 2,3-di-O-galloyl-glucose, 290 (aka cis-3-Nonenal) 3-O-galloyl-glucose, 290 Nonenoic acid, 300 6-O-galloyl-glucose, 290 (E)-Non-2-enoic acid, 431 Oleic acid, 98, 108, 136, 142, 161, 169, 266, (E)-Non-2-en-4-one, 445 300, 431 (aka (9Z)-Octadec-9-enoic acid) Oxalacetic acid, 444 O (aka 2-Oxobutanedioic acid) Octacecanoic acid, 317 Oxaldehyde, 444 (9Z,12Z)-9,12-Octadecadienoic acid, 431 (aka Glyoxal) (aka Linoleic acid) Oxaldehydic acid, 431, 444 Octadecanoic acid, 431 (aka Glyoxylic acid) (aka Stearic acid) Oxalic acid, 300 9-Octadecanoic acid, 317 2-Oxobutanedioic acid, 444 (9Z)-Octadec-9-enoic acid, 431 (aka Oxalacetic acid) (aka Oleic acid) (9Z)-12-Oxo-9-dodecenoic acid, 99, 139 cis-2,cis-5-Octadienal, 142 3-Oxo-α-ionol, 309, 310 1,cis-5-Octadien-3-hydroperoxide, 142 (aka 4-[(E)-3-Hydroxybut-1-enyl]-3,5,5- 1,cis-5-Octadien-3-one, 142 trimethylcyclohex-2-en-1-one) 3,5-Octadien-2-one, 142 9-Oxo-nonanolic acid, 99, 139 Octalactone 2-Oxo-3-phenylpropanoic acid, 431 δ, 459 (aka Phenylpyruvic acid) (aka 6-Propyloxan-2-one) 2-Oxopropanal, 178 γ , 69, 459 2-Oxopropanoic acid, 431 (aka 5-Butyloxolan-2-one) (aka Pyruvic acid) Octanal, 142, 359, 440 Octanoic acid, 300, 430 (aka Caprylic acid) P 1-Octanol, 359, 426 Palmitic acid, 98, 136, 169, 266, 300, 431 (S)-(+)-2-Octanol, 426 (aka Hexadecanoic acid) Octan-2-one, 446 Palmitoleic acid, 161, 266, 300, 431 Octan-3-one, 446 (aka (9Z)-Hexadec-9-enoic acid) Octenal, 138 Paraldehyde, 81 (E)-2-Octenal, 307, 440 Pectin, 151, 152 (aka trans-2-Octenal) Pedunculagin, 282, 285 trans-2-Octenal, 142, 440 Pelargonic acid, 266, 430 (aka (E)-2-Octenal) (aka Nonanoic acid) (Z)-2-Octenal, 142 Pentadecanoic acid, 266, 300, 431 (aka cis-2-Octenal) Pentadecenoic acid, 300 1-Octen-3-hydroperoxide, 142 1,2,3,4,6-Pentagalloyl-β-d-glucose, 465 1-Octen-3-ol, 426 Pentanal, 138, 140, 142, 439 1-Octen-3-one, 142, 446 (aka Valeraldehyde) 3-Octen-1-one, 307 Pentane, 142 n-Octyl acetate, 436 Pentane-2,3-dione, 445 Octyl butanoate, 437 (aka Acetylpropionyl) (aka n-Octyl butyrate) Pentanoic acid, 430 n-Octyl butyrate, 437 (aka Valeric acid) (aka Octyl butanoate) 1-Pentanol, 425 Octyl caproate, 437 (aka Amyl alcohol) (aka Octyl hexanoate) 2-Pentanol, 425 528 Chemical Index

3-Pentanol, 425 2-Phenylprop-2-enal, 443 Pentan-2-one, 445 (aka 2-Phenylacrolein) Pentan-3-one, 445 (E)-3-Phenylprop-2-enal, 443 cis-2-Pentenal, 142 (aka Cinnamaldehyde) trans-2-Pentenal, 142 Phenylpyruvic acid, 431 1-Penten-3-ol, 425 (aka 2-Oxo-3-phenylpropanoic acid) cis-Pent-2-en-1-ol, 108 2-Phosphoglycerate, 145 1-Penten-3-one, 142, 445 3-Phosphoglycerate, 145 (aka Ethyl vinyl ketone) Phosphomolybdic acid, 271 6-[(Z)-Pent-2-enyl]oxan-2-one, 462 Phosphoric acid, 316, 317 (aka Jasmine lactone; (Z)-Dec-7-en-5- Phthalic acid, 300 olide) 3-Picoline, 106 Pentyl acetate, 436 Pimelic acid, 300 (aka Amyl acetate) Pinacolone, 445 Pentyl butanoate, 437 (aka 3,3-Dimethylbutan-2-one) (aka n-Amyl butyrate) 1H-Pirrole-2-carboxaldehyde, 305 2-Pentylfuran, 463 Procyanidin Pentyl 3-methylbutanoate, 433 B1, 465 (aka Isoamyl n-valerate) B2, 466 5-Pentyloxolan-2-one, 459 B3, 466 (aka γ -Nonalactone) C1, 466 6-Pentyloxan-2-one, 460 Proline, 178 (aka δ-Decalactone) Propanal, 108, 142, 439 6-Pentylpyran-2-one, 462 1,3-Propanediol, 159 2-Phenethylacetate, 155 Propane-1-thiol, 449 Phenol, 107–109, 184, 304, 311, 454 (aka n-Propyl mercaptan) 2-, 305 1,1,3-Propanetriol, 159, 160 Phenylacetaldehyde, 69 Propanoic acid, 429 2-Phenylacetaldehyde, 146, 442 (aka Propionic acid) Phenylacetic acid, 108 Propanol, 144, 149, 150 2-Phenylacetic acid, 67, 69, 80, 431 1-Propanol, 137, 147, 175, 179, 182, 185, 210, 2-Phenylacrolein, 443 211, 218, 225, 229, 247, 249, 323, (aka 2-Phenylprop-2-enal) 424 Phenylalanine, 146 (aka Propanol; n-Propanol; n-Propyl 4-Phenylbutan-2-one, 446 alcohol) (aka Benzylacetone) 2-Propanol, 424 (E)-4-Phenylbut-3-en-2-one, 446 Propan-2-one, 445 (aka Benzalacetone) (aka Acetone) Phenylethanol, 59 4-Propan-2-ylbenzaldehyde, 444 2-Phenylethanol, 51, 67, 69, 70, 72, 73, 75, 80, (aka Cuminaldehyde) 108, 144, 146, 149, 150, 175, 305, 2-Propan-2-ylsulfanylpropane, 449 311, 427 (aka Di-isopropyl sulfide) 1-Phenylethanone, 446 Prop-2-enal, 442 (aka Acetophenone) (aka Acrolein) 2-Phenylethyl acetate, 67, 69, 72, 73, 75, 80, Propionaldehyde, 147, 180, 182, 212, 213, 218, 153, 175, 311, 434 225, 229, 247, 249 (aka β-Phenylethyl acetate) Propionic acid, 108, 182, 208, 209, 218, 225, β-Phenylethyl acetate, 434 229, 247, 249, 266, 300, 429 (aka 2-Phenylethyl acetate) (aka Propanoic acid) 2-Phenylethyl propanoate, 67 Propiovanillone, 294, 295 Phenylmethanol, 305, 426 Propyl acetate, 62, 436 (aka Benzyl alcohol) (aka n-Propyl acetate) 2-Phenylpropanal, 443 2-Propyl furan, 311 3-Phenylpropanol, 108 4-Propylguaiacol, 457 Chemical Index 529

(aka 4-Propyl-2-methoxyphenol) Sinapic acid, 458 n-Propyl mercaptan, 449 (aka (E)-3-(4-Hydroxy-3,5- (aka Propane-1-thiol) dimethoxyphenyl)prop-2-enoic 4-Propyl-2-methoxyphenol, 69, 75, 457 acid) (aka 4-Propylguaiacol) Sinapic alcohol, 289 6-Propyloxan-2-one, 459 Sinapyl alcohol, 289, 292 (aka δ-Octalactone) Sitosterol β-D-glucoside, 297 5-Propyloxolan-2-one, 459 Sodium 4-hydrazino-benzenesulfonate, 261 (aka γ -Heptalactone) Sodium hydroxide, 303 2-Propylpyrazine, 108 Sodium hypochlorite, 115 Protocatechuic acid, 458 Sodium sulfide, 59 ethyl ester, 438 Sodium tungstate, 271 Proto-quercitol, 288, 292 Sotolon, 301, 302, 462 Pryene, 343 (aka 3-Hydroxy-4,5-dimethylfuran-2(5H)- Pyruvic acid, 144, 145, 147, 148 one) Punicalagin, 282, 285 Stearic acid, 98, 136, 266, 300, 431 Pyrazine, 356, 466 (aka Octadecanoic acid) Pyrazines, 102, 105, 119, 288 Suberic acid, 300 Pyridine, 106, 466 Succinic acid, 300 Pyridines, 104, 105, 288 Sucrose, 143, 320 Pyruvic acid, 431 Sulfur dioxide, 171 (aka 2-Oxopropanoic acid) Syringaldehyde, 80, 289, 293–296, 298, 303, 311, 313, 456 (aka 4-Hydroxy-3,5-dimethoxy Q benzaldehyde) Quercetin-3-O-β-D-galactopyranoside, 464 β β Syringetin-3-O- -D-glucopyranoside, 464 Quercetin-3-O- -D-glucuropyranoside, 464 Syringic acid, 294, 295, 303, 313, 317, 456 Quercitrin, 464 ethyl ester, 438 (aka 4-Hydroxy-3,5-dimethoxybenzoic R acid) Rhamnose, 291, 292 Syringol, 304, 311, 455 Ribofuranose, 316, 317 (aka 1,3-Dimethoxy-2-hydroxybenzene) Ribopyranose, 316, 317 Roburin A, 283, 465 T B, 283, 465 Tannic acid, 273, 465 C, 283, 465 Tannin, 138, 296, 315 D, 283, 465 condensed, 139, 281, 282 dimers, 282 hydrolyzable, 282 E, 282, 283, 465 polymeric, 466 Ruhemann’s purple, 88 Tartaric acid, 432 (aka 2,3-Dihydroxybutanedioic acid) Terpenes, 300, 301 S Terpineol, 301 S-adenosyl-L-methionine, 100 α-Terpineol, 427 Scopoletin, 296, 297, 303 (aka 2-(4-Methyl-1-cyclohex-3- Scopolin, 297 enyl)propan-2-ol) Sebacic acid, 300 Tetradecanoic acid, 431 S-Ethyl thioacetate, 157 (aka Myristic acid) Silica, 169 1-Tetradecanol, 359, 428 Simethicone, 173, 190 Tetradecenoic acid, 300 Sinapaldehyde, 289, 293–296, 303, 313, 458 1,2,3,6-Tetrahydrobenzaldehyde, 442 (aka 3-(4-Hydroxy-3,5- (aka Cyclohex-3-ene-1-carbaldehyde) dimethoxyphenol)prop-2-enal) 1,2,3,5-Tetrahydroxycyclohexane, 317 530 Chemical Index

Tetramethylpyrazine, 106 V 2,3,5,6-Tetramethylpyrazine, 466 Valeonic acid bilactone, 286 Theonine, 148 Valeraldehyde, 108, 180, 182, 212, 213, 218, Thiazole, 106 225, 229, 247, 249, 439 1,3-Thiazole, 449 (aka Pentanal) Thiocyanate, 114 Valeric acid, 108, 182, 208, 209, 218, 225, 229, Thiomenthone, 59 247, 249, 266, 300, 430 2-Thiophencarboxaldehyde, 274, 275 (aka Pentanoic acid) (aka Formylthiophene) Valine, 146–148 Thiophene, 171 Vanillic acid, 138, 294, 295, 303, 311, 313, 2-Thiophenecarboxaldehyde, 171 317, 458 Threonine, 147, 302 ethyl ester, 438 2,4,6-Tribromophenol, 107, 458 (aka 4-Hydroxy-3-methoxybenzoic acid) 1,2,4-Trichloro-3-methoxybenzene, 464 Vanillin, 47, 59, 78, 80, 162, 289, 293–296, (aka 2,3,6-Trichloroanisole) 298, 303, 309, 311, 313, 457 2,3,6-Trichloroanisole, 464 (aka 4-Hydroxy-3-methoxy benzaldehyde) (aka 1,2,4-Trichloro-3-methoxybenzene) Verbenone, 301 2,4,6-Trichloroanisole, 59 Vescalagin, 282, 283, 465 Tridecanoic acid, 266, 431 4-Vinylguaiacol, 59, 136, 137, 162, 175, 190, Tridecan-2-one, 446 304, 309, 453 2,3,5-Triethylpyrazine, 108 (aka 4-Ethenyl-2-methoxyphenol) Trigalloyl glucose, 286 p-Vinylguaiacol, 80 3,4,5-Trihydroxybenzoic acid, 458 4-Vinylphenol, 455 (aka Gallic acid) (aka p-Ethenylphenol; 4-Ethenylphenol) Trimethylbenzoic acid, 300 p-Vinylphenol, 137, 162, 455 2,6,6-Trimethyl-2-cyclohexene-1,4-dione, 309 (aka 4-Vinylphenol; 4-Ethenylphenol) (E)-4-(2,6,6-Trimethylcyclohexen-1-yl)but-3- Violet leaf aldehyde, 443 en-2-one, 447 (aka (2E,6Z)-Nonadienal) (aka β-Ionone) (E)-4-(2,6,6-Trimethylcyclohex-2-en-1-yl)but- 3-en-2-one, 447 W (aka α-Ionone) Whisky tannin, 289 2,3,4-Trimethylpyrazine, 466 Whiskylactone 2,3,5-Trimethylpyrazine, 105, 106, 108, 466 whisky lactone Trithioacetaldehyde, 157 trans,(3S,4R), 69 Tryptophan, 146 Whisky lactone, 59, 298, 460 Tyrosine, 146 cis, 80, 311 Tyrosol, 427 (3R,4R), 298 (aka 4-(2-Hydroxyethyl)phenol) (3S,4S), 67, 69, 72, 73, 75, 77, 78, 298 precursor, 298, 299 trans, 80 U (3R,4S), 298 Umbelliferone, 297 (3S,4R), 67, 72, 73, 75, 298 Undecanal, 441, 444 (aka β-Methyl-γ -octalactone; 5-Butyl-4- Undecanoic acid, 266, 300, 430 methyloxolan-2-one) 1-Undecanol, 428 2-Undecanol, 428 Undecan-2-one, 446 X Undec-10-enal, 444 2,3-Xylenol, 458 trans-2-Undecenal, 142 (aka 2,3-Dimethylphenol) Undec-9-enal, 444 2,6-Xylenol, 295, 296 Urea, 114 Xylopyranose, 317 Urethane, 112 Xylose, 135, 176, 291, 292, 317 (aka Ethylcarbamate)